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Microvascular imaging based on indocyanine green is an important tool for surgeons who

carry out extracranial–intracranial arterial bypass surgery. In terms of blood perfusion,

indocyanine green images contain abundant information, which cannot be effectively

interpreted by humans or currently available commercial software. In this paper, an

automatic processing framework for perfusion assessments based on indocyanine green

videos is proposed and consists of three stages, namely, vessel segmentation based

on the UNet deep neural network, preoperative and postoperative image registrations

based on scale-invariant transform features, and blood flow evaluation based on the

Horn–Schunck optical flow method. This automatic processing flow can reveal the blood

flow direction and intensity curve of any vessel, as well as the blood perfusion changes

before and after an operation. Commercial software embedded in a microscope is

used as a reference to evaluate the effectiveness of the algorithm in this study. A total

of 120 patients from multiple centers were sampled for the study. For blood vessel

segmentation, a Dice coefficient of 0.80 and a Jaccard coefficient of 0.73 were obtained.

For image registration, the success rate was 81%. In preoperative and postoperative

video processing, the coincidence rates between the automatic processing method

and commercial software were 89 and 87%, respectively. The proposed framework not

only achieves blood perfusion analysis similar to that of commercial software but also

automatically detects and matches blood vessels before and after an operation, thus

quantifying the flow direction and enabling surgeons to intuitively evaluate the perfusion

changes caused by bypass surgery.

Keywords: automatic blood flow quantitative analysis, vessel segmentation, image registration, HS optical flow,

indocyanine green angiography

INTRODUCTION

The superficial temporal artery to middle cerebral artery (STA-MCA), first reported by Spetzler and
Martin in 1986 (1), has been widely used in blood flow reconstruction for cerebral hemorrhages
or ischemia and complex intracranial aneurysms (2–5). STA-MCA alters the cerebral blood flow
(CBF) perfusion of patients, so methods are needed to analyze the changes in blood flow before
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and after an operation to assist surgeons in adjusting follow-
up therapeutic schedules at any time according to the operation
effect. Raabe et al. (6, 7) first demonstrated that the dynamic
flow of indocyanine green (ICG) in anastomotic vessels can
help in determining the patency and direction of intraoperative
blood flow (8–10). A host of studies (11–14) have proven that
intraoperative ICG video angiography (ICG-VA) and current
commercial software can be employed to generate time-delayed
color maps to monitor regional CBF and evaluate improvements
in cortex perfusion around the anastomotic site after bypass.
As an image postprocessing software, this software is unable
to achieve continuous real-time and dynamic analysis of CBF
and cannot quantify the flow direction of each blood vessel.
Therefore, it is clinically helpful to develop a fully automated
quantitative blood flow analysis system that can be used to
measure the real-time flow direction based on the original
ICG-VA videos and to visually compare the difference in flow
perfusion by correcting the images before and after the operation.

The proposed automatic and quantitative blood flow analysis
algorithm consists of three parts, namely, vessel segmentation,
preoperative and postoperative vessel registrations, and blood
flow analysis. Quantifying blood flow is the main task, and
vessel segmentation and registration are prerequisite tasks. There
are many blood vessels with large diameter differences and
low definition, and we use the UNet deep neural network (15)
to carry out classification at the pixel level. The main factors
that cause image differences before and after surgery are as
follows (16): (i) changes in the position of the microscope lens
and movements along the X-, Y- and Z-axes; (ii) variations in
camera interior parameters, such as focal length and resolution;
and (iii) perfusion changes caused by bypass surgery. To
visually compare the differences in blood perfusion before
and after bypass surgery, it is essential and necessary to
register the target (preoperative) image to the direction of the
reference (postoperative) image. Vessel features are widely used
in common feature-based registration methods (17–20). Since
the rotation-invariant distance of the scale-invariant feature
transform (SIFT) remains invariant to rotation, scaling, and
brightness, this kind of method is an optimal choice for this
work. The optical flow method can accurately identify the
position of a moving object without knowing the information
of the scene. Optical flow is the instantaneous velocity of the
pixel movement of a spatially moving object on an observation
imaging plane. It uses the change in a pixel in the time domain in
an image sequence and the correlation between adjacent frames
to calculate the motion information of objects between adjacent
frames (21). Experiments have revealed that for any two adjacent
frames in ICG-VA, the changes in the brightness and motion
distance of pixels corresponding to blood were slight and satisfy
the conditions necessary to apply the optical flow method (22).
An improved Horn–Schunck (HS) optical flow method (22) is
used in this study to determine the flow direction in ICG-VA to
evaluate the practical application of our process with ICG-VA in
CBF reconstruction.

