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Abstract

Helminth infections and nutrition can independently alter the composition and abundance of
the gastrointestinal microbiota, however, their combined effect is poorly understood. Here,
we used the T. retortaeformis-rabbit system to examine how the helminth infection and host
restriction from coprophagy/ready-to-absorb nutrients affected the duodenal microbiota,
and how these changes related to the acquired immune response at the site of infection. A
factorial experiment was performed where the bacterial community, its functionality and the
immune response were examined in four treatments (Infect, Infect+Collar, Control+Collar
and Control). Helminths reduced the diversity and abundance of the microbiota while the
combination of parasites and coprophagic restriction led to a more diversified and abundant
microbiota than infected cases, without significantly affecting the intensity of infection. Ani-
mals restricted from coprophagy and free from parasites exhibited the richest and most
abundant bacterial community. By forcing the individuals to absorb nutrients from less
digested food, the coprophagic restriction appears to have facilitated the diversity and prolif-
eration of bacteria in the duodenum. Changes in the microbiota were more clearly associ-
ated with changes in the immune response for the infected than the nutrient restricted
animals. The functional and metabolic characteristics of the duodenal microbiota were not
significantly different between treatments. Overall, infection and diet affect the gut micro-
biota but their interactions and outcome can be complex. These findings can have important
implications for the development of control measures to helminth infections where poor
nutrition/malnutrition can also be a concern.
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Introduction

The commensal microbiota of the gastrointestinal tract is a dynamic ecosystem that has to
adjust to the repeated disturbance exerted by external factors while maintaining the homeosta-
sis and functionality of the individual [1-4]. Infectious diseases and dietary changes are impor-
tant sources of disturbance for the immune system and there is increasing evidence that they
can also alter the composition, abundance and functionality of the bacterial community in the
digestive tract [5-10]. Individuals exposed to endemic helminth infections have been shown to
have increased microbiota richness and enhanced functional activities such as genetic process-
ing, metabolism and cell cycling, compared to non-infected cases from developing and indus-
trialized countries [11]. Well characterized also is the imbalance of the gut microbiota in obese
and malnourished groups [5, 12, 13] and the significant diet-related diversity between the bac-
terial community of modern culture and hunter/gatherer societies [14, 15]. However, while the
role of the gut microbiota on host health is now well recognized, how the microbiota is affected
by helminth infections and nutritional alterations, and how these interactions relate to host
immunity, remains poorly understood. Given that approximately a quarter of the world popu-
lation is infected with soil-transmitted helminths [16] that cause persistent, often subclinical
disease and no life-long immune protection, and considering that parasites can also impact
host metabolism and nutrient absorption [17, 18], understanding the interaction between hel-
minths and the gut microbiota is essential for developing new preventive approaches that can
promote gastrointestinal health and overall nutrition.

Coprophagy is a feature commonly observed in many mammal species [19-21] and the
therapy of fecal transplantation for the re-establishment of the microbiota dysbiosis has many
similarities with this behavior [22, 23]. The daily ingestion of feces by-products of the bacterial
metabolism in the cecum (cecotrophy: eating cecotropes) is unique to lagomorphs and has
been well investigated in rabbits by showing that it is associated with the absorption of funda-
mental proteins and nitrogen [24-26]. This behavior can be considered a natural mode of
nutrient enrichment [27] but also a way of boosting the animal's microbiota in the gastrointes-
tinal tract. Indeed, by ingesting cecal feces it is possible that individuals could maintain a more
diversified and functionally balanced microbial community as well as mitigate the severity to
local infections, such as gastrointestinal helminths; although parasites have also been suggested
to contribute to microbiota enhancement [28, 29].

Helminth infections commonly induce two complementary host immune responses: a
type 2 protective response directed at reducing parasite establishment and survival and a reg-
ulatory response to mitigate the impact of the worm population on host tissues, for instance,
reducing the damage caused by the movements of immature stages into the gut wall during
development [30, 31]. Likewise, the gut microbiota has been shown to be under the direct
control of an adaptive and regulatory immune response that restrains the bacteria from pro-
liferating or degenerating into pathogenic phenotypes [6, 32]. However, the gastrointestinal
microbiota can also contribute to modulating the local tolerigenic and defensive immune
responses [6, 33-37]. For instance, Bacteroides are more effective in stimulating the produc-
tion of mucosa secretory IgA than Lactobacilli [38], and different species of Lactobacilli can
regulate dendritic cells (DC) or activate natural killer (NK) cells [39]. Despite these emerging
properties, the relationship between the gastrointestinal microbiota and the local immune
response during helminth infections is fundamentally unknown (but see [40]). On one hand,
helminths could stimulate bacterial diversity, abundance and functional variability and, thus,
enhance local tolerance or defense to the helminth infection. On the other hand, by disrupt-
ing the microbial structure and functionality, they could suppress the protective and tolero-
genic qualities of the bacteria. Nutritional restrictions are expected to alter these interactions,
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either by depauperating or ameliorating the microbiota, and/or the impact of the parasite on
the local homeostasis.

