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Alzheimer’s disease (AD) is the most common form of dementia and leads to irreversible neurodegenerative damage of the brain.
Finding the dynamic responses of genes, signaling proteins, transcription factor (TF) activities, and regulatory networks of the
progressively deteriorative progress of AD would represent a significant advance in discovering the pathogenesis of AD. However,
the high throughput technologies of measuring TF activities are not yet available on a genome-wide scale. In this study, based
on DNA microarray gene expression data and a priori information of TFs, network component analysis (NCA) algorithm is
applied to determining the TF activities and regulatory influences on TGs of incipient, moderate, and severe AD. Based on that,
the dynamical gene regulatory networks of the deteriorative courses of AD were reconstructed. To select significant genes which
are differentially expressed in different courses of AD, independent component analysis (ICA), which is better than the traditional
clustering methods and can successfully group one gene in different meaningful biological processes, was used. The molecular
biological analysis showed that the changes of TF activities and interactions of signaling proteins in mitosis, cell cycle, immune
response, and inflammation play an important role in the deterioration of AD.

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease
with an insidious onset and progressive stage that inevitably
leads to death. The disease progression of AD is slow,
and it may take several years from onset of cognitive
decline to diagnosis. Although several hypotheses have been
proposed and many putative AD susceptibility genes have
been witnessed in the past decades, the genetics mechanism
and pathogenesis of AD are still unclear. Discovering the
changes of gene expressions, transcriptional factors (TFs),
and the transcriptional regulatory mechanism, which maps
out the coordinated dynamic response of TFs andTGs, would
provide a significant advance in genome-wide analysis of AD.

The characteristic pathology change in AD is fibrin
deposition in cerebral cortex, and it is the deposition of
beta-amyloid (A𝛽) in cell space and poly-Tau protein in

cell. In pathomorphism, the expressions are senile plaques
(SP), neurofibrillary tangles (NFT), cerebrovascular amyloid,
dystrophic neuritis, and loss of synaptic connections. Neu-
roinflammation, as well as dysregulation of lipid metabolism
and mitochondrial dysfunction, can also be observed [1].
Currently, the main-stream theory regarding the disease
mechanism is the amyloid cascade hypothesis [2]. Recent
fast development of high throughput technologies such as
DNA microarray technology and statistically computational
tools [3] enables large-scale measurements of biological
signals to discover critical genes, coregulated gene groups,
and transcriptional regulatory network for AD. Ray et al.
found 18 signaling proteins, which can efficiently classify AD
and control subjects, in blood. Biological analysis of the 18
proteins points to systemic dysregulation of hematopoiesis,
immune responses, apoptosis, and neuronal support in
presymptomatic AD [4]. Ray et al. identified 6 coexpressed
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gene modules, each of which represented a biological process
perturbed in AD [5]. By combining array analysis and
quantitative trait loci (QTL) mapping to characterize the
genetic variation and genetic regulatory network, Wang et
al. identified many AD-related genes coregulating with App
includingGsk3b, Falz,Mef2a, Tlk2, Rtn, and Prkca [6]. Zhang
et al. found regulators of tmem59 and reconstructed gene
regulatory networks of mouse neural stem cells. 16 out of
36 predicted genes, including Ace, aqp1, arrdc3, cd14, cd59a,
cds1, cldn1, cox8b, defb11, folr1, gdi2, mmp3, mgp, myrip,
Ripk4, rnd3, and sncg in their constructed network, have
been reported to be AD related [7].

Furthermore, to overcome the underlying shortcomings
ofmicroarray technology such as small sample size, measure-
ment error, and information insufficiency, some other high
throughput technologies, such as protein-protein interaction
(PPI), transcriptional factors (TFs), and microRNA knowl-
edge, have been integrated and become more informative
and powerful for discovering AD’s mechanism. Liang et
al. integrated gene expression profiles with prior protein-
protein interaction (PPI) network information to reveal
significantly perturbed subnetwork in 6 brain regions [8].
Panigrahi and Singh identified novel gene variants in various
biological processes, new information for network motif,
groups of transcriptional factors (TFs), and miRNA targets
to demonstrate that there are extensive links between AD and
ageing (AG) [9].