The main contributions of our paper are as follows. (i)
An automatic quantitative blood flow analysis process, which
can perform vessel segmentation, vessel registration, and flow

direction analysis, is proposed. (ii) Based on the registration of
the video images before and after an operation, an evaluation
of the blood perfusion changes can be obtained. (iii) An
algorithm for tracking the blood flow direction in videos obtained
with ICG-VA based on the optical flow field is proposed.
Based on the change in video brightness, a blood perfusion
color map and time–luminance curve are obtained. Figure 1
shows the comparison process between this study and existing
commercial software.

MATERIALS AND METHODS

Patients and Surgical Procedures
One hundred twenty patients who were diagnosed with
moyamoya disease (MMD) and underwent STA-MCA bypass
surgery at two medical centers (the North Campus of Huashan
Hospital and Huashan Clinical Medical Center) from October
2018 to June 2020 were retrospectively investigated. All of
the patients met the Chinese guidelines for the diagnosis
and treatment of MMD set by the Stroke Prevention Project
Committee, National Health and Family Planning Commission,
China. STA-MCA bypass surgery was performed with the
OPMI PENTERO 900 and OPMI PENTERO 800 microscopes
with embedded blood flow analysis commercial software. This
study was approved by the Institutional Review Board of
Huashan Hospital, Fudan University. All participants provided
informed consent.

All of the surgeries were performed by experienced
neurosurgeons. ICG was performed after the craniotomies to
determine the candidate recipient artery based on the diameter
and length of the STA graft. During the imaging process, a
microscope integrated with a near-infrared light-emitting device
and a fluorescence acquisition system was aligned with the
operating field (Figure 2A), and the ICG was diluted with
20ml of isotonic saline and injected into patients through a
peripheral intravenous bolus. ICG fluorescence signals with a
length of approximately 1min were collected with a microscope
and then processed by a computer to generate black and white
angiography videos (Figure 2B). Subsequently, commercial
blood flow analysis software built into the microscope operating
platform was used to conduct postprocessing analysis, and
the results are presented in color images (Figure 2C). The
sections where the contrast agent first and last passed are red
and blue-purple, respectively. The regions of interest (ROIs)
at the artery branch were set to calculate the delay time and
plot the intensity curve (Figure 3). The same procedure was
performed again instantly after the surgery to confirm the bypass
patency and compare it with the preoperative blood flow changes
in the selected regions (Figure 3B). Taking a recipient vessel
after bypass as an example, it is not easy to distinguish similar
colors with the naked eye because the entire vessel is red (the
white framed sections in Figures 2A–C). In this study, three
ROIs, namely, M, O and N, were set up for a vessel, and the
RGB values of these three parts were obtained by a computer (R
denotes red, G denotes green, and B denotes blue). The “gold
standard” for blood flow direction was determined by finding the
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FIGURE 1 | The process of this study and the process of existing commercial software.

FIGURE 2 | Displays the intraoperative findings of patients with moyamoya disease who received superficial temporal artery to middle cerebral artery (STA-MCA)

bypass surgery and the indocyanine green video angiography (ICG-VA) images generated by commercial software. (A) The microscope field showing the completion

of the STA-MCA anastomosis. (B) The image of ICG-VA. (C) The postprocessed blood flow analysis image of commercial software. The white frame represents the

recipient vessel; M, N, and O are three areas of the recipient vessel (O denotes the bypass grafting site).

corresponding position on the color bar. Figure 2C shows blood
flows from bypass graft sites O to M and N.

