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Abstract
Background: Hb G-Coushatta variant was reported from various populations’
parts of the world such as Thai, Korea, Algeria, Thailand, China, Japan and Tur-

key. In our study, we aimed to discuss the possible historical relationships of the

Hb G-Coushatta mutation with the possible migration routes of the world. For this

purpose, associated haplotypes were determined using polymorphic loci in the

beta globin gene cluster of hemoglobin G-Coushatta and normal populations in

Denizli, Turkey.

Methods: We performed statistical analysis such as haplotype analysis, Hardy–

Weinberg equilibrium, measurement of genetic diversity and population differenti-

ation parameters, analysis of molecular variance using F-statistics, historical-

demographic analyses, mismatch distribution analysis of both populations and

applied the test statistics in Arlequin ver. 3.5 software program.

Results: The diversity of haplotypes has been shown to indicate different genetic ori-

gins for two populations. However, AMOVA results, molecular diversity parameters

and population demographic expansion times showed that the Hb G-Coushatta muta-

tion develops on the normal population gene pool. Our estimated s values showed the

average time since the demographic expansion for normal and Hb G-Coushatta popu-

lations ranged from approximately 42,000 to 38,000 ybp, respectively.

Conclusion: Our data suggest that Hb G-Coushatta population originate in nor-

mal population in Denizli, Turkey. These results support the hypothesis that the

multiple origin of Hb G-Coushatta and indicate that mutation may have been trig-

gered the formation of new variants on beta globin haplotypes.
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1 | INTRODUCTION

Hb G-Coushatta [b22 (B4) Glu?Ala] (HGVS Name: HBB:
c.68A>C) was first identified in American Coushatta Indians

(Schneider, Haggard, McNutt, & Johnson, 1964). This
abnormal hemoglobin variant was reported from various
populations parts of the world such as Thai, Korea, Algeria,
Thailand, China, Japan and Turkey (Atalay et al., 2005;
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Chinchang & Viprakasit, 2007; Dinc�ol, Dinc�ol, & Erdem,
1989; Itchayanan, Svasti, Srisomsap, Winichagoon, &
Fucharoen, 1999; S€ozmen, Uysal, & Akar, 1990; Yenice
et al., 2000). Beta globin gene cluster haplotypes are fre-
quently encountered in population surveys. Human b-globin
gene cluster is located at chromosome 11 (50-e-Gc-Ac-wb-d-
b-30). The haplotypes obtained by testing seven polymorphic
restriction sites in this region of the beta globin gene cluster
provide important data on the structure of populations, their
origins and their possible associations with mutations
(Alcantara et al., 2003; Chen, Easteal, Board, & Kirk, 1990;
Currat et al., 2002; De Lugo, Rodriguez-Larralde, & De
Guerra, 2003; Mattevi et al., 2000). Although data on the b-
globin gene cluster haplotypes are limited for the world
cases, there are four different suggested genetic origins of
these haplotypes reported in association with the Hb G-
Coushatta cases American Indian [� + � � + � ?], Chinese
[� + + � + + ?], Kocaeli-Turkey [� + + � � � +], and
Denizli-Turkey [� + � + + + +] (Li et al., 1999; Ozturk
et al., 2007). In our previous studies based on halotype anal-
ysis for the abnormal hemoglobins detected in Denizli-Tur-
key, the average time since the demographic expansion of
Hb D-Los Angeles population was calculated as ranged from
approximately 38,000 (95% CI 18,500–62,000) ybp, Hb S
population 26,000 ybp (95% CI; 11,000–36,000) and the
normal population 42,000 (95% CI, 25,000–58,000) ybp,
respectively (Ozturk, Arikan, Atalay, & Atalay, 2016, 2017).

In our study, we aimed to discuss the possible historical
relationships of the Hb G-Coushatta mutation with the pos-
sible migration routes of the world. In accordance for this
purpose we tested the Hb G-Coushatta population and the
normal population haplotype data in the Denizli region
comparatively with the statistical software program Arle-
quin ver 3.5 (Excoffier, Laval, & Schneider, 2005; Excof-
fier & Lischer, 2010). Associated haplotypes were
determined using polymorphic loci in the b-globin gene
cluster of both populations.