As a progressively neurodegenerative disease in the brain,
finding out what kinds of genes crucially change and howTFs
dynamically regulate their TGs in the degenerative progress
of AD would provide a great achievement in discovering
pathogenesis of AD. Since the high throughput technologies
of measuring TF activities on the genome-scale are much
more limited, the challenge now is to construct the dynamic
transcriptional regulatory networks with the help of statisti-
cally computational tools. In our study, network component
analysis (NCA), a method for determining both the activities
and regulatory influence on a set of TFswith their knownTGs
[10], has been used on degenerative progress of AD samples
from incipient to moderate and severe AD. NCA models the
expression of a gene as a linear combination of the activities of
TFs and regulatory strength froma set of gene expression data
and a priori given connectivity information between TFs and
their target genes. It has been successfully applied to identi-
fying previously unnoticed oscillatory activity patterns in the
yeast cell cycle [10], building network to lipopolysaccharide
(LPS) in humans [11], generating a predicted activation time
stage of catabolite repressor protein in Escherichia coli [12],
predicting activities of important transcription factors in a
mouse knockout model of human glycerol kinase deficiency,
and so on [13–17].

Two inputs: gene expression profiles and a predefined
regulatory influence matrix which qualitatively provides the
initial estimates of the influence of each TF on the TGs, are
required by NCA model. In our study, independent compo-
nent analysis (ICA) is adopted to extract significant genes
from biologically meaningful patterns from different stages
of AD gene expression data. Compared with the traditional
clustering methods, such as 𝑘-mean, self-organizing maps

(SOM), and hierarchical clustering, which can group each
gene in only one class based on the global similarities of
the expression profiles, ICA is a biclustering method which
can successfully group one gene in different meaningful
biological processes and has been successfully applied to
microarray data for feature extraction [18, 19], clustering and
the classification on yeast cells’ cycle [20], and cancer data
such as ovarian cancer [21], breast cancer [22], endometrial
cancer [23], colon and prostate cancer [24, 25], and acute
myeloid leukemia [26]. By combining a priori information
between TFs and TGs with significant genes selected by
ICA, the selected gene expression profiles and the predefined
regulatory influence matrix can be prepared. Finally, we
calculate the activities of 10 TFs and regulatory influence
on 34 TGs with 71 interactions, using NCA for control,
incipient, moderate, and severe AD gene expression data.The
dynamic regulatory networks were then successfully built for
degenerative progress of AD. Molecular biological analysis
demonstrated that the changes of TF activities and their
influence on TGs played an important role in AD’s onset and
deterioration, and the results added additional insights into
discovering pathogenesis of AD.

2. Methods

2.1. Independent Component Analysis. Let the 𝑛 × 𝑚 matrix
X denote the microarray gene expression data with 𝑚 genes
under 𝑛 samples or conditions. 𝑥

𝑖𝑗
inX is the expression level

of the 𝑗th gene in the 𝑖th sample. In gene expression datasets,
the number of genes𝑚 ismuch larger than that of the samples
𝑛,𝑚 ≫ 𝑛. Suppose that the data have been preprocessed and
normalized; that is, each sample has zero mean and standard
deviation, and then the ICA model for gene expression data
can be expressed as

X = AS. (1)

In the ICA model of microarray data, the columns of
A = [𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
] are the 𝑛 × 𝑛 latent vectors of the gene

microarray data, S denotes the 𝑛 × 𝑚 gene signature matrix
or expression mode, in which, the rows of S are statistically
independent on each other, and the gene profiles in X are
considered to be linear mixture of statistically independent
components S combined by an unknown mixing matrix A.
To obtain S and A, the demixing model can be expressed as

Y =WX, (2)

whereW is an 𝑛 × 𝑛 demixing matrix.
The gene expression data provided by microarray tech-

nology are considered linear combination of some inde-
pendent components of specific biological interpretations.
The 𝑛th row matrix A contained the weights with which
the expression levels of the 𝑚 genes contribute to the 𝑛th
observed expression profile. Therefore, the assignment for
the observed expression profiles with different classes is valid
for the rows of A, and each column of A can be associated
with one specific expression mode. Since the 𝑛th column
of A contains the weights with which 𝑠

𝑛
contributes to all

observations, this column should show large or small entries
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according to the class labels. After such characteristically
latent variables have been obtained, the corresponding ele-
mentary modes can be identified to yield useful information
for classification. In addition, the distribution of gene expres-
sion levels generally features a small number of significantly
overexpressed or underexpressed genes that form very bio-
logically coherent groups and may be interpreted in terms of
regulatory pathways.