Automated Quantitative Analysis of Blood
Flow
This study developed a universal and repeatable algorithm to
automatically provide quantitative analyses of blood flow and
compared the results with those of commercial software. The
video (MPG format) of the change process of the intracranial
receptor vessels in ICG-VA from dark to light was captured with
a frame rate of 25 frames/s and an image resolution of 720 ×

576. Figure 4 shows four randomly selected frames from the
postoperative video of a patient. The fluorescent agent in the
initial position of the blood flow is illuminated first and reaches
the maximum brightness first. The change in brightness from
dark to bright reflects the order in which the blood flow passes
through the receptor vessel.

Algorithm Framework
After ICG-VA is decomposed into multiple frames, it can
be found that the cerebral vessels are piecewise-linear, and
their width and branches are visible in the image. Therefore,
a multitask UNet model was designed in this study to
simultaneously segment all vessels and recipient vessels. The
purpose of separating the recipient vessel was to observe the
patency of blood flow near the anastomosis site. The next
step was to match images from before and after an operation
to avoid differences in blood flow results caused by image
differences. By detecting the SIFT descriptor of the vessels, the
preoperative images were homographically changed and aligned
with the postoperative images. The third step was to measure the
blood flow based on the HS optical flow field. Specifically, we
measured the real-time direction of the blood flow in segmented
vessels, drew a blood perfusion map and an intensity curve,
and analyzed whether the blood flow direction of recipient
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FIGURE 3 | Indocyanine green (ICG) was performed after craniotomy to identify the recipient artery in the operative area (A). The region of interest (ROI) was set at the

artery branch, and blood flow analysis was carried out again after the anastomosis to confirm the patency of the vessel after the anastomosis and compare the blood

flow changes in the previously selected regions (B).

vessels changed after the operation. The algorithm framework is
shown in Figure 5.

Vessel Segmentation
The multitask UNet model is a network of encoder–decoder
structures. On the left is the contracting encoder path, which
uses a typical CNN architecture, and on the right, there are two
deconvolutional decoder paths (23). The encoder path includes
four repeated layers with two successive 3 × 3 convolutions,
nonlinear activation, and max pooling operations that halve the
size of the feature map after each convolutional layer. The two
decoder modules have the same structure, where at each level, the
feature map is upsampled with 2 × 2 upconvolution. Then, the
feature map from the corresponding layer in the encoder path
is cropped and concatenated onto the upsampled feature map
to retain multiscale features. This is followed by two successive
3 × 3 convolutions and nonlinear activation. In the final stage,
an additional 1 × 1 convolution operation is applied to reduce
the feature map to the required number of channels and produce

the segmented image. The two decoder modules have different
training tasks: one is to segment all vessels and the other is to
segment recipient vessels only. The network structure is shown
in Figure 6.

The total loss consists of two parts, namely, the negative log
likelihood loss of all vessel segmentation tasks and the recipient
vessel segmentation task; see formula (1).

Formula

Ltotal = αLall + βLreceip (1)

where α and β are scaling factors, and Lall and Lreceip
are defined by Lall =

∑

xǫ� logpall(x; lall (x)) and
Lreceip =

∑

xǫ� logpreceip(x; lreceip (x)), respectively. Lall and
Lreceip represent the classification error function of all segmented
vessels and the segmented recipient vessels, respectively. x
denotes the pixel position in the image space �. pall(x; lall)
represents the predicted probability of the true label lall after
applying the softmax activation function. preceip(x; lreceip)
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FIGURE 4 | It shows the changes in the brightness of indocyanine green (ICG) in four frames of video intercepts before and after superficial temporal artery to middle

cerebral artery (STA-MCA) anastomosis in patients with moyamoya disease. (A–D) The 100, 150, 250, and 400th frames before operation. (E–H) The 100, 150, 250,

and 400th frames after the operation (the red arrow points to the recipient vessel).

