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ABSTRACT

The tumor microenvironment (TME) is formed by several immune cells. Notably, tumor-
associated macrophages (TAMs) are existed in the TME that induce angiogenesis, metastasis, 
and proliferation of cancer cells. Recently, a point-mutated variant of IL-32θ was discovered 
in breast cancer tissues, which suppressed migration and proliferation through intracellular 
pathways. Although the relationship between cancer and IL-32 has been previously studied, 
the effects of IL-32θ on TAMs remain elusive. Recombinant human IL-32θ (rhIL-32θ) was 
generated using an Escherichia coli expression system. To induce M0 macrophage polarization, 
THP-1 cells were stimulated with PMA. After PMA treatment, the cells were cultured with IL-4 
and IL-13, or rhIL-32θ. The mRNA level of M1 macrophage markers (IL-1β, TNFα, inducible 
nitric oxide synthase) were increased by rhIL-32θ in M0 macrophages. On the other hand, 
the M2 macrophage markers (CCL17, CCL22, TGFβ, CD206) were decreased by rhIL-32θ in 
M2 macrophages. rhIL-32θ induced nuclear translocation of the NF-κB via regulation of the 
MAPK (p38) pathway. In conclusion, point-mutated rhIL-32θ induced the polarization to M1-
like macrophages through the MAPK (p38) and NF-κB (p65/p50) pathways.

Keywords: IL-32θ; Inflammation; Tumor microenvironment; Tumor-associated macrophages; 
Immunotherapy

INTRODUCTION

Despite the extensive amount of studies conducted, cancer remains a serious disease and the 
leading cause of death in every country worldwide (1). Furthermore, during the coronavirus 
disease 2019 pandemic, cancer continued the second cause of death in the United States 
in 2020 (2). Therefore, continuing to develop innovative cancer treatments is essential. 
Recently, many researchers have focused on targeting the tumor microenvironment (TME) 
as a potential approach for cancer immunotherapy. The TME consists of several cell types, 
including endothelial cells, fibroblasts, immune cells, and soluble components, such as 
cytokines, chemokines, and growth factors (3). Tumor-associated macrophages (TAMs), 
the most numerous cells in the TME, have been shown to a significant role in inducing 
angiogenesis, metastasis, proliferation, and drug resistance in cancer (4). Additionally, TAMs 
have been found to inhibit cancer immunotherapy by directly or indirectly inactivating CD8+ 
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T cells (5-7). Given the impact of TAMs on cancer progression, many studies have focused on 
developing therapies targeting these cells for cancer treatment.

IL-32 was first identified as a cytokine in 2005, since then 9 isoforms have been detected 
(8-10). Numerous studies have investigated its molecular structure and roles in the immune 
system and cancer biology (11-13). IL-32θ, one of the isoforms of IL-32, has been the focus 
of research due to its effects on human monocyte cell lines, as well as its potential anti-
cancer effects in breast cancer and colon cancer cell lines (14-16). IL-32θ inhibits migration 
and invasion in breast cancer via binding to PKCδ (14). Additionally, in colon cancer, IL-32θ 
represses cancer stemness and epithelial-mesenchymal transition through inhibiting STAT3 
pathway (17). Recently, a point mutation (A94V) was identified in IL-32θ in both cancerous 
and noncancerous human breast tissues (18). This point mutation inhibited the expression of 
inflammatory molecules by suppressing the nuclear translocation of NF-κB into the nucleus 
(18). Moreover, it inhibited tumor migration and proliferation in breast cancer cell lines and 
exerted anti-atherosclerotic effects on human endothelial cells (18,19). However, the previous 
studies investigating the effects of IL-32θ on human monocytes and cancer cell lines have 
only considered the intracellular signaling pathways using overexpressed cell lines. In this 
study, we investigated the regulatory effects of recombinant human IL-32θ (rhIL-32θ) on 
macrophage polarization in a human monocytic THP-1 cell line.

MATERIALS AND METHODS

Cell culture
The human monocytic cell line THP-1 (KCLB-40202; Korean Cell Line Bank, Seoul, 
Korea) was cultured in RPMI-1640 medium (HyClone, Logan, UT, USA). The medium was 
supplemented with 10% heat-inactivated fetal bovine serum (Gibco BRL Life Technologies, 
Rockville, MD, USA), 100 units/ml penicillin, and 100 μg/ml streptomycin at 37°C/5% CO2.