2.2. Network Component Analysis. NCA is a tool for ana-
lyzing gene expression data of dynamic transcriptional net-
works. It models the expression of a gene as a linear combina-
tion of the activity of each TF that controls the expression of
the gene [10]. NCA uses transcription network connectivity
to deduce transcription factor activities (TFAs) and TF-gene
regulation control strengths (CS) from gene expression data.
The following transcription regulation model is used:

𝐸
𝑖 (𝑡)

𝐸
𝑖 (0)
= ∏(

TFA
𝑗
(𝑡)

TFA
𝑗
(0)
)

CS𝑖𝑗
, (3)

where 𝐸
𝑖
(𝑡) is the expression level of gene 𝑖, TFA

𝑗
(𝑡), 𝑗 =

1, . . . , 𝐿, is the activity level of TF 𝑗, CS
𝑖𝑗
represents the control

strength of TF 𝑗 on gene 𝑖, and (𝑡) and (0) designate condition
𝑡 and reference condition 0. Log-linear transformation as a
standard tool is used to approximate this nonlinear system.
Thematrix form of (3) after taking the logarithm is shown as
follows:

[E] = [C] [P] + Γ. (4)

Here [E] (𝑁 × 𝑀) is a gene expression matrix of𝑁 genes in
𝑀 samples, matrix [C] (𝑁 × 𝐿) represents the connectivity
strength of each transcriptional factor (TF) 𝑗 on target gene
𝑖, matrix [P] (𝐿 × 𝑀) denotes TFAs on𝑀 samples, 𝑁 is the
number of genes, 𝐿 is the numbers of TFs,𝑀 is the number of
experiments, and Γ is the residual of the model. The element
𝑐
𝑖𝑗
in matrix [C] is set to 0 if there is no evidence to suggest

regulation of gene 𝑖 by TF
𝑗
; otherwise, it is set to a nonzero

number as an initial value.
As the decomposition of [E] into component matrices is

inherently nonunique, Liao et al. proved that if [C] and [P]
satisfy the uniqueness criteria, NCA can guarantee a unique
solution up to a scaling factor for any given residual Γ. This
criterion clearly links NCA results to the biological system
and makes interpretation straightforward.

To find the best solution of (4), the least-square algorithm
is performed:

min ‖[E] − [C] [P]‖2,

s.t. C ∈ Z
0
,

(5)

where Z
0
is the topology induced by the network con-

nectivity pattern. Then the actual estimation of [C] and
[P] is performed by a two-step alternating least-squares
algorithm which exploits the biconvexity properties of linear
decompositions. The least-square constrain is equivalent to a
maximum-likelihood procedure in the presence of Gaussian

noise with independent and identically distributed compo-
nent. For details see [10] by Liao et al. (2003).

To perform NCA, two inputs are needed. One is gene
expression profiles of TGs, matrix [E]. The other is matrix
[C
0
], a predefined regulatory influence matrix which pro-

vides the initial estimates of the influence of each TF
on its TGs. The original biologically qualitative regulatory
influence of TFs together with a set of known TGs is
obtained from the TRANSFAC public dataset of BIOBASE
(http://www.gene-regulation.com). There are 67375 regula-
tory interactions including 1972 TFs and 6561 TGs without
overlap in this dataset. To define key TFs and regulatory
network of AD, this TF-TG regulatory interaction dataset
is matched with the significant genes extracted by ICA and
differentially expressed in all incipient, moderate, and severe
AD gene datasets. 10 TFs with their TGs and in total 71
interactions are finally chosen for NCA model. Then, matrix
[E] is the gene expression of the TGs in different stages of AD
samples, and the initial value of matrix [C

0
] is set to 1 if there

is connectivity strength of TG
𝑖
by TF

𝑗
; otherwise, it is set to

0.

3. Results and Discussion

3.1. ICA Results. To evaluate ICA applied to AD DNA
gene expression data, we use the dataset of hippocampal
gene expression of control and AD samples from GEO
DataSets, series GSE1297, offered by Blalock et al. [27]. The
hippocampal specimens they used are obtained through the
Brain Bank of the Alzheimer’s Disease Research Center at the
University of Kentucky.The humanGene Chips (HG-U133A)
of Affymetrix and Microarray Suite 5 are used to analyze
the microarray data. The procedures for total RNA isolation,
labeling, and microarray are described in [27, 28]. There are
in total 9 control, 7 incipient, 8 moderate, and 7 severe AD
samples included in this dataset with 22283 gene expressions
in each sample.

