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Abstract

The ability to detect the incursion of an invasive species or destroy the last individuals
during an eradication program are some of the most difficult aspects of invasive
species management. The presence of foxes in Tasmania is a contentious issue with
recent structured monitoring efforts, involving collection of carnivore scats and test-
ing for fox DNA, failing to detect any evidence of foxes. Understanding the likelihood
that monitoring efforts would detect fox presence, given at least one is present, is
therefore critical for understanding the role of scat monitoring for informing the
response to an incursion. We undertook trials to estimate the probability of fox scat
detection through monitoring by scat-detector dogs and person searches and used
this information to critically evaluate the power of scat monitoring efforts for detect-
ing foxes in the Tasmanian landscape. The probability of detecting a single scat pre-
sent in a 1-km? survey unit was highest for scat-detector dogs searches (0.053)
compared with person searches (x=~0.015) for each 10 km of search effort. Simulation
of the power of recent scat monitoring efforts undertaken in Tasmania from 2011 to
2015 suggested that single foxes would have to be present in at least 20 different
locations or fox breeding groups present in at least six different locations, in order to
be detected with a high level of confidence (>0.80). We have shown that highly struc-
tured detection trials can provide managers with the quantitative tools needed to
make judgments about the power of large-scale scat monitoring programs. Results
suggest that a fox population, if present in Tasmania, could remain undetected by a
large-scale, structured scat monitoring program. Therefore, it is likely that other forms
of surveillance, in conjunction with scat monitoring, will be necessary to demonstrate

that foxes are absent from Tasmania with high confidence.
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1 | INTRODUCTION

The ability to detect the incursion of an invasive species or destroy
the last few individuals during an eradication program are some of the
most difficult aspects of invasive species management (Cruz, Carrion,
Campbell, Lavoie, & Donlan, 2009; Morrison, MacDonald, Walker,
Lozier, & Shaw, 2007; Ramsey, Parkes, & Morrison, 2009). Hence, the
ability to assess the effectiveness of various monitoring tools in areas
where the target species occurs at low density is vitally important, as
this guides the selection of appropriate tools to target those individu-
als and achieve effective management (Parkes et al., 2010). Recently,
evidence of an incursion of the European red fox (Vulpes vulpes) into
Tasmania (Sarre, MacDonald, Barclay, Saunders, & Ramsey, 2013;
Saunders, Lane, Harris, & Dickman, 2006) led to the establishment
of a specific program charged with the task of effecting eradication
(Brown, Ramsey, & Gaffney, 2014). As part of this program, predator
scat surveys were used extensively to infer the distribution of foxes
(Sarre et al., 2013). Fox scats are morphologically similar to other extant
predators in Tasmania (e.g., feral cats, Felis catus; quolls, Dasyurus spp,
and Tasmanian devils, Sarcophilus harrisii), and hence, scats are subject
to a mitochondrial DNA-based test for species identification (Berry,
Sarre, Farrington, & Aitken, 2007; Sarre et al., 2013). From ¢.13,000
predator scats submitted for testing, 61 were positively identified as
“fox” by the DNA test. As a result of the widespread occurrence of
physical evidence of foxes (primarily scats and four fox carcasses),
a broad-scale fox baiting program was implemented in 2010 using
buried 1080 baits (Marks, Edwards, Obendorf, Pereira, & Hall, 2014;
Parkes & Anderson, 2009). In mid-2013, broad-scale baiting ceased in
Tasmania and efforts were shifted to landscape-scale scat monitoring
to confirm the absence of foxes (DPIPWE 2014). Presently, there has
been no new evidence of foxes found since July 2011, despite exten-
sive scat monitoring search effort undertaken since then.