FIGURE 5 | Algorithm framework.

represents the predicted probability of the real label lreceip after
applying the softmax activation function.

Image Registration
The basic idea of the matching algorithm is to map and
geometrically align the segmented vessel images before and
after the surgery. SIFT, which is invariant to rotation, scaling,
and noise (24, 25), is employed to detect the features of the
vessel image. Difference of Gaussian (DOG) (26) used Gaussian

difference convolution to detect the local maximum or minimum
value of the image to obtain stable SIFT keypoints. Then, a
gradient histogram will be created for each keypoint to achieve
rotation invariance of the image. The histogram is composed
of the gradient orientation of the sampling points in the
neighborhood around the keypoint. The final step of SIFT is
to obtain the keypoint descriptor based on the previous steps,
which is a 128-dimensional feature vector involving location,
scale, and orientation.
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FIGURE 6 | Vessel segmentation network.

After the SIFT descriptor is obtained, the nearest neighbor
search was used to match the image pairs (27). Specifically, for
the invariant descriptor vector, the nearest neighbor is defined as
the keypoint with the minimum Euclidean distance. An effective
measure formatching verification is to calculate the distance ratio
between the nearest neighbor and the next nearest neighbor. We
set this ratio as 0.8 based on many experiments.

Horn–Schunck Optical Flow Measurement
After the vessels were automatically acquired in the first two
steps, the HS optical flow method was used to track the motion
direction of each pixel of the recipient vessel between adjacent
frames. First, a Gaussian filter was used to construct the original
ICG image pyramid, which was decomposed into four layers in
this study. Second, the HS optical flow method was employed
to calculate the optical flow of the layered images. The motion
direction of each pixel along the X- and Y-axes can be calculated,
that is, from left to right, from top to bottom, or vice versa. The
final direction of the blood flow of the recipient vessel can be
obtained by analyzing the flow directions of all pixels of the vessel
along the X- and Y-axes in ICG-VA.

The HS optical flow method uses formula (2) to describe that
the brightness of the recipient vessel pixels in the t-th frame is
consistent with that in the (t + 1t)-th frame.

Formula

I
(

x,y,t
)

= I
(

x + 1x,y+ 1y,t + 1t
)

(2)

1x represents the movement distance of the pixel along the X-
axis,1y denotes the motion distance of the pixel along the Y-axis,
1t indicates the time difference between adjacent frames, and
I
(

x, y, t
)

is the brightness value of pixel
(

x, y
)

at time t. The same
pixel has similar brightness levels in adjacent frames and slight
changes in motion distance. The motion distance of the pixel is
constrained by introducing the smooth energy function Es, which
is given in formula (3).

Formula

Es=

∫∫

[(ux)
2
+(uy)

2
+(vx)

2
+(vy)

2]dxdy (3)

where ux represents the partial derivative of u along the X-
axis, uy denotes the partial derivative of u along the Y-axis,
vx denotes the partial derivative of v along the X-axis, and vy
denotes the partial derivative of v along the Y-axis. The energy
formula (4) for calculating the optical flow field is obtained
by combining formula (2) and formula (3) and employing the
iterative calculation method.

Formula

min E=

∫∫

{

(

Ixu+ Iyv+ It
)2

+ λ

[

(ux)
2
+

(

uy
)2

+ (vx)
2
+ (vy)

2
]}

dxdy (4)

λ denotes the smooth coefficient; the greater λ is, the higher the
smoothness and the higher the accuracy of the estimation (22).
After many experiments, it is found that when the value of λ is 2,
we can obtain the best results.

The iterative method is a functional extreme value problem,
which can be solved by the Euler–Lagrange equation to obtain
the iterative formula (5),

Formula

uk+1
= uk −

Ix

(

Ixu
k + Iyv

k + It

)

λ2 + I2x + I2y
(5)

vk+1
= vk −

Iy

(

Ixu
k + Iyv

k + It

)

λ2 + I2x + I2y
(6)

where u and v are themean values of u and v, respectively, and the
initial values are 0. The values of u and v are calculated iteratively
in turn. When the condition is satisfied, i.e., when the difference
between the energy function values of two consecutive times is
less than the given threshold 0.1, the iteration is terminated and
the optical flow values u and v are obtained.