According to Kaissi and his colleagues [3], significance
analysis ofmicroarrays (SAM) is better than fold change (FC)
and 𝑡-test in terms of sensitivity and specificity. In our study,
to reduce significant noises, SAMwas applied to all 31 samples
as a preprocessing method. Three groups were built for ICA
feature gene extraction, respectively: control-incipient AD
(C-I), control-moderate AD (C-M), and control-severe AD
(C-S) samples. After SAM preprocessing, around 4500–5000
genes were reserved for each group. FastICA, presented by
Hyvärinen and Oja [29], as the fastest ICA method, was
applied to 3 groups to discover significant genes between
control and different courses of AD, respectively.

In FastICA algorithm, nonlinear function 𝑔(𝑢) =
tanh(𝑎1 ∗ 𝑢), where 𝑎1 was a constant, was used as the
probability density distribution of the outputs 𝑢 during
the iteration. As the FastICA algorithm relied on random
initializations for its maximization and had the problem of
convergence to local optima, we iterated FastICA 50 times
to alleviate the instability of the slightly different results in
each iteration. For each IC in each time, significant genes
were not the same, and we selected top hundreds of genes as
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significant genes by calculating the number of times for 50
times. FastICA identified 245, 268, and 324 significant genes
for C-I, C-M, and C-S group, respectively. By integrating
the genes of these 3 different stages of AD and excluding
overlapping part, we finally extracted 740 genes as significant
genes for the whole AD dataset.

From the biological analysis of FastICA results we found
that the significant genes and their relevant pathways were
related in immunoreactions, metal protein, membrane pro-
tein, lipoprotein, neuropeptide, cytoskeleton protein, binding
protein, and ribosomal protein, playing prominent roles
in AD and connecting the activation patterns with AD
phenotypes. FastICA also found that many oncogenes and
phosphoric proteins were significantly lowly expressed in all
the 3 courses of AD.

Tobe comparedwith ICA results, herewe present our pre-
vious experimental results of nonnegative matrix factoriza-
tion (NMF) to analyze the efficiency of different biclustering
methods on AD gene expression data [30]. NMF is a matrix
factorization method, which assumes that the given gene
expression data are combined of positive metagenes with
meaningful local biological representation, and represents
the original data as a linear combination into reduced
sets based on nonnegative constrain. By performing NMF,
more than 1500 significant genes were extracted. Lots of
them were related to metal metabolism and inflammation;
for instance, many upregulated genes were found to be in
conjunction with zinc and calcium (Ca (2+)). Furthermore,
NMFalso identified the genes related to cell growth, cell cycle,
apoptosis, cellular fission, and cell repair. The shortcomings
of NMF method were that the number of significant genes
was hard to reduce, and the method focused on meaningful
biological processes due to the unapparent difference among
the metagenes.

Another matrix decomposition method and principle
component analysis (PCA) on the control and severe samples
of the same AD microarray dataset in our previous research
[31] were presented here. In the experiment, control samples
were modeled by PCA and represented each gene as a linear
combination of the dominant principal components (PCs).
Then the severe AD samples were projected on the PCA
model and the scores can be extracted.The 100most different
genes between the scores obtained by control data and severe
AD data were selected for further biological analysis. The
results showed that they contained genes in immunoreac-
tions, metal protein, membrane protein, lipoprotein, neu-
ropeptide, cytoskeleton protein, binding protein, ribosomal
protein, and phosphoric protein. The limitation of PCA
model is that the number of significant genes, which can be
extracted, is much fewer than that of ICA.

In summary, the molecular biological analysis of the sig-
nificant gene extraction confirmed the added value of ICA
over NMF and PCA methods in identifying known and
novel genes in biological processes. Our results indicate that
ICA enables researchers to extract potentially relevant gene
expression information from microarray gene expression
data and map closer to AD pathways. Moreover, all these 3
methods are based purely on statistical constraints and they

do not use any biological knowledge or any transcriptional
regulatory structures; therefore, their results cannot contain
biologically transcriptional regulatory networks.