Scat monitoring in Tasmania relies primarily on scat-detector dogs
and/or human observers searching an area for fox scats. Most searches
conducted have fallen into two classes: structured surveys using
a systematically placed grid of 3 x 3 km cells covering larger areas
(landscape-scale monitoring) or unstructured surveys in response to
reported fox sightings (investigations) (Brown et al., 2014; Sarre et al.,
2013). The last confirmed fox-positive scat was found in July 2011 and
since then, structured monitoring has been conducted in over 1000,
3 x 3 km monitoring units covering the majority of putative fox hab-
itat in Tasmania, with no evidence of foxes found to date. This raises
the question of the likelihood of detecting a fox using landscape-scale
scat monitoring, should one be present in Tasmania. This question has
value not only in assessing the power of recent monitoring efforts but
is also useful for the design of monitoring programs to detect future
incursions (Field, Tyre, & Possingham, 2005; Wintle, Walshe, Parris,
& Mccarthy, 2012). In addition, estimates of the detectability of scat
monitoring are essential if we wish to make inferences about the prob-
ability of fox absence, if scat monitoring does not detect any individ-
uals (Ramsey, Parkes, Will, Hanson, & Campbell, 2011; Ramsey et al.,
2009; Regan, McCarthy, Baxter, Dane Panetta, & Possingham, 2006;
Rout, Kirkwood, Sutherland, Murphy, & McCarthy, 2014; Rout, Moore,
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& McCarthy, 2014). Ideally, inferences about fox absence should also
include a variety of other sources of monitoring data to make robust
inference (Caley & Barry, 2014; Caley, Ramsey, & Barry, 2015).

Estimating detectability from monitoring data can be undertaken
using a variety of field methods, usually involving repeat surveys with
fixed effort and/or collection of ancillary data on individuals (Buckland,
Anderson, Burnham, & Laake, 1993; MacKenzie et al., 2006; Otis,
Burnham, White, & Anderson, 1978; Royle, 2004). Alternatively,
studies of static targets such as plants and animal sign usually ex-
amine how the detection rate changes with increasing search effort
(Garrard, Bekessy, McCarthy, & Wintle, 2008; Guillera-Arroita, Ridout,
Morgan, & Linkie, 2012; Moore, Hauser, Bear, Williams, & McCarthy,
2011; Regan et al., 2006). In the latter situation, detection experi-
ments can often be useful for elucidating the relationship between
detection probability and search effort (Garrard et al., 2008; Moore
etal., 2011). In previous studies, scat detection experiments have
been conducted under controlled conditions where scats are placed
on predefined transects that were subject to searching. This ensured
that each scat was encompassed by a relatively small potential search
area (Long, Donovan, Mackay, Zielinski, & Buzas, 2007; Reed, Bidlack,
Hurt, & Getz, 2011; Vynne et al., 2011). However, to our knowledge,
scat detection rates have not been estimated under actual operational
conditions, where the potential search areas could be large, as would
be expected under large-scale monitoring programs.

Here, we conduct an experimental assessment of the relation-
ship between scat detection probabilities and search effort by scat-
detector dogs and person searches evaluated during landscape-scale
scat monitoring in Tasmania. We then use these estimates to assess
the likelihood that scat monitoring search effort expended since 2011
in Tasmania would have detected foxes, if they were present, and use

this to make recommendations for future scat monitoring programs.

2 | MATERIALS AND METHODS

2.1 | Structured and unstructured scat monitoring
programs

In response to evidence of fox presence, the Tasmanian govern-
ment undertook landscape-scale monitoring of “priority” fox habitat
in eastern and northern Tasmania to determine the spatial extent of
the incursion (structured monitoring) (DPIPWE 2014). Priority habitat
(optimal fox habitat based on expert opinion (Saunders et al., 2006)
was subdivided into 3 x 3 km survey units and a subset of these were
selected for structured surveys (with a random start point). These sur-
veys were conducted across two time periods: Surveys 1: 2008-2010
(reported in Sarre et al., 2013) and Surveys 2: 2011-2015. The latter
surveys repeated a subset of units from the first surveys but also ex-
tended the area of Tasmania covered. In addition, unstructured moni-
toring was undertaken in response to reports of fox sightings from
the public. All fox sighting reports were subject to some degree of
investigation. Since July 2011, there have been 757 recorded reports
of fox sightings by the public. Sighting reports were investigated using
a variety of methods, but only the 237 reports investigated using scat
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searching were considered here. These investigations were under-
taken at a smaller scale than the structured surveys above, usually
on a 1 x 1 km survey unit centerd on the location of the reported
sighting.

