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Abstract

The cannabis community typically uses the terms “Sativa” and “Indica” to characterize drug

strains with high tetrahydrocannabinol (THC) levels. Due to large scale, extensive, and

unrecorded hybridization in the past 40 years, this vernacular naming convention has

become unreliable and inadequate for identifying or selecting strains for clinical research

and medicinal production. Additionally, cannabidiol (CBD) dominant strains and balanced

strains (or intermediate strains, which have intermediate levels of THC and CBD), are not

included in the current classification studies despite the increasing research interest in the

therapeutic potential of CBD. This paper is the first in a series of studies proposing that a

new classification system be established based on genome-wide variation and supple-

mented by data on secondary metabolites and morphological characteristics. This study

performed a whole-genome sequencing of 23 cannabis strains marketed in Canada, aligned

sequences to a reference genome, and, after filtering for minor allele frequency of 10%,

identified 137,858 single nucleotide polymorphisms (SNPs). Discriminant analysis of princi-

pal components (DAPC) was applied to these SNPs and further identified 344 structural

SNPs, which classified individual strains into five chemotype-aligned groups: one CBD dom-

inant, one balanced, and three THC dominant clusters. These structural SNPs were all mul-

tiallelic and were predominantly tri-allelic (339/344). The largest portion of these SNPs

(37%) occurred on the same chromosome containing genes for CBD acid synthases

(CBDAS) and THC acid synthases (THCAS). The remainder (63%) were located on the

other nine chromosomes. These results showed that the genetic differences between mod-

ern cannabis strains were at a whole-genome level and not limited to THC or CBD produc-

tion. These SNPs contained enough genetic variation for classifying individual strains into

corresponding chemotypes. In an effort to elucidate the confused genetic backgrounds of

commercially available cannabis strains, this classification attempt investigated the utility of

DAPC for classifying modern cannabis strains and for identifying structural SNPs.
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Introduction

Cannabis has a complex breeding history. Whether its botanical classification is monotypic

(sativa) or polytypic (sativa and indica) remains controversial [1]. Since the 1980s, breeding

for high psychoactive THC content has occurred very aggressively in North America [2].

Nearly all drug-type cannabis currently cultivated in the USA, Canada, and Europe are hybrid-

ized, resulting in thousands of strains [3]. Recent genetic studies focused on validating the ver-

nacular classification of “Sativa” and “Indica” [4–7]. However, this terminology is inadequate

for identifying or selecting strains for clinical research and medicinal production due to the

misuse of the botanical nomenclature, extensive cross-breeding, and unreliable labelling dur-

ing unrecorded hybridization [2]. One genetic study found that the reported ancestry percent-

age of “Sativa” vs. “Indica” for 81 drug stains is only moderately correlated with the calculated

genetic structure (r2 = 0.36) [5]. In addition, CBD dominant strains and balanced strains

(THC� CBD), which have gained increasing attention due to CBD’s use as a therapeutic [8–

12], have been omitted in recent classification studies.

Cannabis has a diploid genome (2n = 20) with nine autosomal chromosomes and one pair

of sex chromosomes [13]. The length of the haploid genome size is 818 Mbp for females and

843 Mbp for males [14]. An SNP is a variation of a single nucleotide at a specific position in

the genome, and it is useful for understanding the genetic basis of diversity among populations

[15]. SNPs are usually bi-allelic, with two alleles observed in the population [16]. Multiallelic

SNPs have more than one alternative allele for that locus. Tri-allelic SNPs, which have three

nucleotide substitution-based alleles at the same position, are relatively rare but are being con-

sidered of great relevance in epidemiological studies [17], in disaster victim identification

using mixed and/or degraded DNA samples [18], and in animals pedigree accuracy studies

[19]. Tri-allelic SNPs are reported to have a higher power of discrimination than bi-allelic

SNPs requiring fewer markers and lowering costs [18, 20]. However, tri-allelic SNPs have been

excluded in cannabis population structural analysis in the current literature [6, 21].

