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1  | INTRODUC TION

In a recent study, Malik and Lugaci1 described the research and de-
velopment of 5- aminolevulinic acid (5- ALA) as a new- generation 
photosensitizer with high tumor specificity. The use of 5- ALA– based 
photodynamic technology has since been examined in a number 
of studies worldwide, such as in photodynamic diagnosis (PDD), in 
which it is used to detect tumors by illuminating the lesion with a 
specific wavelength of light to produce fluorescence after admin-
istration of 5- ALA; photodynamic therapy (PDT), in which it is used 
to induce cell death; and in photodynamic screening (PDS), in which 
porphyrin excretion in the blood and urine is used as a tumor bio-
marker. Thus, a number of applications using 5- ALA are expected to 
emerge in the clinical setting.

1.1 | 5- Aminolevulinic acid (5- ALA) as a 
photosensitizer

5- ALA is a natural amino acid produced in plants and animals, and it 
is a common precursor of hemoglobin and chlorophyll (Figures 1, 2). 
Endogenous 5- ALA is generated from glycine and succinyl CoA in the 
mitochondria by an enzymatic reaction induced by the 5- ALA synthetic 
enzyme, whereas exogenous 5- ALA may also be introduced into cells 
by its administration. In normal cells, both endogenous and exogenous 
5- ALA produce a precursor through the same biosynthetic and meta-
bolic pathways in the cytoplasm, and the precursor is transported to 
the mitochondria via the ATP- binding cassette (ABC) subfamily B mem-
ber 6 (ABCB6) to produce protoporphyrin IX (PpIX). Subsequently, fer-
rochelatase catalyzes the insertion of ferrous iron into PpIX to form 
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heme and bilirubin (Figure 1). Heme is an important protein that is in-
corporated into the electron transport chain, which regulates the pro-
duction of adenosine triphosphate (ATP) in aerobic metabolism.

Rather than using the process of oxidative phosphorylation in the 
mitochondria via the tricarboxylic acid (TCA) cycle and the electron 
transport chain to produce ATP, tumor cells rely on a more inefficient 
glucose metabolism via oxygen- independent glycolysis to produce 
ATP irrespective of whether the environment is anaerobic or aer-
obic (Figure 2). This phenomenon, known as the Warburg effect, is 
a basic biological property of all cancers and was first described by 
Otto Warburg, who subsequently was awarded the Nobel Prize in 
Physiology or Medicine in 1931.2

In various cancer types including bladder cancer, ferrochelatase 
is inactive, as electrons needed to reduce ferric ion to ferrous ion 

are lacking due to downregulation of the TCA cycle. This leads to 
a lack of heme production and downregulation of PpIX catabolism. 
Furthermore, ABC superfamily G member 2 (ABCG2), used to ex-
crete PpIX, is also inactivated in tumor cells, resulting in the down-
regulation of PpIX excretion from the cells.3,4 On the other hand, 
PpIX production is promoted in tumor cells due to the activation of 
the 5- ALA synthetic enzyme and 5- ALA influx transporter known 
as peptide transporter 1 (PEPT1). As a result, PpIX accumulates in 
excess in the mitochondria of tumor cells.3,4 In urothelial cancer 
(UC), excessive PpIX accumulation in tumor cells was shown to be 
approximately 17 times higher than in the normal epithelium.5- 8 
PpIX, which is synthesized from 5- ALA, is a photoactive com-
pound and can be excited at a particular wavelength to emit light. 
Thus, it can be used in the diagnosis, treatment, and screening of 

F I G U R E  1   The porphyrin biosynthesis pathway in the normal cell. In normal cells, endogenous 5- aminolevulinic acid (5- ALA) is generated 
from glycine and succinyl CoA in the mitochondria. It is converted into several precursors in the cytoplasm, and protoporphyrin IX (PpIX) 
is synthesized in the mitochondria. Subsequently, ferrochelatase catalyzes the insertion of ferrous iron into PpIX to form heme and 
bilirubin. Heme is an important protein that is incorporated into the electron transport chain, which regulates the production of adenosine 
triphosphate (ATP) in aerobic metabolism

F I G U R E  2   The porphyrin biosynthesis 
pathway in the cancer cell. In tumor cells, 
ferrochelatase is inactive, and heme 
production from protoporphyrin IX (PpIX) 
is suppressed. Furthermore, the activity 
of ABCG2 is downregulated, and the 
excretion of PpIX is suppressed. On the 
other hand, PpIX production is promoted 
in tumor cells due to the activation of 
the porphyrin synthetic enzyme and 
peptide transporter 1 (PEPT1). As a 
result, PpIX accumulates in excess in the 
mitochondria of tumor cells. The basic 
biological property of tumor cells to rely 
on anaerobic metabolism is common 
across all cancer types and is known as 
the Warburg effect
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cancer, and several applications are expected to emerge in clinical 
settings.9

1.2 | Photodynamic diagnosis (PDD)

PpIX, which is synthesized from 5- ALA, is photoactive (Figure 3). 
When excited by visible blue light in the range of 375- 445 nm, PpIX 
that has specifically accumulated in excess in the mitochondria of 
tumor cells emits red fluorescent light in the range of 600- 740 nm. 
By using 5- ALA as a photosensitizer to produce red fluorescence in 
tumor cells, tumor cells can be detected by fluorescence navigation 
in a diagnostic procedure known as ALA- PDD (Figure 3).