RESULTS

In this section, we first introduce the experimental settings,
evaluation indicators, and experimental results for vessel
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segmentation and show the experimental results of registration.
Then, we elaborate the evaluation criteria of the optical flow
method. Finally, we compare the algorithm in this study with
commercial software. The algorithm was performed with Python
and MATLAB. The experiments were conducted on an NVIDIA
GeForce GTX 1080 GPU 6 GB RAM.

Vessel Segmentation
Implementation Details
All models were implemented through PyTorch. We employed
the Adam optimizer and set the batch size to 32. We used the
plateau strategy to reduce the learning rate. At the 0, 20, and
100th iterations, the learning rate was set to 0.01, 0.001, and
0.0001, respectively, and the total number of iterations was set
to 150.

Due to the limited number of training images, the dataset
was augmented to avoid overfitting (28). First, the data were
augmented through horizontal, vertical, and diagonal flips so
that each image in the original dataset was augmented into four
images. To improve the robustness of image segmentation, the
same data augmentation was performed on the testing images
(29, 30), which meant that each image was predicted five times.
Then, we took the average value of the five predictions to obtain
the final prediction map.

Segmentation Results
We selected frames from ICG-VA in which the brightness is
stable and no longer changes for segmentation. There were 240
images in total; 150 images were used for training, and 90 were
used for testing. Two indicators, the Jaccard index and Dice
coefficient (23), were used to evaluate segmentation performance.
These two coefficients are used to compare the similarity and
difference between two samples. The larger the Jaccard and Dice
coefficients are, the higher the sample similarity is. We obtained
a segmentation result with a Dice coefficient of 0.80 and a Jaccard
coefficient of 0.73. Figure 7 shows some segmentation results.

Image Registration
We objectively evaluated the overall performance of the
registration algorithm. For image pairs that overlap in at least
35% of the vessel pixels and have at least 10 SIFT feature
correspondences, the matching is considered successful. The
success rate (31) is the ratio of the number of successfully
matched image pairs to the number of all image pairs. Among
120 image pairs, 97 pairs were successfully matched in this paper,
with the success rate was 0.81.

Figure 8 shows the matching results after extracting the SIFT
features from the blood vessel segmentation map. In terms of
the upper left corner image pair, 215 and 276 keypoints were
detected, and 27 matching pairs were generated through the
algorithm. The green point represents the SIFT features on
the matching pairs. The third and sixth columns of Figure 8
show an overlapping image that contains a preoperative image
and a postoperative image after the homograph changes so
that the matching results can be evaluated more intuitively.
This matching algorithm can address translation, rotation,
and scaling.

Quantitative Analysis of Blood Flow
Interpretation of Results
The optical flow method and commercial software were used
to interpret the results of 240 preoperative and postoperative
videos of 120 patients. If the optical flowmethod and commercial
software are consistent in the interpretation of the flow direction
(forward and reverse) in the preoperative videos and the flow
direction (forward, reverse, and from the middle to both sides)
in the postoperative videos, the result is deemed to be correct.
The optical flow method and commercial software were used to
interpret whether the direction of the blood flow of each patient
was changed after the operation. If the two methods showed that
the direction of blood flow was changed, the result would be
considered consistent.

SPSS 18.0 software was adopted for statistical analyses of
the data. The measurement data that conform to a normal
distribution are represented by χ ± s, and the enumeration
data are expressed as frequencies and percentages (%). To verify
the validity of this research method, the analysis results of the
HS optical flow method were compared with those generated
by commercial software. A kappa of <0.2 was considered a
slight agreement, a kappa of 0.2 < κ < 0.4 was considered a
fair agreement; a kappa of 0.4 < κ < 0.6 was considered a
moderate agreement; a kappa of 0.6 < κ < 0.8 was considered
a substantial agreement; and a kappa of κ > 0.8 was considered
an almost perfect agreement. A P-value of <0.05 was considered
statistically significant.