To examine how helminth infections and nutritional constraints alter the host microbiota
and how this relates to the immune response, we investigated the effect of Trichostrongylus
retortaeformis and cecotrophic limitations on the structure and functionality of the small intes-
tinal microbiota of rabbits (Oryctolagus cuniculus). Our hypothesis was that rabbits with
helminths carried an impoverished bacterial community, and nutritional restrictions, by ceco-
trophic prevention, were expected to exacerbate this trend. We also anticipated both positive
and negative changes in some of the components of the immune response and microbiota
functionality proportional to the intensity of infection and the impact of nutritional restric-
tions, for example, an increase of a type 2 immune reaction in animals with parasites and
restricted nutrition. This host-helminth system has many similarities with parasite infections
of human and livestock and can provide fundamental knowledge on the interactions between
parasitic and commensal species, their changes over the course of the infection and their asso-
ciation with the local immune response.

Approach and Methods
The helminth-rabbit system

Trichostrongylus retortaeformis colonizes the small intestine, preferentially the duodenum of
the rabbit [41, 42]. Once ingested, third stage infective larvae (L3) mature into adults after a
brief phase spent in the mucosal tissue; the pre-patent period is about 12 days [41]. In natural
settings, the parasite load accumulates with host age, peaks in young and decreases in older ani-
mals as the rabbits are able to control the infection [43, 44]. We previously showed that T.
retortaeformis stimulates a type 1—type 2 mucosal immune response in that an initially high
IFNY expression quickly wanes during the course of the infection to values that are comparable
to IL4 and IL10 [45]. At the tissue level, we found significant villous atrophy, increased crypt
hyperplasia and local recruitment of eosinophils and lymphocytes, together with a rapid pro-
duction of mucus IgA and IgG to L3 and adult stages [45].

Experimental design and sampling

Outbred, two months old, New Zealand white male rabbits (Harlan, US) were housed in single
cages with a 12h light cycle and daily access to 125g of standard pellet (LabDiet: rabbit HF
5326: carbohydrate-nitrogen free 42.8%, fiber 22.5%, protein 14.8%, lipid 5.8%, minerals 6.8%)
and water ad libitum. Our factorial experiment was based on 4 treatments sampled at 3

time points. Groups of 12 animals were randomly assigned to the treatments: Control (C,
untreated), Infect (I, helminth dosed), Control with Collar (CC, untreated but with Elizabethan
collar) and Infect with Collar (IC, helminth dosed with Elizabethan collar) for a total of 48 ani-
mals. Four additional rabbits were also used to quantify the baseline initial conditions at day 0
(B, baseline cases). Commercially available, transparent Elizabethan collars (PetSmart Inc.,
USA) were fitted around the neck of the rabbits one week before the start of the experiment
(day 0), to allow the microbiota to adjust to this change and the animals to get used to the col-
lars. Animals adapted to the collars in few hours and showed no evidence of pain or distress
throughout the trial. Elizabethan collars are commonly used to prevent oral-nasal contact of
the animal with other parts of its body and have been widely used in nutritional studies with
rabbits to restrain animals from cecotrophy. At the end of the experiment, we noticed that rab-
bits with collars could eat cecotrope fragments from the cage floor (i.e. the small remains of
feces that passed through the cage holes). While we do not exclude that few animals ingested
some of these remains, this did not affect out results and conclusions.
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Infected animals were orally gavaged (Centurion MP, Williamston, MI) every 7 days with
1000 T. retortaeformis L3 suspended in 3 ml of tap water; Control and Control+Collar animals
were sham inoculated with tap water. For every treatment, groups of 4 individuals were sam-
pled at days 15, 30 and 60 days post infection; baseline cases were also sampled at day 0. These
sampling points were selected to provide important host and parasite information at the time
when: 1- the first parasite eggs are shed into the gut lumen (15 days post initial infection), 2-
the host immune response is expected to exhibit the strongest type 1 response (30 days post ini-
tial infection) and 3- the intensity of infection and the type 2 immune response are representa-
tive of a chronic condition (60 days post initial infection). At each sampling point and for
every individual, the small intestine was collected and divided into 3 sections, the first section
(duodenum) was selected and further divided into 3 segments of equal length that were then
used for the microbial, immunological and parasitological work, respectively. This sampling
provided a reliable representation of parasite abundance while accounting for possible spatial
variability [45, 46]. All the animal procedures were approved by the Institutional Animal
Care and Use Committee of The Pennsylvania State University (USA) and carried out in accor-
dance with the approved guidelines. No animals became ill or died prior to the experimental
endpoint.

Microbiome DNA extraction and genomics

The DNA extraction was performed following the protocol from the Mo Bio Powersoil DNA
isolation kit (Carlsbad, CA, USA) with minor modifications. A piece of the duodenum (5 cm)
was gently washed with PBS to remove the ingesta and then cut longitudinally before collecting
the mucosal lining using a sterile swab applicator (Puritan Medical Products, Guilford, Maine).
The cotton tip was then cut, placed directly into the tubes containing lysis beads and gently
vortex to allow the sample to be dispersed into the solution. Heated lysis buffer (60°C) was
added to the tubes, vortex briefly and then placed in a bead beater for 10 minutes at maximum
speed for thorough homogenization. Sterile DNA-Free PCR Grade Water (Teknova, Hollister,
CA) was used for DNA elution. Experimental negative samples were included for the DNA
extraction and amplification steps and were consistently negative. The DNA concentration was
quantified with a NanoDrop Spectrophotometer and a Qubit 2.0 Fluorometer (Life Technolo-
gies, Carlsbad, CA) following manufacturer's instructions. The results showed that background
amplification or sequence contamination were not an issue and hence accounted for. The pro-
cedure was performed in duplicate tissue samples from each animal.