Construction of rhIL-32θ expression vector
Construction of the rhIL-32θ expression vector has been previously described (19). Briefly, the 
rhIL-32θ sequence was synthesized by Bioneer (Daejeon, Korea) using HT-oligo™ synthesizer 
(Bioneer). The product was digested with NdeI and AgeI and ligated to a TEVSH vector 
(Addgene, Watertown, MA, USA) that had been digested with NdeI and AgeI. The mixtures 
were used to transform DH5α competent cells. Screening of transformant was completed 
with ampicillin (100 μg/ml). The endotoxin contamination level of rhIL-32θ was confirmed 
using endotoxin removal reagent polymyxin B (Supplementary Fig. 1).

Production and purification of His-tagged rhIL-32θ
Production and purification of the rhIL-32θ has been previously described (19). Briefly, 
Escherichia coli Rosetta transformed by the rhIL-32θ expressing vector was cultured in 
LB broth until an 0.5–0.6 value of OD600. Following the addition of isopropyl β-D-1-
thiogalactopyranoside to a final concentration of 0.5 mM, the bacteria were incubated for 
16 h at 16°C with rotation. The purification of rhIL-32θ was performed by Ni-NTA charged 
column (Thermo Fisher Scientific, Waltham, MA, USA), followed by CNBr Sepharose 4B 
coupled with KU32-52, an anti-IL-32 monoclonal antibody made as previously described (20). 
For in vitro experiments, purified rhIL-32θ was dialyzed by phosphate-buffered saline (pH 7.4) 
at 4°C and sterilized by filtration through 0.22 μm filters (Tisch Scientific, Miami, OH, USA).
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Polarization of macrophage
For polarization of macrophage, THP-1 cells were seeded into 60 pi plates (3×105 cells/well) 
and stimulated with 100 nM PMA (Millipore Sigma, Burlington, MA, USA) for 72 h; after 24 h 
of the PMA treatment, the cells were treated with IL-4 (20 ng/ml) (PeproTech, Philadelphia, 
PA, USA) and IL-13 (20 ng/ml) (PeproTech) or rhIL-32θ (50 ng/ml) for another 48 h. The dose 
and time-dependent effects of rhIL-32θ on M1 macrophage related factors were represented 
in Supplementary Fig. 2.

Reverse transcription quantitative PCR (RT-qPCR)
The mRNA levels in the cells were measured using RT‐qPCR. RT‐qPCR was conducted with a 
relative quantification protocol using the BioFact™ 2X Real-time PCR Kit (BioFact, Daejeon, 
Korea) and Rotor-Gene 6000 series software 1.7 (Qiagen, Venlo, The Netherlands). The 
sequences of primer were listed in the Supplementary Table 1. The relative levels of mRNA 
were calculated using the ΔΔCt method.

Western blotting
The cell lysates were prepared in radioimmunoprecipitation assay buffer (iNtRON 
Biotechnology, Seongnam, Korea) containing 1× complete protease inhibitor cocktail and 
1× PhosSTOP (Roche Diagnostics, Mannheim, Germany). To obtain nuclear or cytoplasmic 
proteins, the cells were fractionated using the NE-PER kit (Thermo Fisher Scientific), 
following the manufacturer’s instructions. Samples were divided to sodium dodecyl sulfate-
polyacrylamide gel electrophoresis and subsequently transferred to 0.2 μm polyvinylidene 
difluoride membranes (Amersham Biosciences, Amersham, UK). Membranes were 
hybridized with the appropriate primary antibodies at 4°C overnight. The antibodies used in 
this study are listed in the Supplementary Table 2. Western blotting was performed using a 
chemiluminescence detection kit (Advanstar, Cleveland, OH, USA) and protein bands were 
captured using an EZ‐capture MG protein imaging system (ATTO, Tokyo, Japan). The bands 
on the western blot were quantified using ImageJ open-source software (National Institutes 
of Health, Bethesda, MD, USA).

ELISA
For the measured of secreted protein, THP-1 (1×105 cells/well) cells were seeded into 24-
well plates and treated under each condition. Cell culture supernatants were collected and 
analyzed using the ELISA kits for human IL-1β, and TNFα (R&D Systems, Minneapolis, MN, 
USA) according to the manufacturer’s instructions.