Flow Direction Measurement
The HS optical flow method and commercial software were
highly consistent in their interpretations of the flow direction in
the videos before and after surgery. The kappa values obtained
before and after the operation were 0.775 and 0.768, respectively,
with P < 0.01 (see Table 1). The analysis results from 107
preoperative videos and 104 postoperative videos of 120 patients
obtained through the HS optical flow method were consistent
with those of the commercial software. Figure 9 shows the optical
flow vector diagram of four frames obtained by ICG-VA of a case,
and the vector direction reflects the movement direction of the
pixel points. The dotted blue arrow points to the recipient vessel,
and the dotted blue frame denotes the anastomotic stoma. In
this case, the commercial software knows that the correct flow
direction before operation is from the top red box to the middle
green box and finally to the bottom orange box. The correct flow
direction after the operation is from the middle green box to the
top red box and the bottom orange box at both ends. The red
arrows in Figures 9A,E indicate the correct flow direction.

The analysis results of the commercial software and the
HS optical flow method revealed that after the operation, the
numbers of patients with changes in the blood flow direction of
the recipient vessel were 55 and 58, respectively, and the kappa
value was 0.716 and P = 0.002 (see Table 1).

Color Map and Curve
The luminance values of the ROIs selected in the commercial
color map changed over time was calculated to obtain the time–
luminance curve and assigned RGB color values to each pixel
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FIGURE 7 | Vessel segmentation results. (A) The original image, (B) groundtruth, (C) the segmentation result of our algorithm, (D) the recipient vessel groundtruth,

and (E) the segmentation result of the recipient vessel in this article.

FIGURE 8 | Scale-invariant feature transform (SIFT) feature and matching. The left side of (A,C) denotes the moving images, and the right side denotes the fixed

images. (A,C) The results of keypoint matching. (B,D) The fusion images registered by our method.

of the ICG-VA image based on the brightness value. Compared
with the commercial software, it can be found that the curve
obtained in this paper has a similar trend (see Figure 10), and
the blood perfusion information reflected by the color map

drawn in this paper is also similar to that of the software
(see Figure 11).

The time required to reach the maximum brightness values
of the ROIs selected by the commercial software is calculated by
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TABLE 1 | Consistency of HS optical flow method and commercial software in the interpretation of blood flow direction.

HS optical flow Commercial software Total

Positive flow Reverse flow Middle to both sides

Consistency in preoperative video

Positive flow 74 4 – 78

Reverse flow 8 34 – 42

Middle to both sides – – – –

Total 82 38 – 120

Consistency in postoperative video

Positive flow 64 3 2 69

Reverse flow 1 18 3 22

Middle to both sides 5 2 22 29

Total 70 23 27 120

Recipient blood vessel direction after bypass surgery

Changed Unchanged

Changed 48 10 58

Unchanged 7 55 62

Total 55 65 120

Symmetric measures

Value Standardized error Approximate T. Sign.

Kappa in preoperative 0.775 0.061 8.517 0.000

Kappa in postoperative 0.768 0.053 11.493 0.000

Kappa in direction change 0.716 0.064 7.852 0.000

HS, horn–schunck.

TABLE 2 | Preoperative and postoperative paired samples test.

Our method—software Paired differences t df Sig.(2-tailed)

Mean Std. deviation Std. error mean 95% confidence interval

Lower Upper

Preoperative −0.02394 0.25809 0.02290 −0.06926 0.2139 −1.045 126 0.298

Postoperative −0.01910 0.25363 0.01901 −0.05662 0.01842 −1.005 177 0.316

our method and compared with the delay time calculated by the
commercial software. There were 127 ROIs in 120 preoperative
videos and 178 ROIs in 120 postoperative videos. First, the
normal Q–Q plot test was used to verify that the difference in the
data obtained by the two methods obeyed a normal distribution,
which met the precondition of the T-test. Then, a paired sample
T-test was used to judge whether the time difference between
the delay times calculated by these two methods was statistically
significant. The results of the paired sample T-test before and
after surgery are shown inTable 2; P= 0.745 before surgery and P
= 0.671 after surgery. P > 0.05, which indicates that there was no
difference between the two methods, and they are highly similar.