Following preliminary 16S rRNA gene sequencing and bioinformatics we selected the
region V3V5 as a good candidate for identifying organisms at the species level. From this
highly conserved V3V5 region, the primers 347F (GGAGGCAGCAGTRRGGAAT) and 803R
(CTACCRGGGTATCTAATCC) were chosen to characterize the microbial community [47-49].
The PCR products (1000 bps) were purified using the AgencourtAMPure technology (Beck-
man Coulter, Brea, CA) as described in 454 Technical Bulletin n. 2011-002 'Short Fragment
Removal Procedure'. After clean-up, the products were quantified by both Qubit (LifeTechnol-
ogies, Carlsbad, CA) and qPCR using the KAPA Biosystems Library Quantification Kit (Kapa-
Biosystems, Woburn, MA). Products were pooled based on molar amounts, run on a 1%
agarose gel and extracted. After clean-up with a QIAquick PCR Purification kit (Qiagen,
Valencia, CA) quality and quantity were assessed using a DNA 7500LabChip on the Agilent
2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA) and Qubit quantification.

The sequencing was performed using a quarter PTP plate on a 454 Life Sciences Genome
Sequencer FLX+ (Roche Diagnostics, Indianapolis, IN) per 454 specifications. One-way
read amplicons (Lib-L) were prepared using the bar-coded fusion primers Forward:
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CCATCTCATCCCTGCGTGTCTCCGACTCAG-MID- Forward Specific Primer and Reverse:
CCTATCCCCTGTGTGCCTTGGCAGTCTCAG-Reverse Specific Primer. PCR reactions (25 pl)
for the 16s amplicons contained 5 pmoles of forward and reverse primers, dsDNA (10 to 40
ng), 5 nmoles of ANTP, 0.25 pl of TAQ (Fast Start High Fidelity PCR system, Roche, India-
napolis, IN), and 2.5 pl of 10X buffer supplied with the enzyme. Samples were denatured at
94°C for 3 min, then cycled (Gene AMP PCR System 9700; Life Technologies, Carlsbad, CA)
27 to 35 cycles at 94°C for 15 sec, 55°C for 45 sec and 72°C for 60 sec with a final extension at
72°C for 8 min. Samples with less than 20,000 reads were repeated aiming for an average of
40,000 read/sample. One Control+Collar rabbit did not provide enough DNA and was not
included in the microbiota analysis. The genomic work was performed at the Genomics Core
Facility of the Pennsylvania State University.

Immune gene expression and antibodies

Tissue sections were also used to quantify the expression of cytokines/transcription factors/
function genes using qRT-PCR and the somatic and the total mucus IgA using ELISAs [45].
Unless stated otherwise, all reagents and equipment were purchased from Thermo Fisher Sci-
entific (Waltham, MA) and used as directed. In addition to the previously estimated genes for
IFNY, IL4 and IL10 [45] we also determined expression of the type 2 cytokines IL5 and IL13,
the regulatory T cytokine TGF1, the transcriptional regulators Tbet, GATA3, Foxp3 and
RORyT and the mucin MUC2 and MUC5AC. Primers and probes were synthesized using Taq-
man based qRT-PCR technology and target sequences using available genomic and transcrip-
tomic data (Table A in S1 File) gathered from the Ensembl database (link: http://useast.
ensembl.org/Oryctolagus_cuniculus/Info/Index). The linearity in amplification efficiency of all
primer-probe sets was confirmed with 12 cDNA samples ranging from 0.1 to 100 ng, sourced
from the duodenum sections (4 control and 8 infected) of previously collected samples [50].
Two technical replicates were performed for every sample.

The gene expression data were transformed using the comparative 2" method [51] and
correcting the raw Ct values by the associated housekeeping gene HPRT and the related Ct
averages from the four baseline rabbits sampled at day 0. These standardized data were then
used for the statistical analyses.

ELISAs were performed to quantify T. retortaeformis-specific mucosal IgA as described in
our previous work [45]. Total IgA concentration was quantified using a sandwich ELISA devel-
oped in-house (further details in Text A in S1 File). The amount of captured mucosal total IgA
was extrapolated from known concentrations of purified IgA standards (Innova Biosciences,
Cambridge, UK) also captured and detected with the same antibodies. The purified IgA stan-
dards were also used to confirm specificity of capture and detection antibodies for rabbit IgA.
Four-fold dilutions of purified IgA standards were tested at an effective concentration range of
0.25-6.1x10" pg/ml. Mucus total IgA concentration was estimated at dilutions of 1:3000 and
1:9000.

Parasitology

Helminths were collected from the duodenum samples of every animal and counted using ali-
quots following procedures described in our previous studies [45].