Re-polarization of macrophage
For macrophage re-polarization, THP-1 cells were seeded into 60 pi plates (3×105 cells/well) 
and stimulated with 100 nM PMA (Millipore Sigma) for 72 h; after 24 h of PMA treatment, the 
cells were treated with IL-4 (20 ng/ml) and IL-13 (20 ng/ml) for another 48 h. Subsequently, 
the culture medium was replenished with or without rhIL-32θ (100 ng/ml) for another 72 h.

Statistical analysis
One-way ANOVA with Tukey’s honest test was used to compare groups in the in vitro 
experiments. Statistical analyses were performed using GraphPad Prism software version 
9.0 (GraphPad Software, Boston, MA, USA). Results are presented as the mean ± SD of 3 
experiments. All p-values were 2-sided, and p<0.05, p<0.01, p<0.001 and p<0.0001.
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RESULTS

rhIL-32θ induced M1 macrophage markers in M0 macrophage derived from 
THP-1 cells
To evaluate the effect of rhIL-32θ on M0 macrophages, we induced the polarization of M0 
macrophages by treating THP-1 monocytes with PMA (100 nM) for 24 h. PMA-induced M0 
macrophages were treated with IL-4/IL-13 (20 ng/ml) or rhIL-32θ (50 ng/ml) for 48 h (Fig. 1A).  
Macrophages treated with rhIL-32θ exhibited different morphological changes than M2 
macrophages (Fig. 1B). Furthermore, the mRNA levels of M1 macrophage marker molecules 
including IL-1β, TNFα, and inducible nitric oxide synthase (iNOS), were predominantly 
expressed in rhIL-32θ-treated M0 macrophages. The mRNA levels of M2 macrophage-related 
molecules including CCL22, CCL17, TGFβ, and CD206 were increased in M2 macrophages. 
However, they were not altered by rhIL-32θ (Fig. 1C). Western blot and ELISA were performed to 
confirm the expression of IL-1β, TNFα, and iNOS (Fig. 2). These results revealed that treatment 
with rhIL-32θ significantly increased the expression of iNOS, IL-1β and TNFα.

rhIL-32θ promoted the phosphorylation of p38 MAPK and nuclear 
translocation of NF-κB
To investigate the effect of rhIL-32θ on MAPK phosphorylation in M0 macrophages, we 
examined MAPK phosphorylation levels in M0, M2, and rhIL-32θ-treated macrophages. By 
comparing phosphorylation levels under different conditions, we designed to determine the 
specific role of rhIL-32θ on MAPK signaling in M0 macrophages. In M2 macrophages, we 
observed a slight decrease in the phosphorylation of p38 MAPK, JNK, and ERK; conversely, 
protein kinase B (AKT) showed increased phosphorylation (Fig. 3A). In contrast, only the 
phosphorylation level of p38 MAPK was significantly enhanced in rhIL-32θ-treated macrophages 
(Fig. 3A). Furthermore, western blot analysis revealed that rhIL-32θ induced higher nuclear 
translocation of the NF-κB (p65/p50) than both M0 and M2 macrophages (Fig. 3B).

rhIL-32θ induced re-polarization of M2 macrophages into M1-like macrophages
In a previous experiment (Fig. 1), we found that rhIL-32θ induced the polarization of M0 
into M1-like macrophages. Additionally, we confirmed whether rhIL-32θ could induce re-
polarization into M1-like macrophages that were initially polarized into M2 macrophages by 
IL-4/IL-13. After inducing M2 macrophages using the previously described method, we treated 
them with rhIL-32θ (100 ng/ml) for 72 h (Fig. 4A). The effect of rhIL-32θ on M2 macrophages 
was investigated using RT-qPCR; this analysis revealed that rhIL-32θ treatment upregulated the 
expression of M1 macrophage markers, including IL-1β, TNFα, and iNOS (Fig. 4B). Conversely, 
M2 macrophage markers such as CD206, TGFβ, CCL17, and CCL22 were significantly 
downregulated (Fig. 4B). The protein expression levels of IL-1β, TNFα and iNOS were 
determined by western blotting or ELISA. The western blot confirmed that iNOS expression 
level increased after the rhIL-32θ treatment (Fig. 5A). Additionally, ELISA revealed that the 
levels of secreted IL-1β and TNFα were also increased by the rhIL-32θ treatment (Fig. 5B).