Cannabis classification studies that employ SNPs generally used partial genome informa-

tion with few or no overlap sequences between datasets [22]. Whole-genome sequencing is

used less often in the literature, but is preferable despite its higher cost because it enables com-

parison of genome datasets from different sources [22]. It also provides comprehensive genetic

information [22], as studies showed that differences between fiber- and drug-type cannabis are

at a genome-wide level and not necessarily limited to genes involved in THC production [5].

The recent release of the 10-chromosome map of the cannabis genome [23–27] may improve

the understanding of the genetic architecture, identify a superior set of SNPs associated with

interesting traits, and reduce future targeted genotyping costs by using fewer but more accu-

rate SNPs [28].

Several approaches are now available for the analysis of population genetic structure. One

of these approaches is the DAPC, which is a multivariate clustering method that combines the

merits of both principal component analysis (PCA) and discriminant analysis (DA) [7, 29–31].

PCA is a multivariate analysis that can be applied to large datasets to reduce dimensions, but

does not provide a group assessment, which is essential for investigating genetic structures of

biological populations [32]. DA achieves the best classification of individuals into pre-defined

groups by maximizing between-group variation and minimizing within-group variation, but

the number of variables (alleles) needs to be fewer than the number of observations (individu-

als), which is generally not the case for SNP data [29]. DAPC first uses PCA to transform raw

data (genome-wide identified SNPs) into principal components (PC), which are mutually

orthogonal linear combinations of the original variables. This ensures that variables submitted

to DA are perfectly uncorrelated and that there are fewer variables than number of individuals.
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Then, linear discriminant functions, which are synthetic variables of linear combinations of

these SNPs, are constructed to maximize inter-cluster differences and minimize intra-cluster

variation [29]. By combining the advantages of PCA and DA, DAPC can identify groups,

assign individuals to groups, visualize between-population differentiation, and identify indi-

vidual alleles that have contributed to population structuring.

The objectives of this study are to:

1. investigate whether modern cannabis strains can be classified and differentiated at the

whole-genome level, and

2. investigate the chromosomal location and putative functions of identified structural SNPs.

This study is a part of an integrated cannabis strain classification project utilizing genetic,

chemical, and morphological profiles, wherein plants were grown in a commercial greenhouse

under the same condition.

Materials and methods

DNA extraction and whole genome sequencing

This study included 23 commercially available cannabis strains, and the research was carried

out under a cannabis research license issued by Health Canada. Where possible, the reported

ancestry (“Sativa”, “Indica”, or “Sativa-dominant” and “Indica-dominant”) was obtained from

the licensed producer providing the strain or from an online strain database (https://www.

leafly.ca) (Table 1). Each strain was analyzed for chemical composition using methods estab-

lished in our previous study [33] and labelled as “THC dominant”, “balanced”, and “CBD

dominant”. DNA was extracted from 100 mg of fresh leaves for each strain using a Qiagen

DNeasy Plant Mini Kit (QIAGEN, Canada). DNA concentrations were determined using a

Qubit Fluorometer (Thermo Fisher Scientific, US). DNA integrity was tested by agarose gel

electrophoresis. Library construction and sequencing were performed by BGI (USA) using

DNBseq™ sequencing technology to a depth of 30x. DNBseq™ is a high-throughput sequencing

solution, where DNA is fragmented into 100–300 bp and made into DNA nanoballs (DNB™),

which are continuous DNA molecule with multiple head-to-tail copies of the same DNA frag-

ment by linear isothermal rolling-circle replication. They are loaded onto high-density

sequencing templates and sequenced by combinatorial probe-anchor synthesis (cPAS), where

fluorescently tagged nucleotides complete for addition to the growing chain. After the addition

of each nucleotide, high-resolution digital imaging is carried out where the DNB clusters are

excited by a light source and a characteristic fluorescent signal is emitted. Hundreds of and

thousands of clusters are sequenced in a massively parallel process. The emission wavelength,

along with the signal intensity, determines the base call and the number of the cycles deter-

mines the length of the read. Sequence reads were then aligned to the reference genome assem-

bly ASM23057v4 of a drug type strain Purple Kush (PK) in the NCBI BioProject database

under accession number PRJNA73819 [34] using Burrows-Wheeler Alignment (BWA) tool

[35]. New assignments of chromosomes numbers (1–10) were used as in ASM23057v5 [36].