Bioinformatics for microbiota composition and functionality

The 16S rRNA gene sequences were processed with MOTHUR metagenomics analysis tool
[52] to produce a high quality data set. Sequences and their quality information were extracted
from the binary files using the sffinfo command. First, we removed the primer and adapter
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contamination and second, the entire data set was subjected to quality trimming by checking
for an average base quality of 35 within window size of 50 base, where a base quality of 30
means 99.9% base call accuracy. The resulting trimmed and quality filtered reads were aligned
via Basic Local Alignment Search Tool (BLAST) [53] against the non-redundant 16S bacterial
database collected at GenBank. The BLAST alignment E-Value 10 was chosen in order to gen-
erate many candidate alignments [53]. The taxonomic content of these resulting blast hits was
then identified using the program MEGAN (METaGenome ANalyzer) [54] and the associated
NCBI taxonomy. The classification by MEGAN allows us to identify the number of reads
assigned to each taxonomic level: 89.5% of the data were classified into bacteria, or any of the
bacterial taxonomic levels, while the rest fell into “No hits” or “Low Complexity” categories.
These bacterial reads were then used in the subsequent statistical analysis.

We also characterized the functional properties of the microbiota using QIIME [55, 56] and
PICRUSt [57]. The ‘pick_closed_reference-otus.py’ script in QIIME was used to search the
sequences against GreenGenes (GG) reference OTUs at 97% identity. Reads that did not hit
the reference collection were discarded. PICRUSt normalizes the generated OTU-table by
dividing the read count for a given OTU in each sample by its predicted 16S rRNA copy num-
ber. The methods of PICRUSt then predict the functional content of the metagenome by multi-
plying the normalized OTU abundance in each sample by its pre-calculated gene-content
abundance in KEGG gene families [58]. The predicted functional contents were collapsed at
KEGG pathway hierarchy levels 1, 2 and 3 for interpretation and subsequent analyses.

Statistical analysis

To assess the potential for sample size biases in the microbiota measurements, a rarefaction
analysis was conducted initially where the fraction of taxa was captured for each rabbit using
100 bootstrapped samples of reads, taken at a range of sampling sizes from 1 to the maximum
library size of every individual (Fig A in S1 File). Results show that we were able to consistently
identify all the detectable taxa present in every animal with a minimum reading depth of
13,500 and 10,500 reads/sample at the phylum and family taxonomic level, respectively. We
also performed a preliminary analysis to examine changes in microbial diversity and number
of taxa by treatment and sampling time using both the raw and the rarefied data (all rabbits
down-sampled to the library size N = 8,691, 7,178 or 4,666 for phylum, family and genus,
respectively) and the two datasets showed statistically similar results. This suggests that the var-
iation of the microbiota among animals is not likely caused by low sequence coverage. There-
fore and in agreement with previous work [59], all the statistical analyses were performed
using the raw data and the statistical software R (R core team, www.r-project.org).

To quantify the microbiota alpha diversity in the duodenum of every individual and to
determine changes among treatments and sampling time, two diversity indices (Shannon
Weaver and Simpson diversity) were examined at the phylum, family and genus level with the
R package Vegan [60] and using a linear model ANOVA followed by the post-hoc Dunnett's
Modified Tukey-Kramer pairwise multiple comparison test of mean differences. Linear model
ANOVAs and post-hoc tests were also used to examine changes in the number of bacteria taxa
among treatments and sampling time at the three taxonomic levels. To detect the most com-
mon taxa, the relative abundance of bacteria in every animal from the 4 treatments was visually
examined at the phylum, family and genus level. To assess how the structural variability in the
microbiota composition affected the clustering of animals by treatment, a principal coordinate
analysis (PCoA, package Vegan) was performed using both the Bray-Curtis and the UniFrac
distance matrix at the phylum, family and genus level. The variability of the principal coordi-
nate components was quantified as the percentage of the eigenvalue corresponding to a specific
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component over the sum of eigenvalues from all the components considered. Treatments were
visually clustered drawing ellipses estimated as the 95% confidence region of the joint distribu-
tion of the two components considered. PerMANOV As and the Bray-Curtis distance matrix
were used to examine changes in the abundance of microbial taxa by treatment and sampling
time at the three taxonomic levels using the function Adonis in the package Vegan from the
program R [60].

A linear regression model was used to identify differences in log-transformed immune
response, or helminth abundance, among treatments and sampling times as well as between
the immune response and parasite abundance. The linear regression residual plots were used
to assess appropriateness of the model; outliers and influential observations (none of the two
types were found) were screened using standard diagnostics [61]. PCoA and PerMANOVA
were implemented to identify the clustering of individuals based on their immune profile and
how they differed among treatments and sampling times. A Spearman rank correlation analysis
was applied to identify trends in the relationship between microbiota abundance and immune
response, or parasite abundance, within each treatment. Only the family taxa for which the
coefficient of variation (CV) among rabbits was greater than 150 were selected for the analysis.
Of the 124 families available, 22 were identified with CVs ranging between 12,269.78 and
167.34, compared to the remaining 102 families with CVs between 102.54 and 1. The correla-
tion approach allowed us to avoid any causative assumption in the variation between bacteria
abundance and immune variables (or parasite abundance), while emphasizing significant rela-
tionships and trends that could indicate either positive or negative interactions.

These analyses were repeated to examine the functional characteristics of the duodenum
microbiota, how they vary over time and how these changes relate to the immune response, or
parasite abundance. We used the metagenomic data re-classified based on the KEGG pathway
functional module 2. PCoA and PerMANOV A were performed to highlight host variation in
the functional activities by treatment and sampling time. The relationship between the host
immune response, or the helminth abundance, and the KEGG level 2 was investigated using
Spearman rank correlation analysis and selecting the functional activities for which the coeffi-
cient of variation (CV) among rabbits was greater than 70,000 (range 70,001-663,708), 20 out
of 41 functions were selected.