3.2. NCA Results. The second stage in this study was
to find the activities of TFs and regulatory influence
on TGs for 3 courses of AD by NCA. We used the
biologically qualitative regulatory influence of TFs and
genes from the TRANSFAC public dataset of BIOBASE
(http://www.gene-regulation.com) to find the TF genes in
ICA results. 23 TFs with their TGs were found in the selected
significant genes. Then top 10 TFs, regulating TGs with the
number exceeding 13, were selected. These 10 TFs with 34
TGs without overlap and 71 interactions were provided for
NCA model. Table 1 shows these 10 TFs with their TGs,
chromosome locations, and theirpromoter ID, which will
add further information to discovering pathogenesis of AD.
Two inputs were prepared for NCA model: one was matrix
[E], which presented the gene expression profiles of TGs
provided by the original gene expression data of AD, and
the other was predefined initial matrix [C

0
] which reflected

the relative contribution of the TFs on TGs. Then NCA
was applied to control, incipient, moderate, and severe AD
datasets, respectively. Take the incipient AD samples as an
example, in which [E] was a 34 × 7 matrix which denoted
the microarray expression profiles of 34 TGs in 7 incipient
AD samples.Matrix [C

0
] (34× 10) represented the predefined

connectivity strength by the 71 interactions obtained above,
and the element 𝑐

𝑖𝑗
in matrix [C

0
] was set to 0 if there was

no connectivity strength of TG 𝑖 by TF
𝑗
; otherwise, it was

set to 1 as an initial value. Matrix [P] (10 × 7) contained the
TFAs of 10 TFs on 7 samples. After performing NCA, the TF
activities (matrix [P]) and the control strength (matrix [C])
were quantitatively obtained for different courses of AD.

Transcription of genes is controlled by a small number
of TFs whose activation via posttranslational modification or
ligand binding is the determining factor of gene expression.
In general, TFAs are not always correlated with their gene
expression profiles. Figure 1 gives the comparison of the esti-
mated TFAs and their gene expression profiles in microarray
gene expression profiles. Each subfigure shows the activities
and gene expression of TF in control, incipient, moderate,
and severe AD. We found that most of TFs represent a novel
approach to control cellular processes. Figure 1 showed that
the activities of COPA, POLR2E, and ZBTB20 were gradually
depressed, which meant that they were deactivated over the
deterioration of AD. E2F4, as well as ZNF207, was activated
within the deterioration of AD. Moreover, some TFAs were
neither monotonic decreasing nor increasing. For example,
ANAPC5, BUB3, and RNF38 were deactivated in incipient
AD, then greatly activated in moderate AD, and finally
decreased in severe AD. PTBP1 was activated in incipient
AD and repressed in moderate and severe AD gradually.
STIP1 was repressed in incipient and moderate AD and then
activated in severe AD. The molecular biological analysis of
the functions of TFs and TGs in ADwas discussed in the next
section.
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Figure 1: 10 transcription factor activities (TFAs) compared to their gene expression profiles. Blue solid lines with “I” and green solid
lines with triangle denote TFAs and their gene expression profiles, respectively, numbers 1∼4 on 𝑥-axis denote 4 stages of control, incipient,
moderate, and severe AD, and 𝑦-axis is the activities or gene expression values of TF.

3.3. Dynamic Regulatory Network of AD. Based on the
quantitative results of TFAs (matrix [P]), control strength
on the TGs (matrix [C]), and the original microarray gene
expression, our original goal of reconstructing the dynamic
regulatory networks for different courses of AD was done
in Figure 2. 10 TFs were noted with diamond in the middle
of each course, and target genes which were activated or
repressed by TFs were noted in circles with control strength
lines. According to Figure 2, we discovered many additional
insights in biological regulatory pathways of different courses
of AD. For example, ANAPC5, which was greatly activated in
the moderate AD, is a subunit of APC, and APC is essential
for cells to progress through anaphase, exit frommitosis, and
prevent a premature entry into S phase [32].