The first step of SNP calling is marking duplications in BAM format files, and selected duplica-

tions are included in SNP calling by GATK (Genome Analysis Toolkit) (https://www.

broadinstitute.org/gatk/). Local realignment around inDels is performed to avoid the bias of

SNP calling, and the variation sites around inDel are identified as SNPs. A total of 235,334

SNPs was identified, including 225,046 bi-allelic and 10,288 multiallelic SNPs. After filtering

for SNPs with no missingness by locus and a minor allele frequency less than 10% using
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VCFtools, 137,858 SNPs, including 128,810 bi-allelic and 9,048 multiallelic SNPs, remained

for analysis.

Analysis of population structure and identification of structural SNPs

The population structure in this work was analyzed by DAPC using the adegenet package [37]

in R software [38]. First, the find.clusters function ran successive K-means [39] for a range of k
values (where the number of clusters k = K), and identified the optimal number of clusters by

comparing the Bayesian Information Criterion (BIC) [40] of the corresponding models. After

groups were assigned, a cross-validation function (xvalDapc) was used to determine the opti-

mal number of PCs to avoid over-sacrificing information or over-fitting in the subsequent

DAPC. In cross-validation, the data were divided into a training set (90% of the data) and a

validation set (10% of the data) by default. DAPC was carried out on the training set and the

accuracy of predicting the membership of individuals in the validation set was used to identify

the number of PCs. The sampling and DAPC were repeated 30 times by default at each level of

PC retention. After assigning individuals to clusters, DA was carried out on the retained PCs

and contributions of the alleles to each discriminant function were stored. An SNPZIP analysis

(snpzip) in R was then used to provide objective delineation between structural and non-struc-

tural SNPs, as identified by DAPC, to determine which SNPs contribute significantly to the

between-population structure [41].

Table 1. Strain information of 23 strains and preassigned clusters by DAPC.

Strain number Strain name Chemotypes Clusters (W-SNPs) Clusters (I-SNPs) "Sativa" or "Indica"

1 Lemon Garlic OG 1-Balanced C1 C4 "Indica" dominant

2 Royal Medic 2-Balanced C3 C2 "Sativa" dominant

3 Blue Hawaiian 3-CBD C3 C1 "Sativa" dominant

4 Kandy Kush 4-CBD C3 C1 "Sativa" dominant

5 Special 5-CBD C3 C1 Not provided

6 NN 6-CBD C3 C1 Not provided

7 Dance World 7-Balanced C3 C2 "Sativa" dominant

8 Treat 8-CBD C3 C1 Not provided

9 High 9-Balanced C3 C2 Not provided

10 CB7 10-CBD C3 C1 Not provided

11 33˚ 11-THC C1 C4 Not provided

12 Banana Cake 12-THC C2 C5 "Indica" dominant

13 Bananium 13-THC C3 C3 "Indica" dominant

14 Burmese Blueberry 14-THC C2 C5 "Indica" dominant

15 Divine Banana 15-THC C2 C4 "Indica" dominant

16 Granddaddy Purple 16-THC C2 C5 "Indica" dominant

17 Lemon Love 17-THC C1 C5 "Indica" dominant

18 Lemon Sorbet 18-THC C1 C4 "Indica" dominant

19 MeatHead 19-THC C2 C5 "Indica" dominant

20 Nanitro 20-THC C1 C4 "Indica" dominant

21 Platinum Jelly Punch 21-THC C1 C4 "Indica" dominant

22 SBSK2 (Lemon Thai) 22-THC C3 C3 50/50 hybrid

23 Super sherbet 23-THC C1 C4 "Indica" dominant

�The column of clusters W-SNPs was obtained using the whole set of 137,858 filtered SNPs. The column of clusters I-SNPs was obtained using 344 structural SNPs.