Results
Characterization of the duodenal microbiota by treatment

The alpha diversity and number of bacterial taxa were significantly different between treat-
ments and sampling time at the family and genus but not the phylum level (Fig 1, Table B in S1
File). The post-hoc pairwise comparison test between treatments found a lower diversity in the
Infect group compared to the Control (group difference: -0.437 C.1.: -0.867, -0.006) and the
Control+Collar (group difference: -0.647, C.L.: -1.056,-0.236)at the genus level (for both, Dun-
nett's Modified Tukey-Kramer test: P<0.05); no significant differences were found for the
number of bacterial taxa.

At the family level, Leptospiraceae (Spirochaetes phylum) and Desulfobacteraceae (Proteobac-
teria phylum) dominated in Infect and Infect+Collar cases whereas Control and Control+Collar
groups also had the additional dominant families Ruminococcaceae (Firmicutes phylum), Por-
phyromonadaceae and Bacteroidaceae (both Bacteroidetes phylum) (Fig 2). This general trend
was maintained at the genus level: Leptomena (Leptospiraceae family, Spirochaetes phylum) and
Desulfocella (Desulfobacteraceae family, Proteobacteria phylum) were the most abundant in
Infect and Infect+Collar individuals. Specifically, Spirochaetes were mostly characterized by Lep-
tonema illini, a non-pathogenic Leptospiraceae also found in livestock and small-mammals [62]
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Fig 1. Abundance and alpha diversity of the duodenum microbiota. Abundance and diversity by treatment (Infect: I,
Infect+Collar: IC, Control+Collar: CC and Control: C) at the 3 taxonomic levels (time points pooled together). The mean,
25-75% percentiles, maximum and minimum and outliers from the Shannon diversity index are reported. Diversity is
significantly lower in | than in CC or C groups. The number of taxa is similar among treatments.

doi:10.1371/journal.pone.0159770.g001

while Proteobacteria were mostly represented by Desulfocella halophila, a bacterium with fatty
acid and butyrate oxidizing functions [63]. Control and Control+Collar cases tended to carry
less of these genera but a higher percentage of the cellulolytic Ruminococcus (Ruminococcaceae
tamily, Firmicutes phylum) and Bacteroides (Bacteroidaceae family, Bacteroidetes phylum)

(Fig 2).

The principal coordinate analysis (PCoA) using both the Bray-Curtis and UniFrac distance
matrix generated similar conclusions, therefore, only the results from the first approach are pre-
sented. The first two principal components explained more than 50% of the variation in the
microbiota among animals at the phylum, family and genus taxonomic level (Fig B in S1 File).
Using the Bray-Curtis distance matrix we found significant differences in the abundance of the
different bacterial taxa by treatment at the three taxonomic levels (Table C in S1 File). The
strongest differences were found between Control+Collar and Infect groups while Infect+Collar
and Control individuals were more overlapped (Table D in S1 File).

In summary, the Infect group exhibited the less diversified and the Control+Collar the more
diversified microbiota, Infect+Collar carried an 'in-between' community. Bacterial species con-
tributing to fatty acid oxidizing functions appeared to be more common in infected cases.
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Fig 2. Relative microbiota abundance by animal. Abundance at the 3 taxonomic levels in the four
treatments (Infect: I, Infect+Collar: IC, Control+Collar: CC and Control: C). Only the taxa with a relative
abundance greater than 1% at each taxonomic level are presented. The white space that adds up to 100%
abundance should be interpreted as 'other' taxa.

doi:10.1371/journal.pone.0159770.g002

Characterization of the local host immune response by treatment

The majority of cytokines/transcription factors were significantly different among treatments
but not sampling time (Fig 3, Table E in S1 File). Post-hoc pairwise comparison tests between
treatments showed that gene expressions were significantly higher in Infect and Infect+Collar
groups compared to Control and Control-Collar cases (Table F in S1 File). A type 1-type 2
immune response was observed in the duodenum of Infect and Infect+Collar animals: IFNy
and IL13 dominated the immune profile followed by a much lower expression of 1L4, IL10,
GATA3 and FoxP3. Control+Collar individuals exhibited a low to very low levels of expression
of the genes examined. Mucus gene expression, MUC5 and MUC2, was highly variable over
time except in the Control cases, which showed baseline values; yet, no differences were
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Fig 3. Expression of cytokine, transcription factor and function genes in the duodenal mucosa. Mean values (2°
Alctys e.) by treatment (Infect: |, Infect+Collar: IC, Control+Collar: CC and Control: C) and sampling time (day post initial
infection). Data have been standardized by the housekeeping gene HPRT and the mean values from the baseline
animals sampled at day 0. Most of the variables show significant differences among treatments but not sampling time,
higher values are observed in the | and IC groups.

doi:10.1371/journal.pone.0159770.9003

observed among treatments (Fig 3). Both T. retortaeformis-specific and total IgA from the duo-
denal mucus were significantly different among treatments and over time (Fig 4, Table E in S1

File). As expected from our previous work [45, 50], specific IgA was higher and increased with

time in the infected groups; total mucus IgA was also high in infected cases while the non-
infected groups exhibited the lowest values (Table F in S1 File).