2 | MATERIALS AND METHODS

2.1 | Sample collection

We studied 15 unrelated patients with abnormal Hb G-
Coushatta and 59 unrelated normal DNA samples. It has
been reported in previously published articles that during
the identification of these haplotype data were used 59
unrelated healthy subjects DNA samples (Ozturk et al.,
2016). Normal and Hb G-Coushatta DNA samples were
taken from Pamukkale University, Medical Faculty, Depart-
ment of Biophysics DNA Bank (Denizli, Turkey) as anony-
mous samples. Written informed consent has been already
taken from individuals and/or from their parents for further
anonymous DNA analysis.

2.2 | Haplotype identification and statistical
analysis

In the first step of our study, PCR-RFLP (Polymerase chain
reaction-restriction fragment length polymorphism) method
was applied on seven polymorphic restriction sites (HincII
50 to e, HindIII 50 to Gc, HindIII in the IVS-II 50 to Ac,
HincII in wb, HincII 30 to wb, AvaII in b, HinfI 30 to b) in
the b-globin gene cluster as previously reported (Ozturk
et al., 2016). Associated haplotypes for the normal popula-
tion samples and patients with Hb G-Coushatta were deter-
mined by the obtained RFLP results. We performed
statistical analysis of both populations and applied the test
statistics in Arlequin 3.5 software program with unknown
gametic phase such as haplotype analysis (Excoffier et al.,
2005; Falchi et al., 2005), Hardy–Weinberg equilibrium
tests (Excoffier & Lischer, 2010; Excoffier et al., 2005)
measurement of genetic diversity and population differenti-
ation parameters, analysis of molecular variance (AMOVA)
using F-statistics (FST, FIT, FIS) (Mantel, 1967; Schneider,
Roessli, & Excoffier, 2000; Slatkin, 1995; Wright, 1965),
historical-demographic analyses (Tajima’s Fu’s tests) (Fu,
1997; Tajima, 1989a), mismatch distribution analysis, anal-
yses of tau (s) and initial theta, SSD, the Harpending’s
raggedness index (Hri) and p-values of SSD (Excoffier,
2004; Harpending, 1994; Ray, Curratand, & Excoffier,
2003; Rogers, 1995; Rogers & Harpending, 1992; Schnei-
der & Excoffier, 1999; Slatkin & Hudson, 1991) as previ-
ously reported (Ozturk et al., 2016). The Rogers and
Harpending (1992) model was used to calculate the time
elapsed since the population expansion by estimating Tau
(s), h0, and h1 based on the mismatch distribution outputs
from Arlequin. Historic demographic expansions were also
investigated by the examination of frequency distributions
of pairwise differences between sequences (mismatch distri-
bution), which is based on three parameters: h0, h1 (h
before and after the population growth) and s (time since
expansion expressed in unit of mutational time).

3 | RESULTS

Tables 1 and 2 show the summary of listed frequencies
and haplotypes of Hb G-Coushatta and normal populations
respectively. In normal population the haplotype with the
highest frequency is Mediterranean haplotype I [+ � � �
� + +] (14%). However, in Hb G-Coushatta population the
Mediterranean haplotype I [+� – – – + +] does not have
any frequency value.

We tested the genetic differentiation of normal and Hb
G-Coushatta populations using the analysis of molecular
variance (AMOVA) with Arlequin ver 3.5 (Excoffier,
Smouse, & Quattro, 1992) (Table 3).
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We showed the summary of molecular diversity param-
eters for each population (Table 4), statistical demographic
parameters for two populations with the mismatch distribu-
tion graphics (Figure 1), parameters of the graphic shape
testing results Harpending’s raggedness index and p-values
of sum of square deviations (SSD) (Table 5), respectively.

In terms of the time estimations, parameter values of
s and historical population parameters h (h0 and h1) also
show a similar historical growth period for the popula-
tions (Table 4). The mean population age for normal and
Hb G-Coushatta populations in Denizli depends on
results of estimations parameter values of s, dated
approximately 42,000 ybp (95% CI; 11,000–55,000) to
38,000 ybp (95% CI; 10,000–62,000), respectively
(Table 4). The results in Table 6 show that normal popu-
lation was in Hardy–Weinberg equilibrium (p > .05) for
each of the seven polymorphic loci and the Hb G-
Coushatta population was in Hardy–Weinberg equilibrium
except for fourth loci.