https://doi.org/10.1371/journal.pone.0253387.t001
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First, the whole set of 137,858 SNPs were applied to DAPC to identify SNPs that contrib-

uted most to the identified clusters. DAPC was carried out again using the identified SNPs to

validate their differentiation efficiency by confirming the separation of the 23 strains into their

preassigned clusters. A short sequence (about 600 nt) around each one of these identified SNP

was searched using the BLAST software (https://blast.ncbi.nlm.nih.gov) against Cannabis
sativa Annotation Release 100 [42]. In addition to DAPC, other clustering methods, including

PCA, neighbor-joining (NJ) tree [43], and hierarchical dendrogram using Ward’s minimum

variance method [44], were also employed to assess the robustness of the final inferred clusters.

PCA and NJ tree were plotted using R. The hierarchical dendrogram was plotted using JMP

14.0.0.

Results and discussions

Discriminant analysis of principal components using 137,858 SNPs

As indicated by the elbow in the curve of BIC values as a function of k in Fig 1(a), the optimal

number of identified clusters was three, corresponding to the lowest BIC values. The number

of PCs retained for DAPC analysis was four, as calculated by cross-validation in Fig 1(b),

where it had 100% predictive success, and 0% associated root mean squared error (RMSE). In

this study, the number of PCs associated with the highest mean success was also associated

with the lowest MSE, which made it easier to choose the number of PCs to retain. For the sub-

sequent DAPC analysis, four PCs and two discriminant functions were retained. The DAPC

Fig 1. DAPC for 23 cannabis genotypes. (a) The x-axis is the number of clusters k and the y-axis is the corresponding value of

BIC. (b) The plot of DAPC cross-validation. The x-axis is the number of PCA axes retained for DAPC, and the y-axis is the

proportion of successful outcome prediction. Individual replicates appear as points, and the density of those points in different

regions of the plot is displayed in blue. (c) DAPC plot for 23 cannabis genotypes along two linear discriminants (LD 1 and LD 2).

https://doi.org/10.1371/journal.pone.0253387.g001

PLOS ONE Genome-wide single nucleotide polymorphisms to classify cannabis strains

PLOS ONE | https://doi.org/10.1371/journal.pone.0253387 June 28, 2021 5 / 14

https://blast.ncbi.nlm.nih.gov
https://doi.org/10.1371/journal.pone.0253387.g001
https://doi.org/10.1371/journal.pone.0253387


plot of 23 cannabis genotypes is shown in Fig 1(c). The grouping assignment for individual

strains by DAPC is listed in Table 1 (as W-SNPs). C1 is a THC dominant cluster and includes

six THC dominant strains (11, 17, 18, 20, 21, and 23-THC) and one balanced strain (1-bal-

anced). C2 is another THC dominant cluster and includes five THC dominant strains (12, 14,

15, 16, and 19-THC). C3 is a cluster dominated by CBD dominant and the balanced strains

which includes six CBD dominant strains (3, 4, 5, 6, 8, and 10-CBD), three balanced strains (2,

7, and 9-balanced), and two THC dominant strains (13 and 22-THC). While C2 is closer to C3

and is more distant to C1, C1and C3 are clearly separated along linear discriminant 1 (LD1).