The PCoA analysis of the individual immune profile by treatment explained 57% of the var-
iation observed with the first two principal components (Fig C in S1 File). Significant differ-

ences were found among treatments (PerMANOVA using Bray-Curtis matrix: gene expression
by treatment, SS, df, p: 1.94, 3, <0.001; antibody level by treatment p<0.001, sampling time
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doi:10.1371/journal.pone.0159770.9004

and their two-way interaction, for both p<0.01), infected groups tended to cluster more closely
together as did the control rabbits (Table G in S1 File).

Opverall, infected animals up-regulate immune genes contributing to the control of the hel-
minth infection as well as genes involved in inflammatory responses. The immune profile of
Control+Collar cases is more similar to the baseline Control group.

Relationship between microbiota and host immunity

Our goal here was to identify whether changes in bacterial abundance were associated with the
immune response and whether these changes were related to a specific treatment. A number of
significant correlations were identified between the bacteria families whose abundance exhib-
ited a coefficient of variation among the rabbits greater than 150 (CV>150) and variation in
the immune response (Fig 5). In the Infect group, positive relationships were found between
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Fig 5. Relationships between microbiota and immune response. Spearman rank correlations grouping animals by
treatment (Infect: I, Infect+Collar: IC, Control+Collar: CC, and Control: C) and using only the bacteria that showed a
between-individual coefficient of variation (CV) greater than 150. Negative relationships are in grades of blue while positive
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doi:10.1371/journal.pone.0159770.9005

IFNY gene expression and the abundance of Pasteurellaceae, Clostridiaceae, Ruminococcaceae,
Peptostreptococcaceae and Flammenovirgaceae; positive relationships were also found between
Tbet and Lactobacillaceae or Sutterellaceae, and between TGFp and Coriobacteriaceae. Total
IgA was positively related to Enterobacteriaceae, Staphylococcaceae, Coriobacteriaceae, and
Ruminococcaceae among some. In contrast, expression of IL13 and IL4 was negatively related
to Enterobacteriaceae and Burkholderiaceae. Few significant associations were found in the
Infect+Collar individuals specifically: Desulfobacteriaceae were related positively to TGFp and
negatively to total IgA, negative associations were also found between IL13 and Burkholderia-
ceae and IL10 and Peptostreptococcaceae. In the Control+Collar group, negative associations
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were found between IL4 and Burkholderiaceae, IL5 and Staphylococcaceae and between MUC2
and few families including Lactobacillaceae. Few negative associations with IL13, GATA3 or
IL10 were observed in the Control group.

All together, in the infected animals some bacteria families decrease while others increase
with the course of the infection but whether this is affected by, or contributes to, the activity of
specific immune variables is difficult to disentangle. For the collared animals, few bacteria fam-
ilies appear to be associated with a type 2 immune reaction or mucus production.

Relationships between microbiota and intensity of infection

The impact of the T. retortaeformis infection on the duodenal microbiota was examined in the
Infect and Infect+Collar treatments. No significant relationships were found between parasite
abundance and bacterial alpha diversity, or abundance, once the effect of treatment and time
were taken into account. A correlation analysis between parasite abundance and the bacteria
families with a coefficient of variation (CV) among rabbits greater than 150 showed negative
associations of Coriobacteriaceae and Peptostreptococcaceae with parasite abundance in the
Infect+Collar treatment (Fig 6A). Once sampling time was explicitly considered we found clus-
ters of families with either positive or negative, albeit not significant, correlations at 30 days
post initial infection in both treatments, which coincides with a reduction of the average para-
site burden in the Infect group but no changes from the 15 day sampling point in Infect+Collar
(Fig 6A and Fig D in S1 File).

In summary, while there are notable trends between a number of bacteria families and the
intensity of infection, these relationships are not statistically significant.

Relationships between helminth infection and host immunity

Given that T. retortaeformis is controlled by host immunity [45, 50] we examined the relation-
ship between intensity of infection and the local immune response, and whether a restriction
from cecotrophy affected the parasite load. We found no significant differences in the intensity
of infection between treatments (Infect -I and Infect+Collar -IC) and sampling time (Fig D in
S1 File); this trend was also confirmed in the post-hoc comparison test. Based on this finding, a
linear model combining the two treatments together showed that parasite abundance was
related positively with IFNy (coeff.: 0.483) and GATA3 (3.170) (for both: p<0.01) and nega-
tively with Tbet (-6.142, p<0.01), IL5 (-3.497) and MUC2 (-0.001) (for both: p<0.05).

Overall, the mean intensity of infection is similar between Infect and Infect+Collar and in
both groups parasite abundance is associated to a mixed type 1-type 2 immune response.