rhIL-32θ induced re-polarizing M2 into M1-like macrophages by increasing the 
phosphorylation level of p38 MAPK and nuclear translocation of NF-kB
We confirmed whether rhIL-32θ would induce the re-polarization of M2 to M1 macrophages by 
examining the phosphorylated MAPK level and nuclear translocation of NF-κB as shown in Fig. 3. 
The pAKT level in M2 macrophages was decreased, whereas p-p38 MAPK level was increased by 
the rhIL-32θ treatment (Fig. 6A). In addition, the nuclear translocation level of NF-κB (p65/p50) 
was significantly enhanced by the rhIL-32θ treatment in M2 macrophages (Fig. 6B).
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DISCUSSION

Macrophages eliminate neoplasms in the early stages of cancer. However, as cancer 
progresses, macrophages transform into TAMs owing to the formation of a TME (21). 
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Figure 1. Effect of rhIL-32θ on the mRNA expression of macrophage polarization. (A) Schematic of the in vitro 
model using recombinant IL-4, IL-13, and IL-32θ in PMA-treated human monocytic THP-1 cell lines. (B) Cellular 
morphology of macrophage in polarized human monocytic THP-1 cells. Scale bar, 50 μm. (C) The effects of rhIL-
32θ on M1 macrophage related genes (iNOS, IL-1β and TNFα) and M2 macrophage related genes (CD206, TGFβ, 
CCL17 and CCL22) expression in human monocytic THP-1 cells. The results are expressed as the mean ± SD of 3 
independent experiments. 
*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 by one-way ANOVA with Tukey’s honest test, n=3.



TAMs are primary targets of immunotherapy in cancer treatment (22). Unlike classical 
macrophages (M1 macrophages), TAMs play roles similar to M2 macrophages in reducing 
inflammation via the secretion of anti-inflammatory cytokines, chemokines, and growth 
factors (23). These secreted molecules inhibit immune cell reactions in the TME, including 
inflammation, antigen presentation, and phagocytosis (23); furthermore, they also play a 
crucial role in tumor migration, proliferation, and angiogenesis within the TME (4). Because 
of these factors, TAMs are a notable target for immunotherapy, and the re-polarization of 
macrophages may represent a fundamental treatment approach for several immunotherapies.

The macrophage is a crucial effect of the immune system, predominantly triggered to 
eliminate infections caused by bacteria, viruses, or neoplasms such as cancer cells (24). 
Previous research has revealed that differential factors between M1 macrophage and M2 
macrophage. M1 macrophages express iNOS and secrete cytokines, including IL-1β and TNFα 
(25). These proteins are typically classified as pro-inflammatory proteins that stimulate 
an immune response to eliminate tumors in early-stage cancer (26,27). In contrast, M2 
macrophages express CD206, which serves as their principal marker and secrete anti-
inflammatory proteins and tumor-promoting factors such as TGFβ, CCL17, and CCL22 
(23,28). Furthermore, M0 and M1 macrophages are morphologically characterized by their 
spheroid and radial shapes; in contrast, M2 macrophages are spindle-shaped (29). In our 
study, the macrophages treated with rhIL-32θ showed spheroid and radial shapes (Fig. 1B). 
RT-qPCR analysis revealed that the mRNA levels of genes associated with the inflammatory 
response (IL-1β, TNFα, and iNOS) were increased by rhIL-32θ in M0 macrophages (Fig. 1C). 
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Figure 2. Effects of rhIL-32θ on the expression of M1 macrophage related proteins. (A) Protein levels of iNOS were 
analyzed by western blot. The graph shows the intensity of the iNOS bands normalized with the intensity of the 
GAPDH bands for each sample. Intensities were measured using the ImageJ software. (B) The secreted protein 
levels of IL-1β and TNFα were measured by ELISA. The results are expressed as the mean ± SD of 3 experiments. 

*p<0.05, **p<0.01 by one-way ANOVA with Tukey’s honest test, n=3.