ALA- PDD for bladder cancer is superior to conventional endo-
scopic diagnosis performed under white light for the detection of 
flat lesions such as microcarcinoma and carcinoma in situ (CIS), as 
well as flat lesions that connect to raised lesions. Kriegmair et al6 
first reported the clinical evidence for PDD in 1994, whereby 5- ALA 
was administered in the bladder. Subsequently, many clinical studies 
were conducted in Europe and the United States that demonstrated 
the safety and utility of the procedure.10- 12 As 5- ALA is a soluble 
compound, a fat- soluble ester compound hexaminolevulinate hy-
drochloride (HAL) was developed to further improve the accumula-
tion of PpIX in tumor cells. HAL was approved in Europe as Hexvix® 
(PHOTOCURE ASA) in 2005,13 and in the United States as Cysview® 
(PHOTOCURE ASA) in 2010,14 and it has been used in clinical set-
tings. Notably, HAL has limited use because it is highly cytotoxic and 
cannot be administered systemically.15 Japan was the first to approve 
a 5- ALA diagnostic agent for oral administration. The agent, called 
Alaglio®, was approved in 2017 for intraoperative visualization of 
non– muscle- invasive bladder cancer (NMIBC) during transurethral 
resection of bladder tumors (TURBT).16- 18 Currently, 3 years after 
its approval, Alaglio® has been used in approximately 13 000 cases 
across approximately 370 institutions. The ALA- PDD procedure for 
bladder cancer was included in the Clinical Practice Guidelines for 

Bladder Cancer in Japan, which was revised in 2019.19 In response 
to clinical question 1 (CQ1): “Is tumor visualization technology (PDD, 
narrow- band imaging [NBI]) recommended for diagnosing bladder 
cancer?,” the guidelines indicate that the “use of tumor visualization 
technology in the diagnosis of bladder cancer is recommended be-
cause of improved cancer detection sensitivity (PDD: strength of 
recommendation 1, certainty of evidence A; NBI: strength of rec-
ommendation 1, certainty of evidence B).” Furthermore, in response 
to CQ4: “Is PDD or NBI recommended when treating NMIBC?,” the 
guidelines indicate that the use of PDD is recommended because it 
lowers the recurrence rate of bladder cancer (strength of recommen-
dation 1, certainty of evidence A). In comparison, whereas NBI im-
proves the cancer detection rate, it is unclear whether it lowers the 
recurrence rate of bladder cancer (strength of recommendation 2, 
certainty of evidence B). Guidelines in Europe and the United States 
strongly recommend the use of ALA- PDD, stating that it markedly 
improves the diagnostic accuracy, especially the detection rate of 
bladder CIS, and that PDD- TURBT may also improve the relapse- free 
survival rate.20,21

There are a large number of reports of meta- analyses and sys-
tematic reviews of ALA- PDD for bladder cancer. These reports 
generally demonstrated that, whereas ALA- PDD has superior de-
tection sensitivity of over 90%, it has relatively poor specificity of 
57%- 79%, resulting in a high rate of false- positive diagnoses.22,23 
ALA- PDD also increased the rate of detection, with additional 
CIS detection rates of 25%- 40.8% per lesion and 19% per patient, 
showing its effectiveness.24- 27 In terms of the prognosis, ALA- 
PDD– guided endoscopic resection was shown to be superior to 
conventional endoscopic resection under white light in reducing 
residual tumors after the procedure22,24,25,28 and in improving the 
relapse- free survival rate.22,24- 27,29- 31 However, there is no con-
sensus as to whether ALA- PDD improved the progression- free 
survival rate.22,25,29,31,32

In addition to the indications related to the bladder, ALA- PDD 
has also been shown to be effective in the diagnosis of ureteropelvic 

F I G U R E  3   The mechanism of 
photodynamic diagnosis (PDD). 
Protoporphyrin IX (PpIX) is synthesized 
from 5- aminolevulinic acid (5- ALA) 
and specifically accumulates in excess 
in the mitochondria of tumor cells. 
It can be excited by blue visible light 
(375- 445 nm) to emit red fluorescence 
(600- 740 nm). 5- ALA can therefore be 
used as a photosensitizer to produce red 
fluorescence in tumor cells. The diagnostic 
procedure based on fluorescence 
navigation using 5- ALA is called ALA- PDD
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UC in recent studies. An investigator- initiated clinical study con-
ducted in Japan demonstrated that ALA- PDD was as effective as in 
the bladder,33 and other studies are being conducted to examine the 
use of ALA- PDD in other types of cancers.