While C1 and C3 are roughly at the same level with respect to linear discriminant 2 (LD2), C2

is separated from both. PCA was also carried out on the same set of SNPs and results are

shown in S1 Fig. Twenty-three cannabis strains are plotted along pair-wise PCs of the first 4

PCs, which account for 18.4%, 11.5%, 9.5%, and 8.7% of the total variance, respectively. Simi-

larly, the first PC suggests the existence of a relatively compact CBD & balanced clade on the

left side of the plot and a more dispersed THC dominant clade on the right side of the plot. Bal-

anced strains share a closer gene pool with CBD dominant strains, while the THC gene pool is

more dispersed. Because THC is psychoactive and its potency can be readily assessed through

consumption, selection for increasing THC content started early and widely for recreational

purposes by traditional breeding [45]. In contrast, CBD is non-psychoactive and must be ana-

lyzed in a laboratory for potency, and therefore breeding for high CBD concentrations began

later [45]. A complete genome assembly implied that CBD dominant varieties were generated

by integrating hemp-type CBD acid synthase gene clusters into a background of drug-type

cannabis to elevate CBDA production [24]. These balanced strains may have been created by

crossing purebred THC dominant types with CBD dominant types [46]. Therefore, there may

be a relatively limited selection of CBD dominant strains for breeding balanced strains.

Discriminant analysis of principal components using 344 structural SNPs

DAPC was repeated using identified 344 structural SNPs. The optimal number of identified

clusters was five, corresponding to the lowest BIC values (Fig 2(a)). Two PCs were retained for

the following DAPC analysis in Fig 2(b), where it had 98.9% predictive success and 0.04%

RMSE. For the subsequent DAPC analysis, two PCs and two discriminant functions were

retained. The grouping assignment for individual strains by DAPC is listed in Table 1 (as

I-SNPs). Within the five clusters (Fig 2(c)), C1 is a CBD dominant cluster that includes six

strains (3, 4, 5, 6, 8, and 10-CBD), C2 includes three balanced strains (2, 7, and 9-balanced),

and C3, C4, and C5 are THC dominant clusters that include two (13 and 22-THC), seven

(1-balanced, 11, 15, 18, 20, 21, 23-THC), and five (12, 14, 16, 17, and 19-THC) strains,

respectively.

These multiallelic SNPs were also subjected to PCA, NJ tree, and hierarchical clustering

analysis. In Fig 3, the 23 cannabis strains are plotted along PC1 and PC2, which account for

44.5% and 10.0% of the total variance, respectively. The proportions of explained variance are

higher compared to the previous PCA results (18.4% and 11.5%) obtained using the whole set

of SNPs. CBD dominant cluster C1 and balanced cluster C2 are on the left side of the scatter

plot (PC1<0) and the THC dominant clusters C3, C4, and C5 are on the right side of the scat-

ter plot (PC1>0). Notably, six CBD dominant strains are separated from three balanced

strains, while they were previously combined in the analysis using the whole set of SNPs. In

addition, two THC dominant strains 13-THC and 22-THC are separated from the CBD and

balanced cluster, and instead placed closer to other THC dominant strains. Strain 1-balanced

is closer to THC dominant strain regardless of whether the whole set of SNPs or 344 identified

SNPs were used.
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The genetic structure from NJ-tree and hierarchical clustering using the 344 multiallelic are

displayed in Fig 4, mostly congruent with that of DAPC. In the NJ-tree, all six CBD dominant

strains are clustered together, with three balanced strains clustered closer on the same branch

(Fig 4(a)). Most THC dominant strains are also clustered adjacent to strains within their own

clusters. The dendrogram using hierarchical clustering by Ward’s method reveals two major

groups, where one group is comprised of CBD dominant & balanced strains, and the other of

THC dominant strains (Fig 4(b)). They are further separated into five subclusters, where CBD

dominant and balanced clusters are consistent with the DAPC grouping results, and several

THC dominant strains clustered differently. Two strains, 15-THC and 18-THC, were assigned

to C4 using DAPC but are assigned closer to C5 in the dendrogram. Two other strains,

14-THC and 16-THC, were assigned to C5 in DAPC but are assigned closer to C3 in the den-

drogram. The clustering results are congruent between DAPC and hierarchical clustering with

an assignment agreement rate of 83% (19/23).