However, the expression of genes related to M2 macrophages (CD206, TGFβ, CCL17, and 
CCL22) was either unchanged or decreased upon treatment with rhIL-32θ (Fig. 1C). Moreover, 
the expression levels of the iNOS protein and the secretion levels of IL-1β and TNFα were 
increased by rhIL-32θ in M0 macrophages (Fig. 2).
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Inflammation is strongly associated with the activated MAPK and the nuclear translocation 
of NF-κB (30). Phosphorylated MAPK leads to the nuclear translocation of NF-κB that 
induces pro-inflammatory cytokines, chemokines, and several inflammatory molecules (30). 
Moreover, the MAPK pathway and NF-κB nuclear translocation have been implicated in the 
polarization of M0 macrophages to the M1 macrophage phenotype (31). In contrast, AKT 
phosphorylation is associated with the polarization of M2 macrophages (31). Western blot 
analysis indicated that the levels of phosphorylated p38 MAPK were increased by rhIL-32θ 
(Fig. 3A). However, AKT phosphorylation was not significantly altered (Fig. 3A). Additionally, 
the nuclear translocation of NF-κB (p65 and p50) into the nucleus was increased by rhIL-
32θ (Fig. 3B). These results demonstrate that rhIL-32θ induced the polarization of M0 
macrophage into M1-like phenotype, rather than M2 phenotype (Figs. 1-3).
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Previous studies revealed that immune cells exhibit high plasticity in response to foreign 
substances (32). Macrophages modify their functions according to the immune response 
environment (33). For example, M1 macrophages induce inflammation to eliminate infectious 
agents and neoplasms formed in tissues (34). Because excessive inflammation can lead to tissue 
damage, after an infection or inflammatory stimulus has been removed, M1 macrophages 
polarize to the M2 phenotype, which promotes tissue regeneration and anti-inflammatory 
responses (35,36). However, cancer promotes polarization into M2 macrophages to evade 
immune surveillance and to induce cancer progression (37-40). M2 macrophages attract 
anti-inflammatory immune cells, such as regulatory T cells, and secrete anti-inflammatory 
cytokines including TGFβ and IL-10, which inactivate cytotoxic T cells and neutrophils (41). 
Therefore, inhibiting M2 macrophages and promoting their repolarization to the M1 phenotype 
are crucial for cancer immunotherapy. In this study, RT-qPCR analysis revealed that the mRNA 
levels of pro-inflammatory genes (IL-1β, TNFα, and iNOS) were increased by rhIL-32θ (Fig. 
4B). Moreover, the expression of M2 macrophage-related genes (CD206, TGFβ, CCL17, CCL22) 
was decreased by rhIL-32θ in M2 macrophages (Fig. 4B). Western blot analysis and ELISA 
revealed that the expression levels of TNFα, IL-1β and iNOS was induced by rhIL-32θ (Fig. 5). 
Additionally, the level of phosphorylated p38 MAPK increased, whereas that of phosphorylated 
AKT decreased after the rhIL-32θ treatment (Fig. 6A). Nuclear translocation of NF-κB (p65 and 
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Figure 5. Modulatory effects of rhIL-32θ on the re-polarization of macrophages. THP-1 cells were polarized using 
IL-4/IL-13 (20 ng/ml). After inducing M2 polarization, the cells were treated with rhIL-32θ for 72 h. The supernatant 
was collected before harvest. (A) Protein levels of iNOS in M2 macrophages derived from THP-1 cells were analyzed 
by western blot. The graph shows the intensity of the iNOS bands normalized with the intensity of the GAPDH 
bands for each sample. Intensities were measured using the ImageJ software. (B) The secreted protein levels of 
IL-1β and TNFα were measured by ELISA. The results are expressed as the mean ± SD of 3 experiments. 
*p<0.05, **p<0.01 by one-way ANOVA with Tukey’s honest test, n=3.



p50) into the nucleus was increased by rhIL-32θ in M2 macrophages (Fig. 6B). Furthermore, 
re-polarizing M2 to M1 macrophages with rhIL-32θ inhibited the migration of the breast 
cancer cell line MCF7 and regulated migration-related factors (N-cadherin and E-cadherin) 
(Supplementary Fig. 3). These results demonstrated that rhIL-32θ promoted the polarization 
of M2 to the M1-like phenotype (Figs. 4-6, Supplementary Fig. 3).