1.3 | Photodynamic therapy (PDT)

PpIX that has specifically accumulated in excess in the mitochon-
dria of tumor cells can be excited at low excitation wavelengths 
in the red (600- 740 nm) and green (450- 580 nm) visible ranges 
(Figure 4). Once the light is absorbed, PpIX returns from the ex-
cited state to the ground state while releasing energy. This results 
in the production of cytotoxic reactive oxygen species (ROS), such 
as hydroxyl radicals, singlet oxygen, hydrogen peroxide, and super-
oxide, in tumor cells. ROS subsequently cause damage to the mito-
chondria and induce apoptosis of tumor cells, leading to cell death. 
This mechanism underlies the effect of ALA- PDT (Figure 4).9 Cells 
undergoing apoptosis are characterized by condensation and bleb-
bing of cytoplasm, as well as nuclear fragmentation. Apoptotic cells 
are phagocytosed rapidly by macrophages and neutrophils while 
retaining their contents. Thus, unlike in necrosis, where an inflam-
matory response is induced due to leakage of cell contents, apop-
tosis causes little harm to surrounding cells and tissues. In other 
words, as ALA- PDT primarily elicits its antitumor effect through 
apoptosis, there are likely few side effects when used in the clini-
cal setting. Furthermore, ALA- PDT is a painless procedure because 
the antitumor effect is induced by low- energy excitation. Thus, pa-
tients do not need to be anesthetized, and the procedure can be 
performed repeatedly, unlike radiation therapy. Furthermore, like 
ALA- PDD, ALA- PDT is cancer specific because it targets PpIX that 
has specifically accumulated in excess in tumor cells.9 As such, it 
has already been approved and is in clinical use in Europe for the 
treatment of actinic keratosis and skin cancer.34 In vitro and in vivo 
preclinical studies have also demonstrated that ALA- PDT is highly 
effective against bladder and prostate cancer.35,36

A clinical study of PDT for bladder cancer was first reported in 
1976 by Kelly et al, who used a hematoporphyrin derivative and a 
mercury arc lamp.37 In Japan, Hisazumi et al reported the use of 
PDT with a hematoporphyrin derivative and argon dye laser in 1983 
to treat 46 tumors in nine NMIBC patients.38 However, PDT with 
a hematoporphyrin derivative did not become prevalent due to the 
high incidence of adverse events. In 1996, Kriegmair et al39 first re-
ported the use of 5- ALA in PDT for the treatment of bladder cancer, 
leading to subsequent clinical studies.40- 45 These trials were per-
formed primarily in patients with treatment- resistant bladder cancer 
and bladder CIS, and excitation wavelengths in the green (514 nm), 
red (630- 635 nm), and white (380- 700 nm) ranges were used be-
cause they were delivered at a low heat density of 15- 100 J/cm2. 
The studies demonstrated that ALA- PDT was effective in achieving 
early response rates of 60%- 100% within 3- 4 months of treatment, 
and response rates of 30%- 50% within 1.5- 3 years of treatment.40- 45 
Furthermore, a phase I clinical study was conducted in 2013 in 

which the 5- ALA derivative HAL was used as a photosensitizer to 
perform PDT with white light (380- 700 nm) as postoperative adju-
vant therapy for treatment- resistant NMIBC after TURBT.46 In that 
trial, 17 patients received PDT three times with 1.5 months between 
treatment cycles, and the treatment was successful in eliminating 
lesions in nine patients (52.9%) at 6 months, four patients (23.5%) 
at 9 months, and two patients (11.8%) at 21 months, showing good 
outcomes, as well as the safety of the procedure. Although ALA- PDT 
is yet to be approved for use as a treatment for bladder cancer, it is 
a highly accurate and minimally invasive procedure that is widely ap-
plicable and may replace Bacillus Calmette- Guerin (BCG) intravesical 
therapy for bladder CIS.