DISCUSSION

In this study, UNet, SIFT, nearest neighbor search, and the
HS optical flow method were innovatively integrated into the
automatic blood flow quantitative analysis system. We discussed

three basic tasks: image segmentation, registration, and blood
flow direction measurement. Blood flow measurements were
used to compare the blood flow changes in the recipient
vessel before and after the surgery. Due to the deformation
of the captured ICG-VA images, it is necessary to register
the images first. As the matching algorithm requires the
successful segmentation of vessels in ICG-VA images, this
study encountered many technical challenges. Experiments have
confirmed that the results of our process were highly consistent
with those of the commercial software, and our process also
achieved preoperative and postoperative image matching and
arbitrarily selected different ROIs to obtain the real-time flow
direction of each vessel. This overcomes the limitation of the
software color map not being able to obtain the internal flow
direction of a certain vessel.

As traditional semiquantitative blood flow analysis
commercial software is embedded in the microscope,
hemodynamic parameters are used to analyze intraoperative
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FIGURE 9 | Preoperative and postoperative indocyanine green (ICG) images and their local optical flow vector diagrams. (A–D) Preoperative; (A) the ICG image;

(B–D) the optical flow vectors in the red, green, and orange frames, respectively. (E–H) Postoperative; (E) is ICG image; (F–H) the optical flow vectors of the red,

green, and orange frames, respectively. Red, green, and orange frames denote the three arbitrarily selected sections in the recipient vessel.

ICG-VA images to obtain the time-delayed color map that
reflects the information about perfusion. Since 2011, Faber et
al. (32) and Kamp et al. (33) have taken the lead in applying
this commercial software to measure blood flow parameters
to obtain the normal range of blood flow. Kushal et al. (34)
determined the status of early arterialized veins and the relevant
blood flow during arteriovenous malformation (AVM) and dural
arteriovenous fistula (dAVF) surgeries. In addition, they judged
whether there was sufficient relative blood flow in the branch
vessels during aneurysm surgery in the case of clip-induced
stenosis. Francesco et al. (14) applied this commercial software
to analyze the complete intraoperative information from specific
venous drainage patterns of patients and guide the decision-
making process with respect to venous sacrifice, which may
reduce postoperative complications. Kato et al. (35) repeatedly
employed this commercial software to perform ICG-VA for each
step of AVM resection with the goal of clarifying the status of

feeders, drainers, and cerebral perfusion. In the above study,
commercial software embedded in the microscope was used to
conduct a comprehensive analysis of the entire ICG-VA image to
generate static color images with data averaging. Constrained by
brand and budget, this software is not widely used. In addition,
the generation of high-quality images is highly dependent on
video duration, environmental brightness, the coordination of
ICG injection, and microscope recordings. Additionally, after
ICG-VA is exported, images cannot be generated with this
software independently. All these factors affect the universality
and utilization of this commercial software. We proposed
an automatic and quantitative blood flow analysis tool that
obtains dynamic flow information. Due to the analysis of
raw data, our method is not limited by the internal defects
of the software or the types of microscope. Additionally, our
method is an independent algorithm, and different ROIs can
be selected to judge the flow direction for all vessels under the
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FIGURE 10 | Blood flow perfusion color map. (A, C) The preoperative and postoperative blood perfusion color maps of three patients by commercial software. (B, D)

The preoperative and postoperative perfusion maps by our method. (B) Registered based on (D).