4 | DISCUSSION

Haplotype studies related to Hb G-Coushatta in Ameri-
can, Chinese, Thai and Turkish individuals suggest a
multiple origin for this variant (Itchayanan et al., 1999;
Li et al., 1999; Ozturk et al., 2007). Previously published
b-globin gene cluster haplotypes data in association with
the Hb G-Coushatta cases (American Indian [� + – – +
– ?], Chinese [– + + – + + ?], Kocaeli-Turkey [– + + –

– – +] and Denizli-Turkey [– + – + + + +]) support the
prediction that this variant has a multi-centric origin (Li
et al., 1999; Ozturk et al., 2007). Interestingly, while the
haplotype of [– + – + + + +] (Ozturk et al., 2007)
obtained by pedigree analysis in the Denizli region was
found to be in 4th place with 6% frequency (Table 1),
the haplotype of [– + + – – – +] obtained by pedigree
analysis performed with the samples in the Kocaeli
region is not included in the diversity of haplotypes list
obtained from the Denizli region Hb G-Coushatta

TABLE 1 b-globin gene cluster haplotypes for the seven loci in
association with the Hb G-Coushatta [b22(B4)Glu?Ala] (HGVS
Name: HBB:c.68A>C) population in Denizli, Turkey

No. Haplotype Frequency SD

1 + + � + + + + 0.266667 0.082118

2 � � � � � + + 0.200000 0.074278

3 � + + + + + + 0.133333 0.063124

4 � + � + + + + 0.066667 0.046321

5 � � � � � + � 0.066667 0.046321

6 � + � � + + + 0.066667 0.046321

7 � + � � � + � 0.033333 0.033333

8 � � � � � � + 0.033333 0.033333

9 � + � � � + + 0.033333 0.033333

10 � + � + + � + 0.033333 0.033333

11 � + � � + + � 0.033333 0.033333

12 + + � + + + � 0.033333 0.033333

Maximum-likelihood haplotype frequencies generated by Arlequin 3.5
software.
Sum of 12 listed frequencies: 1.000000/No. of gene copies in sample: 30/SD:
standard deviation.

TABLE 2 b-globin gene cluster haplotypes for the seven loci in
association with Normal population in Denizli, Turkey

No. Haplotype Frequency SD

1 + � � � � + + 0.144068 0.032465

2 + + � + + + + 0.127119 0.030796

3 � + � + + + + 0.084746 0.025748

4 + � � � � + � 0.076271 0.024539

5 � � � � � � � 0.067797 0.023242

6 � � � � � � + 0.059322 0.021839

7 � � � � � + + 0.050847 0.020310

8 + + + � + + + 0.050847 0.020310

9 � + + � + + + 0.033898 0.016730

10 + � � � � � � 0.033898 0.016730

11 � � � � � + � 0.033898 0.016730

12 + + + + + + + 0.025424 0.014552

13 � + + + + + + 0.016949 0.011934

14 + + � � + + + 0.016949 0.011934

15 � + � + + � � 0.016949 0.011934

16 � + � � � � � 0.016949 0.011934

17 + � � � + + + 0.016949 0.011934

18 + + � + + + � 0.016949 0.011934

19 + � � � � � + 0.016949 0.011934

20 � + + � � � + 0.008475 0.008475

21 � + � � � � + 0.008475 0.008475

22 + + � � � � + 0.008475 0.008475

23 + � � � + + � 0.008475 0.008475

24 � + + + + + � 0.008475 0.008475

25 � + � � + � + 0.008475 0.008475

26 + + � + + � + 0.008475 0.008475

27 � + � � + � � 0.008475 0.008475

28 � + � + + � + 0.008475 0.008475

29 � + � + + + � 0.008475 0.008475

30 + + + � + � + 0.008475 0.008475

Maximum-likelihood haplotype frequencies generated by Arlequin 3.5
software.
Sum of 30 listed frequencies: 1.000000/No. of gene copies in sample: 118/SD:
standard deviation.
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population in this study (Table 1). Similarly, American
Indian [– + – – + – ?], and Chinese [– + + – + + ?]
types are not on the haplotype list associated with the
Hb G-Coushatta mutation in the Denizli region (Table 1).
The fact that the American, Chinese and Kocaeli-Turkish
type haplotypes are not among the haplotypes associated
with Hb G-Coushatta mutation in the Denizli region sup-
ports the literature view on the independent and multi-
centric origin of this mutation. The haplotype diversity
and frequency percentages in Tables 1 and 2 show that
the Hb G-Coushatta mutation most probably developed
on the normal population gene pool in Denizli, Turkey.
The haplotypes representing the different genetic origins
of the Kocaeli and Denizli Hb G-Coushatta populations
which are geographically close regions support the view
that the Hb G-Coushatta mutation is independent from
the historical migration routes.