Characterization of the duodenal functionality by treatment

To examine if the helminth infection and the cecotrophic restriction affected the functional
and metabolic properties of the duodenal microbiota, and how these changes related to the
immune response, analyses were repeated using the KEGG pathway functional module 2. The
functionality of the bacterial community was similar between treatments (post-hoc analysis)
and consistent among animals (PCoA and PerMANOVA approach) (Fig 7 and Fig E in S1 File,
Table H in S1 File). The most common functions were pathways of replication/repair and
membrane transport, and metabolic activities such as carbohydrate, amino acid and energy
metabolism. This general pattern was also consistent at the KEGG pathway functional module
3 (data not shown). The correlation analysis between the most variable pathways among indi-
viduals (CV> 70,000) and their immune response identified general trends that were consis-
tent among treatments, with few significant correlations (Fig 8). Specifically, metabolic
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Fig 6. Relationships between microbiota and T. retortaeformis abundance. Spearman rank correlations grouping animals by
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at the KEGG pathway module 2 that exhibited a coefficient of variation CV among individuals greater than 70,000. Additional details on the
color-coding of the correlations are reported in Fig 5, while the activities related to the KEGG function IDs are listed in Fig 7. No significant
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doi:10.1371/journal.pone.0159770.9006

pathways were negatively correlated with IFNy and Tbet gene expression in Infect and Control
treatments and with RORy and TGFp in Control+Collar and Control.

Positive, although non-significant associations between intensity of infection and micro-
biota functionality were consistently detected at 30 days post initial infection (Fig 6B), as
reported for the bacterial abundance.

These findings suggest that while some clear trends were detected between the majority of
the immune variables and the microbiota functionality in every treatment, few were statistically
significant.

Discussion

We initially proposed that T. retortaeformis infections altered the composition and abundance
of the microbiota in the duodenum, and associated changes in the immune response. These
modifications were expected to become more obvious by preventing the rabbits from absorbing
fundamental nutrients via cecotrophy.

Findings suggest that both the helminth infection and the nutritional restriction affected the
microbial community, although the impact led to contrasting outcomes among the treatments.
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In the Infect group we found a reduction both in the overall diversity and abundance of the
microbiota, and a few species appeared to prevail some phyla. For example, Spirochaetes were
dominated by the Leptonema illini, also found in cattle, pigs and small-mammals [62] while
Proteobacteria were mostly represented by Desulfocella halophila, a bacterium with fatty acid
and butyrate oxidizing functions [63]. The fatty acid metabolism is particularly relevant
because it produces large yields of ATP and is important for membrane formation and signal-
ing pathways [64]. Rabbits need more energy to fight the infection but also to repair the
mucosa damaged by the parasites moving across the tissue and D. halophila might play an
important role in these activities.

Surprisingly, Control+Collar cases exhibited the most diversified and abundant microbiota.
Animals carried less D. halophila but higher proportion of Firmicutes, such as the highly cellulo-
lytic Ruminococcaceae and the families Porphyromonadaceae and Bacteroidaceae both involved
in glucose and fat metabolism. Bacteroidetes are often associated with obese phenotypes and a
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doi:10.1371/journal.pone.0159770.9008

microbiome from diets high in proteins and fat [65-67]. The proliferation of Bacteroidetes in
the duodenum could indeed be related to the type of pellet used for the rabbit, which consisted
of 21% proteins and fat (see Materials and Approach). We propose that by reducing the avail-
ability of ready-to-absorb compounds, the cecotrophic prevention appears to have stimulated a
more diversified microbiota, particularly the proliferation of bacteria that can facilitate nutrients
intake from less digested food. This can also explain previous work that found an increased
digestive activity in rabbits prevented from cecotrophy [68]. Rabbits' soft feces (cecotropes)

have a distinct microbial structure but a similar richness compared to hard feces [69], suggesting
that the ingestion of cecotropes can help to re-establish and diversify, but not to enrich, a
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depleted gut microbiota. Our experiment shows that both diversity and abundance do increase
in the small intestine once the ingestion of soft feces is prevented.

In general, Infect+Collar animals harbored a microbiota "in-between" the Infect and the
Control+Collar. These findings support the hypothesis that hosts need a bacterial community
that can generate large yields of high quality energy (i.e. fatty acid oxidizing bacteria) to cope
with the helminth infections. However and contrary to our prediction, the collar did not exac-
erbate the severity of the infection, instead, Infect+Collar animals appear to control the para-
sites as well as the infected cases.

This work is consistent with previous laboratory studies that found an impoverishment of
the gut microbiota with helminth infections [7, 8, 10] but contrasts with recent field studies
that showed an increase in bacterial diversity among parasite positive individuals from rural
settings in developing countries [11] or a natural population of mice co-infected with different
helminth species [70]. Multiple factors could have contributed to these contrasting outcomes.
A pattern that seems to emerge is that a simplified diet is often associated with a highly diversi-
fied microbiota that facilitates the nutritional intake; a trend frequently observed in rural areas
from developing countries or hunter/gatherer societies [14, 15]. A diversified microbiota from
a simplified diet has been suggested to protect from gut diseases [15] and it can also contribute
to mitigating the severity of gastro-intestinal helminth infections. The general agreement from
studies on helminth-microbiota interaction is that, whether the parasite leads to a depletion/
amelioration or a shift of the bacterial community, changes appear to be associated with the
characteristics of the parasite (i.e. species, intensity of infection and duration of the exposure)
and the host (i.e. the infected organ and the tissue/material selected for the analyses). Our
experiment shows that trickle doses of T. retortaeformis, comparable to natural infections [43],
reduced the microbiota diversity although few species with critical properties appeared to dom-
inate. In contrast, nutritional restrictions increased the bacterial diversity despite the parasite
infection.