Cancer is a complex disease requiring multiple treatment modalities, with immunotherapy 
having gained significant attention in recent years (42). Adoptive cell therapy, which involves 
the activation and expansion of immune cells from a patient's own cells, has shown great 
promise for cancer treatment (43). However, the efficacy of adoptive cell therapy can be 
hampered by tumor-associated immune cells in the TME that suppress other immune cells 
(44). In our study, we demonstrated that rhIL-32θ enhanced the inflammatory response of 
macrophages and promoted their polarization into M1-like macrophages. These properties of 
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Figure 6. Modulatory effects of rhIL-32θ on the intracellular signaling pathways in M2 macrophage. (A) Western blot 
analysis of AKT and p38 MAPK pathways in M2 macrophages. The graph shows the intensity of the phosphorylated 
AKT and p38 MAPK bands normalized with the intensity of the GAPDH bands for each sample. (B) Nuclear 
translocation of NF-κB was detected by western blot with nuclear-cytosol fractionation. The graph shows the 
intensity of the NF-κB bands in nucleus normalized with the intensity of the PARP bands for each sample. Intensities 
were quantified using the ImageJ software. The results are expressed as the mean ± SD of 3 experiments. 
*p<0.05, **p<0.01 by one-way ANOVA with Tukey’s honest test, n=3.



rhIL-32θ have the potential to synergize with adoptive cell therapies. However, to understand 
the effects of rhIL-32θ, it is crucial to investigate its relationship with other cell types in 
the TME, such as dendritic cells, cancer-associated fibroblasts, and tumor-associated 
neutrophils. Further studies are required to elucidate the precise interactions and effects of 
rhIL-32θ on these cells in the TME.

In conclusion, the newly discovered mutated rhIL-32θ variant induced M1 macrophage 
markers (IL-1β, TNFα, iNOS) via increased phosphorylation of p38 MAPK and nuclear 
translocation of NF-κB (p65, p50). On the other hand, rhIL-32θ decreased the expression 
of M2 macrophage-related factors (CD206, TGFβ, CCL17, and CCL22) in M2 macrophages. 
rhIL-32θ induced the phosphorylation of p38 MAPK and the nuclear translocation of NF-κB 
(p65 and p50) in M2 macrophages (Fig. 7). These properties suggest that rhIL-32θ has the 
potential to enhance the pro-inflammatory response and promote the polarization of TAMs 
towards an antitumor phenotype. This may be useful in the context of adoptive cell therapy 
by potentiating the effects of the immune cells used in the therapy.

ACKNOWLEDGEMENTS

We would like to thank Editage (www.editage.co.kr) for their assistance with English 
language editing (No. KOUNI-5228).

The Effect of rhIL-32θ in Macrophage Polarization

https://doi.org/10.4110/in.2024.24.e27 11/14https://immunenetwork.org

Figure 7. Schematic diagram of the effect of rhIL-32θ on the macrophage polarization. rhIL-32θ induced the 
expression of IL-1β, TNFα, iNOS and attenuated the expression of CD206, TGFβ, CCL17, CCL22 via modulate 
phosphorylation of p38 MAPK and nuclear translocation of NF-κB in M2 macrophages.
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SUPPLEMENTARY MATERIALS

Supplementary Table 1
List of primer sequences

Supplementary Table 2
List of antibodies

Supplementary Figure 1
Endotoxin assay using endotoxin removal reagent polymyxin B. (A) The mRNA levels of IL-6 
were measured using RT-qPCR. M0 macrophage treated with or without polymyxin B (50 µg/
ml), LPS (100 ng/ml) and rhIL-32θ (A94V) (100 ng/ml) for 24 h. The results are expressed as 
the mean ± SD of 3 experiments.

Supplementary Figure 2
Time and dose-dependent effects of rhIL-32θ (A94V) on the expression of M1 macrophage 
related genes. (A) Does-dependent effects of rhIL-32θ (A94V) on the expression levels of M1 
macrophage related genes. After 24 h of the PMA treatment, the cells were treated with rhIL-
32θ (A94V) for another 24 h. (B) Treated time-dependent effects of rhIL-32θ (A94V) (50 ng/ml) 
on the expression levels of M1 macrophage related genes. After 24 h of the PMA treatment, the 
cells were treated with rhIL-32θ (A94V) for time-dependent manner. The mRNA levels were 
measured using RT-qPCR. The results are expressed as the mean ± SD of 3 experiments.

Supplementary Figure 3
Repolarized macrophage effects on migration of breast cancer cells. (A) For the wound healing 
assay, MCF7 cells (1.5×105 cells/well) were seeded in 24-well plates. The plates were scratched 
using a sterile 200 µl pipette tip, washed with PBS, and a serum-free medium with CM was 
added for 24 h. Scale bar, 200 µm. (B) The western blot analysis representative protein levels 
of migration related factors (N-cadherin and E-cadherin). The wound areas and western blot 
analysis were quantified using ImageJ. The results represent the mean ± SD of 3 experiments.
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