Table 3 summarizes the results of the AMOVA test
statistic calculated the degree of genetic differentiation
between normal and Hb G-Coushatta populations in the
Denizli region. These results indicate that negligible genetic
differentiation (5.96%) between the two populations (FST:
0.05964, p = 0.01369 � 0.00367) (Table 3). This low and
statistically significant (p < .05) genetic differences
showed that the two populations are not diversified by the
effect of migration on the gene pool. The difference in hap-
lotype diversity between the two populations may be the

TABLE 3 (AMOVA) F-statistics calculated for seven loci
differentiation among populations of between Normal and Hb
G-Coushatta

Distance method: Pairwise difference

Source of variation df
Sum of
squares

Variance
components

Percentage
of variation

Among populations 1 5.817 0.09287 Va 5.96

Among individuals
within populations

72 98.940 �0.08994 Vb �5.78

Within individuals 74 115.000 1.55405 Vc 99.81

Total 147 219.757 1.55698

Fixation Indices: Significance tests (1023 permutations)

FIS: �0.06143 p-value = .86413 � .00941

FST: 0.05964 p-value = .01369 � .00367

FIT: 0.00188 p-value = .73314 � .01252

Non-differentiation: Exact p value is calculated by based on haplotype frequen-
cies and controlled by Markov method.
Fixation indices (FIS, FST and FIT) p values calculated by Global test of differ-
entiation among populations method. (Insignificant p > .05, significant
p ≤ .05).
Va means, We test FST by permuting haplotypes among populations.
Vb means, We test FIS by permuting haplotypes among individuals within pop-
ulations.
Vc means, We test FIT by permuting haplotypes among individuals among
populations.
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possible effect of mutation formation on polymorphic loci
in the b-globin gene cluster.

Table 4 showed the high and similar haplotypic diver-
sity (h), low nucleotide diversity (p) and similar average
number of pairwise nucleotide differences (k) between the

two populations (Li, 1997; Nei, 1987). Additionally, Fu’s
Fs statistic showed a significant negative value for the two
populations, indicating similar population expansion
throughout history for these populations. Tajima’s D values
were insignificant (p > .05) for the two populations, sug-
gesting that these populations are at neutral equilibrium
(Table 4). These findings indicate that the molecular diver-
sity of both populations have genetically similar develop-
ment and expansion in the historical period (Fu, 1997;
Tajima, 1989a,b, 1993). The mismatch distribution parame-
ters in Table 4 were investigated using mismatch distribu-
tion analysis to estimate the demographic developments of
the two populations (Harpending, 1994). According to the
graphs obtained from the calculated distribution parameters,
the normal population appeared to be unimodal (unimodal
distribution; the exponential growth is smooth), while the
Hb G-Coushatta population is departure from the unimodal

0,43

0,86

1,29
1,41

1,20

0,82

0,47

0,23
0,10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8 9

Fr
eq

ue
nc

y

Pairwise differences

Normal Pop. 

0.046

0.071

0.09
0.086

0.065

0.039

0.02
0.009

0

0.02

0.04

0.06

0.08

0.1

0.12

1 2 3 4 5 6 7 8

Fr
eq

ue
nc

y

Pairwise differences

Hb G-Cousha�a Pop.

FIGURE 1 The observed pairwise difference (bars) and the expected mismatch distributions (solid line) under the sudden expansion model
of Normal and Hb G-Coushatta populations

TABLE 5 Values of the mismatch distribution test statistics SSD
and rg against a null hypothesis of population expansion

Goodness-of-fit tests

Populations SSD SSD-p value rg rg-p value

Normal 0.00352 .190 0.02279 .590

Hb-G Coushatta 0.01343 .160 0.05294 .290

SSD, sum of squared deviations; rg, Harpending’s raggedness.
p (SSD) is the probability of observing by chance a less than good fit between
the observed and mismatch distribution for a demographic history of the popu-
lation defined by the estimated parameters s, h0, and h1.