FIGURE 11 | Time–brightness curve. (A, C) The region of interest (ROI) time–luminance curves calculated by commercial software. (B, D) The ROI time–luminance

curves calculated by this method.
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microscope, which provides more information for surgeons to
make judgments.

Automatic segmentation of vessels is the first step of computer
vision-aided analysis. The classical image segmentation
algorithm based on machine learning uses handcrafted features
and then trains a classifier to obtain the segmented images.
However, the handcrafted features are singular, and the classifier
performance is poor. The rapid development of deep learning
provides new and effective methods for feature learning.
Recently, deep learning methods have been widely used in
medical image segmentation (36), among which UNet is the
most commonly used for vessel segmentation (15). UNet
has been extensively used in retinal vessel segmentation (37–
40), 3D cerebrovascular segmentation (41–43), and cardiac
vessel segmentation. Sevastopolsky et al. (44) applied UNet
to segment the optic disc and cup in retinal fundus images to
diagnose glaucoma. Roy et al. (45) applied UNet for retinal
layer segmentation of optical coherence tomography (OCT)
images. Generally, the UNet structure is perceived as a kind of
encoder–decoder architecture. The encoder aims to gradually
reduce the spatial dimension of feature maps and capture more
high-level semantic features, while the decoder aims at restoring
the details and spatial dimensions of the object. Therefore, the
segmentation performance of vessels of different thicknesses can
be improved by constantly capturing more high-level features
with the encoder and retaining more spatial information with
the decoder. To the best of the authors’ knowledge, this article is
the first study on the application of deep learning technology in
ICG cerebrovascular image segmentation.

Image registration is the process of establishing the pixel-to-
pixel correspondence between two images in the same scene.
Patankar et al. (20) proposed a retinal image registration
algorithm with orthogonal moment invariants as features to
determine the correspondence between feature points (vessel
bifurcations) in the reference and test images. Matsopoulos et
al. (46) extracted the bifurcation points and then used self-
organizingmaps that automatically correspond to the bifurcation
points in two retinal images to achieve multimodal registration.
For the method based on branch registration proposed by Chen
et al. (17), the branch structure consists of a main branch and
three connected neighbors. However, the imperfect segmentation
of vessels may affect image matching. Unlike the structure-based
matching method that uses a bifurcation structure, Zana et al.
(47) conducted vessel detection and then applied the Hough
transform to extract features to achieve multimode registration
of fundus photography. Laliberte et al. (48) combined and
transformed the extracted feature points to reduce the minimum
registration error. Li et al. (49) employed a rotation-invariant
distance instead of the Euclidean distance to match the SIFT
vectors related to key feature points. The experimental results
indicated that SIFT features obtain more correct matching pairs
because of their rotation invariance.

At present, due to the limited color scale, the color maps
of blood perfusion obtained by commercial software cannot
display the sequence of reactions with arterial fluorescent agents
in the surgical field well and cannot obtain the blood flow
direction in one vessel. Horn and Schunck of MIT connected a
two-dimensional velocity field with the gray scale, deduced the
constraint equation of optical flow, and proposed the HS optical
flow method, which can calculate the motion direction of objects
(22). Imbert et al. (50) applied the optical flowmethod tomeasure
the direction and speed of blood flow in images of the human
femoral artery. Rhode et al. (51) used the optical flow method
to track the angiographic contrast agent to estimate the blood
flow volume of an artery. When we used HS optical flow to
measure blood flow, for the initial and final stages of the videos,
it was found that the brightness changes were not significant,
the values of optical flow vectors were low, and the directional
characteristics were unobvious. In the middle stage of the videos,
the brightness changed greatly with high direction accuracy.

However, our algorithm also has some limitations. For
instance, UNet cannot be used to segment small vessels
accurately. The automatic dimming mechanism of the
microscope has a slight effect on the optical flow field. In
the future, we will focus on reducing the missed rate of vessel
segmentation, designing feature descriptors that are more robust
than SIFT for registration, and determining more methods
to evaluate perfusion in order to provide important clinical
guidance for surgeons to perform bypass grafts more accurately.
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