Allele frequencies for 344 multiallelic SNPs in three chemotypes

DAPC identified 344 highly contributing SNPs (S1 Table). All the structural SNPs are multial-

lelic, among which 98.5% (339/344) are tri-allelic and the remainder 1.5% (5/344) are tetra-

allelic. The dendrogram of 23 strains using hierarchical clustering based on the allele counts in

the 344 structural SNPs (S2 Table) separated the strains into CBD dominant, balanced, and

THC dominant strains, mostly corresponding to the grouping results of DAPC (Fig 5). The

allele frequency was calculated by dividing the counts of that allele for all strains within the tar-

geted group by the sum of the counts for each allele for that SNP within the targeted group.

Allele frequencies of the structural SNPs were calculated for three major branches, each corre-

sponding one of three chemotypes. (S1 Table). If 1-balanced strain was assigned to the THC

Fig 2. DAPC of 23 cannabis genotypes using 344 multiallelic structural SNPs. Clusters indicated as C1, C2, C3, C4, and C5 corresponds to the

I-SNPs in Table 1.

https://doi.org/10.1371/journal.pone.0253387.g002
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dominant group as indicated by DAPC for allele frequency calculation, there are 87% (300/

344) SNPs in CBD dominant clusters, 46% (157/344) SNPs in balanced clusters, and 11% (39/

344) SNPs in THC dominant clusters that have one allele with allele frequencies > 80% (S1

Table). Among them, 140 SNPs shared same alleles with allele frequencies > 80% in CBD

dominant strains (140/300) and balanced strains (140/157), which further indicated that CBD

dominant strains and balanced strains closely share a gene pool. There are 38 SNPs that have

one allele present in CBD dominant strains with allele frequencies > 80% and are not detected

in THC dominant strains. There are 322 SNPs whose alleles that are present in THC dominant

strains but were not detected in CBD dominant strains.

If the 1-balanced strain is assigned to the balanced group for allele frequency calculation,

there are 87% (300/344) SNPs in CBD dominant clusters, 10% (36/344) SNPs in balanced clus-

ters, and 13% (44/344) SNPs in THC dominant clusters that have one allele with allele

frequencies > 80% (S2 Table). Among them, 32 SNPs shared same alleles with allele

frequencies > 80% in CBD dominant strains (32/300) and balanced strains (32/36). There are

38 SNPs that have one allele present in CBD dominant strains with allele frequencies > 80%

and are not detected in THC dominant strains. There are 321 SNPs whose alleles are present

in THC dominant strains but were not detected in CBD dominant strains. Assigning the 1-bal-

anced strain to the balanced group added more genetic diversity to the balanced group, and

the effect of adding or deleting this strain for the THC dominant group in terms of allele fre-

quency is small and can be neglected.

Fig 3. Scatter plot of 23 cannabis strains on PC1 & PC2 using 344 structural SNPs. Clusters indicated as C1, C2, C3,

C4 and C5 correspond to I-SNPs in Table 1.

https://doi.org/10.1371/journal.pone.0253387.g003
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Fig 4. NJ-tree and hierarchical clustering using the 344 multiallelic SNPs (a) NJ-tree and (b) The dendrogram using hierarchical clustering by

Ward’s method for 23 cannabis genotypes. Clusters indicated as C1, C2, C3, C4, and C5 corresponds to I-SNPs in Table 1.

https://doi.org/10.1371/journal.pone.0253387.g004

Fig 5. Hierarchical clustering of 23 strains based on the allele counts for 344 structural SNPs identified by DAPC.

https://doi.org/10.1371/journal.pone.0253387.g005
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BLAST analysis of 344 multiallelic SNPs