Changes in the bacterial abundance (based on the families with the greatest variability
between animals) were associated with changes in the local immune response. However,
whether the immune response was primarily driven by the direct reaction of the host or partly
mediated by the microbiota could not be disentangled with the current experiment. The
immune profile of Infect cases was consistent with our previous work by showing a mixed type
1- type 2 defensive response [45]. Three general patterns were observed with the microbiota.
First, we found a number of positive associations with IFNy, probably as a response to the bac-
teremia of the mucosa and/or the development of pathobionts following the damage of the
duodenal wall by the parasites. Second, we recorded a number of negative relationships with
the type 2 response, mostly IL13, IL 4 and GATA 3. While this immune reaction was targeting
the helminth it is possible that it was also controlling the bacteria as a consequence of the
worm infection. Third, we observed a weak association with a tolerogenic activity, whether it
was positive (TGFp, IL10) or negative (FoxP3), which is consistent with the evidence that the
T. retortaeformis-rabbit interaction is predominantly a resistant phenotype [43, 50].

These general trends were weakly recapitulated in the Infect+Collar group and contrast
with our original prediction that a combination of parasites and nutritional restrictions would
have exacerbated the immune reactions and the relationships with the bacterial community.
Indeed, we found no clear trends with the type 2 response and weak negative relationships with
the type 1 (IFNy, Tbet) and the regulatory (IL10, FoxP3) reaction. The lack of a clear immune-
microbiota trend could be indicative of better local conditions compared to Infect cases, for
example, animals could be more successful in coping with an inflammatory response. For the
Control+Collar cases we also found no clear relationships with the immune response.
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The functional activities of the duodenum microbiota remained relatively conserved among
the treatments, and mostly targeting metabolic and membrane transport activities. Significant
negative relationships were found between the microbiota functionality and the expression of
IFNy and Tbet in Infect and Control treatments, implying that some critical functions are
deregulated or suppressed under inflammatory conditions. For example, previous work
showed that the loss of Tbet was associated with spontaneous inflammation that could be
cured with antibiotics, suggesting the involvement of the microbiota [71]. This could explain
the negative relationships with Tbet and the need to maintain a balanced microbiota in Control
cases. Similarly, IFNy-T cells are produced from microbiota signals in steady state condition
[72]; in our Control group this can be seen as a way to self-control by the bacterial community
from excessive activities. In contrast, the high expression of IFNYy against the helminths in the
Infect group appears to be mostly host-driven and indirectly affecting the bacterial functions.
The lack of these trends in collared animals further supports the possible anti-inflammatory
role of a more diversified microbiota from a simplified diet, in our case biased towards the
absorption of nutrients from a fiber-rich diet with no cecotrophic reabsorption. Functions
related to mucus production showed a tendency to increase with a type 2 response, which sup-
ports previous studies on the positive role of the microbiota in the type 2 immune defenses [6]
and possibly in mucus production [73].

Our factorial experiment identified differences in the microbiota and immune response
among treatments but not, or weakly, over time. Specifically, the bacterial community did not
significantly change with the trickle dosing of T. retortaeformis or wearing the collars for a pro-
longed period of time. The lack of a significant relationship with parasite abundance was prob-
ably caused by using doses that resembled natural infections and prevented extreme reactions
in the duodenum. Similarly, wearing the collars up to 60 days did not appear to have deterio-
rated the local gut conditions, indeed, all the animals consistently gained body mass over the
course of the experiment irrespective of the treatment (Fig F in S1 File). However, we do not
exclude that the small number of replicates and variation among groups affected some of the
results. Sample size could also have influenced the lack of significant patterns in the functional
metagenome analysis, although it could also be associated with the limitations of PICRUSt to
process non-human data [69].

In conclusion, this study suggests that while the duodenal microbiota was depauperated by
the T. retortaeformis infection, the local conditions did not exacerbate with the progression of
the infection. At the end of the trial, the weekly dosing of parasites was partially controlled by
the immune response, consistent with our previous work [43, 45, 74], and the bacterial com-
munity did not significantly change over time. Animals with both infection and cecotrophic
restriction exhibited a more diversified and abundant microbiota, and a parasite load similar to
the Infect cases. The collar enhanced bacterial diversity and abundance suggesting that the
microbiota has to adjust to increase the absorption of nutrients from a simplified food. These
findings provide important information to the understanding of how the gut microbiota adapts
to the combined effect of helminth infections and nutritional alterations and how these compo-
nents can be related to the local immune profile. Yet, more work is needed to clarify these rela-
tionship and the mechanisms driving these patterns. The T. retortaeformis-herbivore model
has many similarities with parasite systems of livestock and humans and this study offers some
general understanding that can be used to generate new hypotheses on the parasite-nutrition-
microbiota interactions and ultimately improve individual health. Indeed, a tantalizing idea is
that by choosing a correct diet it is possible to promote not only a more diversified bacterial
community but also the proliferation of critical bacteria important for mitigating the impact of
helminth infections. The next challenge is to identify the bacteria involved in the processes of
parasite control, either directly or by influencing the immune response, and pinpoint ways to
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manipulate bacterial abundance by selecting a targeted diet that can promote bacterial diversity
and/or proliferation of critical species important for alleviating infection severity.
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