In addition to 5- ALA, HAL, and a hematoporphyrin derivative 
Photofrin® (porfimer sodium), various photosensitizers have been 
examined for use in PDT for bladder cancer. They include Fotolon® 
(chlorin e6), which is nonaromatic, unlike porphyrin, as well as a chlo-
rine derivative, Radachlorin®.47

1.4 | Photodynamic screening (PDS)

Conventionally, urine cytology is frequently performed to screen for 
bladder cancer (Figure 5). However, it is limited in terms of diagnos-
tic accuracy, particularly its low sensitivity.48 More recently, a multi-
target fluorescence in situ hybridization assay called the UroVysion 
assay was shown to be superior to urine cytology in terms of its 
sensitivity and to be effective in predicting recurrence of bladder 
cancer after TURBT. As such, the assay was approved for insurance 
coverage in 2019 as a diagnostic aid for possible recurrence of blad-
der cancer and has been used in clinical practice.49,50 However, the 
assay alone is insufficient in the detection of bladder cancer and as a 
follow- up procedure, and cystoscopy remains necessary.51

In this context, 5- ALA– based cancer screening methods are 
being developed. Specifically, such methods aim to measure the 
amount of porphyrin excreted in urine and blood after oral adminis-
tration of 5- ALA. As previously highlighted, in various cancer types 
including bladder cancer, exogenous 5- ALA that has been adminis-
tered is metabolized and specifically accumulates in excess as PpIX 
in the mitochondria of tumor cells due to the abnormal activities 
of various transporters and enzymes.1 Excessive accumulation of 
PpIX leads to saturation of porphyrin precursors of PpIX including 
uroporphyrin (UP) and coproporphyrin (CP). Furthermore, due to 
tumor- specific upregulation of transporters used to excrete these 
precursors of PpIX, it is hypothesized that the precursors of PpIX 
are excreted excessively in the urine and blood. In ALA- PDS, cancer 
screening is performed based on the quantification of porphyrin ex-
cretion following oral administration of 5- ALA (Figure 5).52

Studies performed in animal models of hepatocellular carci-
noma used high- performance liquid chromatography to demon-
strate that the administration of 5- ALA markedly increased the 
amount of PpIX, UP, and CP in blood53 and urine.54 Thus, the 
amount of porphyrin in blood and urine after the oral administration 
of 5- ALA may be a highly sensitive and stable biomarker of cancer, 
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irrespective of the type and nature of cancer. In fact, the proce-
dure has been shown to be effective for bladder, colorectal, and 
pancreatic cancers in clinical studies.55- 57 In particular, in a study in 
which 1.0 g of 5- ALA was given orally to 66 patients with bladder 
cancer and 20 healthy volunteers, the concentration of porphyrin 
in urine was found to be significantly higher in bladder cancer pa-
tients than in healthy volunteers.55 The study also demonstrated 
that urine UPI and CPI had high sensitivity (UPI: 100%, CPI: 100%) 
and specificity (UPI: 96.4%, CPI: 91.4%) for bladder cancer 8 hours 

after the administration of 5- ALA. Thus, it may be widely applica-
ble as a novel tumor marker in clinical settings.

2  | CONCLUSION

ALA- PDD, ALA- PDT, and ALA- PDS are photodynamic procedures 
that use 5- ALA. These techniques are based on the property known 
as the Warburg effect, which is a basic biological property that is 

F I G U R E  4   The mechanism of photodynamic therapy (PDT). Protoporphyrin IX (PpIX) is synthesized from 5- aminolevulinic acid (5- 
ALA) and specifically accumulates in excess in the mitochondria of tumor cells. It can be excited at low excitation wavelengths in the red 
(600- 740 nm) and green (450- 580 nm) visible ranges. Once the light is absorbed, PpIX returns from the excited state to the ground state 
while releasing energy. This results in the production of cytotoxic reactive oxygen species (ROS), such as hydroxyl radicals, singlet oxygen, 
hydrogen peroxide, and superoxide, in tumor cells. ROS subsequently cause damage to the mitochondria and induce apoptosis of tumor cells, 
leading to cell death. This mechanism is the basis of ALA- PDT

F I G U R E  5   The mechanism of 
photodynamic screening (PDS). 
Protoporphyrin IX (PpIX) is synthesized 
from 5- aminolevulinic acid (5- ALA) and 
specifically accumulates in excess in 
the mitochondria of tumor cells. The 
accumulation of PpIX leads to saturation 
of porphyrin precursors including 
uroporphyrin (UP) and coproporphyrin 
(CP). Furthermore, due to tumor- specific 
upregulation of transporters used to 
excrete these precursors of PpIX, it 
is hypothesized that the amounts of 
porphyrin precursors of PpIX excreted 
in excess in the urine and blood are 
increased in cancer patients. ALA- PDS 
is a screening method based on the 
quantification of porphyrin excretion 
following oral administration of 5- ALA
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common across all cancers. Thus, in addition to urological cancers 
such as bladder cancer, the techniques are expected to be used as 
a novel therapeutic strategy applicable to a large number of cancer 
types and be beneficial for patients with various cancers.
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