BUB3 was deactivated in incipient AD. It is a crucial
component in the formation of the mitotic spindle assembly
complex, which forms a complex with other important
proteins [33]. ZNF207, which is subunit of ZNF, was activated
in the whole AD. Zinc finger transcription factors (ZNF)
are transcription factors composed of a zinc finger binding
domain and any of a variety of transcription-factor effector
domains which exert theirmodulatory effect in the vicinity of
any sequence to which the protein domain binds modulating
gene expression directly at the DNA level to be engineered
to target virtually any gene [34]. Reference [35] showed that
ZBTB20 can be regulated by ZNF207. In our experiment, it
showed that some TFs were related to cell cycle and regulated
the genes of cell cycle obviously; for example, ANAPC5,
BUB3, and ZBTB20 regulated gene expression of CEP27. The
CEP family protein is the active component of centrosome
and plays a vital role in centriole biogenesis and cell cycle
progression control [36]. Furthermore, ZBTB20 could inhibit
I𝜅B𝛼 gene transcription, govern I𝜅B𝛼 protein expression, and
then promote NF-𝜅B activation [37].

G3BP1 mediated effect on proliferation in lung cancer
and breast cancer [38, 39]. Interestingly, in AD research,

our data showed G3BP1 was regulated by ANAPC5, COPA,
PTBP1, STIP1, and ZNF206. The result suggested that G3BP1
had biological significance in AD process. Our data also
exhibited that the stress-inducible protein-1 (STPI1) regulated
HSP90AB1 and HSPD1. STIP1 is an adaptor protein that
coordinates the functions of HSP70 and HSP90 in protein
folding. It is thought to assist in the transfer of proteins
fromHSP70 toHSP90 by binding bothHSP90 and substrate-
bound HSP70. STPI1 was upregulated in the ischemic brains
from humans and rodents. The increase in STPI1 expression
in vivo was not cell-type specific, as it was found in neurons,
glia, and endothelial cells [40]. STIP1 also stimulates ATPase
activity of HSP70 and inhibits ATPase, activity of HSP90,
which suggests that it regulates both the conformations and
ATPase cycles of these chaperones [41–43].

COPA coatomer is a cytosolic protein complex that binds
to dilysine motifs and reversibly associates with Golgi non-
clathrin-coated vesicles, which further mediates biosynthetic
protein transport from endoplasmic reticulum (ER) via the
Golgi up to the trans-Golgi network [44]. From Figure 1
we can see that the activities of COPA were progressively
inhibited in the whole course of AD.

TFII (GTF2I) was classified as a general transcription
factor when it was first identified. TFII-I (GTF2I) identified
and validated novel neuronal targets which affected the PI3 K
and TGF𝛽 signaling pathways in vivo, and it played a major
role in the neurodevelopmental features of Williams-Beuren
syndrome (WBS) [45]. TFII (GTF2I) was the main cause
of the neurocognitive profile [46]. Our results exhibited
that, in normal (control) stage, COPA, POLR2E, and STIP1
negatively regulated TFII (GTF2I). In other 3 stages, COPA,
POLR2E, and STIP1 positively regulated TFII (GTF2I). In
incipient AD, COPA and STIP1 positively regulated TFII
(GTF2I); in moderate AD, ANAPC5 and COPA positively
regulated TFII (GTF2I); in severe AD, only COPA positively
regulated TFII (GTF2I), but STIP1 and PTBP1 negatively
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Figure 2: Dynamic transcriptional regulatory network for AD. Transcriptional regulatory network of (a) control, (b) incipient, (c) moderate,
and (d) severe AD samples. Diamond in the middle denoted TFs with activity values in different colors, circles with different colors presented
the gene expression of target genes, and the lines between TFs and target genes with different colors noted the control strength.

regulated TFII (GTF2I). It hints that, in different courses of
AD, the TFs play a different role in regulating even the same
TGs.

From the original gene expression profiles we can see
that ZFP207, as a TF, was increased gradually in the process
of the deterioration of AD; by contrast, the gene expression
of BUB3, COPA, POLR2E, and ZBZB20 was decreased
gradually.The targetGeneNONO(p54nrb) protein is a RNA-
binding protein, and the gene that interacted with RNA could
be selectively modulated by phosphorylation during mitosis
[47]. As Table 1 showed, NONO (p54nrb) can be regulated
by many kinds of TFs, such as ZNF207, BUB3, PTBP1,
POLR2E, STIP1, and ANAPC5. Many of themwere related to
mitosis and cell growth. ZNF207 (BuGZ) is a gene associated
with spindle microtubules and it can regulate chromosome
alignment. ZNF207 (BuGZ) directly binds and stabilizes

Bub3 and uses its microtubule-binding domain to enhance
the loading of Bub3 to kinetochores that have assumed initial
interactions with microtubules in prometaphase [48].