TABLE 6 Hardy–Weinberg equilibrium (HWE) test for all Loci in Normal and Hb-G Coushatta populations

Locus #Genot Obs.Het. Exp.Het. p-value SD Steps done

Normal Pop. 1 59 0.44068 0.49718 .43526 0.00049 1001000

2 59 0.44068 0.50413 .43380 0.00050 1001000

3 59 0.23729 0.26076 .60583 0.00048 1001000

4 59 0.37288 0.44039 .24685 0.00041 1001000

5 59 0.57627 0.50297 .30238 0.00042 1001000

6 59 0.49153 0.40635 .18981 0.00039 1001000

7 59 0.45763 0.42083 .54962 0.00049 1001000

Hb G-Coushatta Pop. 1 15 0.60000 0.43448 .23723 0.00043 1001000

2 15 0.60000 0.43448 .23763 0.00041 1001000

3 15 0.26667 0.23908 1.00000 0.00000 1001000

4 15 0.93333 0.51494 .00177* 0.00004 1001000

5 15 0.73333 0.48046 .08553 0.00027 1001000

6 15 0.13333 0.12874 1.00000 0.00000 1001000

7 15 0.20000 0.28736 .32547 0.00045 1001000

#Genot, genotypes; Obs.Het., observed heterozygosity; Exp.Het., expected heterozygosity; SD, standard deviation.
Tests for HWE for each locus within each population used an HWE test analogous to Fisher’s exact test. p values were obtained using Arlequin ver 3.5. *Significant p ≤ .05.
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distribution (Figure 1; gray bar). The reason for this differ-
ence in distribution is that the Hb G-Coushatta population
presented in Table 6 is in departure from Hardy–Weinberg
Equilibrium (HWE) of the fourth locus (Guo & Thompson,
1992). HWE (p > .05) means that there will be no change
in allelic or genotypic frequencies from one generation to
the next. However, with the possible effect of Hb G-
Coushatta mutation in the fourth locus may have occurred
as the difference between the observed and expected pair-
wises. Mismatch distribution results were supported by the
level of Harpending’s raggedness index and p values of
SSD in Table 5 (Harpending, 1994; Ozturk et al., 2016).

Our results suggested that the origin of the Hb G-
Coushatta population in Denizli province may have been
in the Mediterranean area, separated from Hb G-Coush-
atta population in Kocaeli region which geographically
close region and other populations rather than from
recent Asiatic migrations. According to our estimated val-
ues of s show that the average time since the demo-
graphic expansion for normal and Hb G-Coushatta
populations ranged from approximately 42,000 ybp (95%
CI; 11,000–55,000) and 38,000 ybp (95% CI; 10,000–
62,000), respectively. Historic demographic expansions
were investigated by the examination of frequency distri-
butions of pairwise differences between sequences (mis-
match distribution), which is based on three parameters:
h0, h1 (h before and after the population growth) and s
(time since expansion expressed in unit of mutational
time) (Table 4) (Rogers & Harpending, 1992). In our
published studies, the average time since the demographic
expansion of Hb S and Hb D-Los Angeles populations
in Denizli was calculated as range from approximately
26,000 ybp (95% CI; 11,000–36,000) and 38,000 ybp
(95% CI; 18,500–62,000), respectively (Ozturk et al.,
2016, 2017).

According to the Klein’s results, Homo sapiens nean-
derthalensis (HN) constitute a group of hominids whose
particular morphology developed in Europe during the last
350,000 years under the effect of selection and genetic
drift reaching its final form approximately 130,000 ybp
(Klein, 2003). This subgroup of hominids populated the
Europe and Western Asia approximately 45,000 ybp, until
the arrival of Homo sapiens sapiens (HS), the first modern
humans (Mellars, 1992; Parker, 1993). This is an available
data on European mtDNA diversity indeed support this
view. The most European populations present a signal of
Paleolithic demographic expansion from a small popula-
tion, which could be dated to about 40,000 ybp (Excoffier
& Schneider, 1999). Entrance of Homo sapiens to Europe
was between 50,000 to 46,000 ybp. Today most Euro-
peans can trace their ancestry by mtDNA lines that
appeared among 50,000 and 13,000 ybp (Oppenheimer,
2012).

Our results indicate that the Hb G-Coushatta population
was not introduced into the Anatolian gene pool by migra-
tion from Asia or any other geographical region, compati-
ble with the published dating results. Since Asiatic tribal
migrations were recent events (about 2 000 ybp) we had to
observe the genetic drifts in our data but we did not
observe genetic drifts during the time course of about
40,000 ybp up to the present time.

In conclusion, these findings further suggest that the Hb
G-Coushatta population originated in the normal population
in Denizli, Turkey. Although two populations share com-
mon genetic origin findings, they have different haplotype
variations. We think that the reason for these variations is
the departure from Hardy–Weinberg equilibrium of the
fourth locus in the Table 6. The possible effect of the Hb
G-Coushatta mutation on polymorphic loci in the b-globin
gene cluster may cause this haplotypic variation between
normal and Hb G-Coushatta populations.
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