These 344 SNPs were spread across all 10 chromosomes (Fig 6(a)), indicating that commer-

cially available cannabis strains in North America are significantly differentiated at a genome-

wide level. The number of identified SNPs ranged from 7 to 127 on each genome, with 37% of

the genetic variation occurring (127 SNPs) on chromosome 6, where CBDAS and THCAS are

located [13]. The rest SNPs were spread over the remaining nine chromosomes. All ten chro-

mosomes have genes related to the biochemical pathways of secondary metabolites, including

cannabinoids, monoterpenes, and sesquiterpenes [13, 24, 47–51]. BLAST results showed that

90% (310/344) of these structural SNPs had no feature, 7% (24/344) are uncharacterized loci

with unknown functions, and 3% (10/344) are predicted for certain functions (Fig 6(b)).

Conclusions

Although the cannabis industry is rapidly advancing after the relaxation of legal restrictions in

North America, the increasing number of THC dominant strains, CBD dominant strains, and

balanced strains only adds confusion to the currently poorly understood genetic background

of the thousands of varieties already in existence. Although there were only 23 strains included

in this study, they covered the three typical chemotypes of cannabis strains currently available

in the market. Leveraging as much genetic variation as possible using whole-genome sequenc-

ing, we identified 344 multiallelic SNPs that were used to investigate the genetic structure of 23

cannabis genotypes using DAPC, PCA, NJ tree, and hierarchical clustering, which provided

consistent observations and groupings despite the differences in algorithms. The clustering

results revealed that these 23 strains could be separated into five clusters, with one cluster

Fig 6. Features of 344 multiallelic SNPs (a) Distribution of structural SNPs on chromosome 1–10 and unplaced

scaffolds. (b) BLAST results for structural SNPs against a fully annotated genome.

https://doi.org/10.1371/journal.pone.0253387.g006
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containing six CBD dominant strains, another cluster containing three balanced strains, and

the remaining three clusters containing 13 THC dominant strains and one balanced strain.

CBD dominant strains and the balanced strains are closer genetically. This may be attributed

to how medical interest in breeding for non-psychoactive, CBD-elevated strains (CBD domi-

nant and balanced strains) has only recently been in vogue, resulting in an overlapping and

less diverse gene pool for CBD dominant and balanced strains compared to the longer breed-

ing history for THC strains. Some alleles are only present in CBD dominant strains or in THC

dominant strains. More alleles present in balanced strains are shared with CBD dominant

strains. One third of these structural SNPs are located on the chromosome containing THCAS

and CBDAS. The remaining SNPs are located on the other nine chromosomes. An area of

potential investigation is how the identified structural SNPs are associated with the production

of other cannabinoids, mono- and sesquiterpenes, flavonoids, other compounds, or morpho-

logical characteristics.

Since the late 20th century, genetic methodologies have been developed for separating

industrial hemp from drug-type cannabis for forensic purposes, thus differentiating CBD

dominant and THC dominant strains [52–56]. For the past 20 years, with the extensive hybrid-

ization of THC dominant strains, many classification studies have focused on separating

“Sativa” and “Indica” strains and many have suggested abolishing this vernacular [5–7]. The

genotyping results of this study indicate that modern, extensively hybridized strains can still be

separated using genome-wide information. As a powerful multivariate approach that investi-

gates population structures based solely on genetic information, DAPC separated strains into

clusters aligned with their chemotypes. Additionally, DAPC has the potential to sort the disor-

dered genetic background of thousands of THC dominant strains by identifying the number

of genetic clusters within THC dominant strains, describing clusters by interpreting group

memberships, and identifying the contributing SNPs that have the potential to be used as

genetic markers for strain classification and identification. This would require a concerted

effort from the cannabis industry by contributing whole genome sequence data to public data-

bases and by building a common taxonomy based on genomics. Optimally, the identified

genetic markers can be used as genomic fingerprints in combination with chemical finger-

prints and morphological characteristics for strain identification. These markers can be lever-

aged for strain selection in clinical trials and for manufacturing cannabis-based products and

medicines.
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