Moreover, many target genes in our dynamic regula-
tory networks, such as CK1alphaLS, CLIP1, TUBB, ENO1,
CSNK1D, BUB3CSNK1A1, and SFPQ,were also related to cell
growth [49, 50]. Our data indicated that SFPQ was regulated
by ZNF207, BUB3, STIP1, and RNF38. SFPQ pathology may
progress together with the tau pathology in AD [51]. ENO1
was regulated by ZNF207, BUB3, PTBP1, E2F4, POLR2E, and
STIP1. The gene ENO1 was related to cell growth and migra-
tion [52]. Furthermore, as a neuronal expressed tubulin gene,
the expression profiles of TUBB which is associated with
a spectrum of disorders affecting cerebral cortex formation
were decreased gradually in deteriorative processes of AD
[50]. Our dynamic regulatory network showed thatmanyTFs
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and TGs were closely related to the mitosis and cell growth.
The results illustrated that regulating the genes related to
mitosis and cell growth would become an important way for
AD treatment.

Recently, some similar studies on AD gene expression
data have been proposed and obtained some meaningful
results. For example, Panigrahi and Singh applied an integra-
tive systems biology approach to AD pathway and regulatory
network analysis [9]. They identified 26 novel genes and
variants associated with AD and ageing and some coexpres-
sion networks. They grouped TFs according to the TFBS
classes into 10 groups and illustrated that they were related
to immune system, DNA binding domain, central nervous
system, and so on. Furthermore, they also found some novel
information of network motifs and unique miRNA targets
as a regulatory process for AD. By contrast, our studies
focused on finding the dynamic responses of genes, signaling
proteins, and activities of TFs on TGs in the progressively
degenerative progress of AD, which would represent a deep
understanding of the underlying transcription regulatory
process for pathogenesis of AD.

The characteristic pathological change in the deterio-
rative process of AD is that the cerebral cortex begins to
shrink as more and more neurons stop working and die. This
phenomenon with the growth of neurons to repair and cell
growth has close relation to the environment. In our results,
some causes of AD were discovered by the comprehensively
biological analysis of the dynamical changes of TFs on TGs,
which were related to mitosis, cell growth, immune response,
and inflammation. And our future studywill also focus on the
mitosis, cell growth, immune response, and inflammation of
AD to find its real pathogenesis.

4. Conclusions

Microarray technologies enable the simultaneous measure-
ment of all mRNA transcripts and therefore make it possible
to reconstruct the gene regulatory network. The traditional
models for gene network analysis such as ICA did not use
any transcription regulatory information and were purely
based on mathematic and statistical properties of the reg-
ulatory signals; thus they cannot correctly reconstruct the
regulatory network. In this study, by combining biochemical
information, that is, the connective strength between TFs
and their regulated genes with gene expression profiles, NCA
was utilized to deduce the dynamic regulatory network of
AD. ICA was firstly applied to identifying significant genes
from various biological processes of different courses of AD.
Then NCA was applied to inferring regulatory actions of TF
activities from gene microarray profiles and partial TF-TG
connectivity information.

From the molecular biological analysis of the recon-
structed dynamic regulatory network of AD, we found some
transcriptional regulatory pattern in more biological insight
for AD. We found that some TFs were activated during the
whole AD deterioration or activated in the beginning of AD,
such as ANAPC5, E2F4, PTBP, and ZNF207, and were proved
to play an important role in centriole biogenesis and cell cycle

progression control. Another gene, GTF2I, which was impor-
tant in neurodevelopment and neurocognition, was found
dynamically regulated from normal to AD stage. Some TFs,
such as COPA, PTBP1 and STIP1, were inhibited in AD. Gene
G3BP1 coregulated by these TFs was found low expressed
in binding protein in AD. However it always proliferated in
cancers. It hints that some biological relationship or signal
regulatory pathway should be coordinated between AD and
cancer. In general, the dynamically characteristic analysis of
TFs on TGs of deteriorative courses of AD helps us focus the
future study on mitosis, cell growth, immune response, and
inflammatory reaction for the pathogenesis of AD.
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