Scat detection within survey units (either 3x3 or 1x1km
units) was undertaken by two-person search teams or by trained
scat-detector dogs. Search effort differed between the search team
types and the survey unit sizes. For person teams: ten person hours
for 3 x 3 km units, and five person hours for 1 x 1 km units; for dog
teams: 10-12 km for 3 x 3 km units, and five to six km for 1 x 1 km
units. Monitoring within a unit (whether by dog or person teams) tar-
geted “linear” features in the habitat (e.g., fence-lines, water bodies,
tracks, and hedgerows) as foxes tend to deposit more scats within or
near these features (Webbon, Baker, & Harris, 2004). The survey start-
ing point was haphazard, based on logistics, while search trajectories
were generally preplanned based on aerial photography of the survey
unit, with the aim of covering an array of the best “habitat features”
available, while ensuring a reasonable coverage of the unit. For each
survey unit monitored, search teams recorded the actual search path
traversed using hand-held GPS units (track logs). All carnivore scats
encountered by person teams were collected, dried, and subjected to
DNA testing (Berry et al., 2007; Sarre et al., 2013) whereas for dog
search teams, only scats for which dogs produced a “sit” response
(see below) were collected and subjected to DNA analysis. The DNA
analysis method applied to scats collected during person surveys in
2014 differed from that used previously, in that scats were swabbed
at the point of collection. DNA was extracted from each swab and
subjected to DNA testing. This swabbing approach has been shown
to be more rapid than DNA extraction directly from scats, without a
loss of detectability (Ramdn-Laca, Soriano, Gleeson, & Godoy, 2015).

2.2 | Dog training

Six Labrador dogs were involved at different times in fox scat detec-
tion work in Tasmania. Labrador dogs are ideal for this type of scent
detection work because they are a robust breed with very good scent-
ing ability and a naturally high play and food drive (Dahlgren et al.,
2012; Mathews et al., 2013). Individual dogs were selected as pup-
pies and gradually introduced to the single target of fox odor from ap-
proximately three months of age. Scent training was achieved by the
association of the target odor paired with a food and/or play reward.
Aversion methods were used to train dogs to ignore wildlife, snakes,

and food when working in the field. Dogs were trained to indicate a

target with a “sit response.” They were also trained to pinpoint the
target by placing their nose on the ground next to the target scat with
the command “show me.”

Two dogs were paired with a single handler, who was able to read
their behavior and guide them through monitoring operations. Dogs
and handlers were tested for proficiency every 3 months and formally
“validated” by an outside qualified auditor every 12 months to ensure

that they were operating at a satisfactory level.

2.3 | Fox scat detection trials

Trials to estimate the probability of scat detection by scat-detector
dogs or two-person search teams were undertaken for survey units at
both 1 x 1 and 3 x 3 km scales. Trials were initially undertaken at four
dedicated 1 x 1 km trial sites containing a relatively high numbers of
trial scats (nine to 15 for dog teams and 30 scats for people teams—
Table 1). For these trials, searchers were aware that they were being
tested. Subsequently, trials were undertaken as part of the structured
monitoring program to obtain a more realistic estimate of detection
rates. These trials were undertaken by randomly selecting units from
the pool designated to be monitored in a given week. Searchers were
unaware on any given day whether a survey unit would contain trial
“fox” scats.

Each trial involved a “controller” secretly placing a number of
“fox” scats on randomly selected linear features within the desig-
nated survey unit (Table 1). Actual fox scats were used for trials
involving scat detection dogs; these were brought into Tasmania
periodically (under special authority according to section 19 of the
Animal Health Act 1995) and stored in a secure facility. Nonfox car-
nivore scats (such as dog, cat, or quoll) were used for person trials.
Upon placing a “fox” scat in the environment, the controller recorded
the GPS coordinates of the location and took close-up photographs
of the scat in situ. Searchers, either a “person team” (two people) or
a “dog team” (scat-detector dog and handler) arrived independently
at the survey unit and chose a selection of features within the unit
to search as part of the survey. Searchers recorded GPS locations
of all “fox” scats encountered as well as the route taken during the
search (GPS track log) allowing for calculation of the cumulative dis-
tance searched up to that point. The GPS coordinates and photos
of scats found (and collected) were compared to those taken by the
controller when placing the scats in the field allowing the number of
trial scats found by each search team to be determined. Every effort

was made to recover any fox scat placed in the field that was not

TABLE 1 The number of monitoring trials and trial scats used and mean search distances for the scat detection trials for each monitoring

unit size and team type

Unit size Team type No. of trials No. of trial units
1 km Dog 60 42
1 km Person 16 10
3 km Dog 45 45
3 km Person 21 21

Mean and (range) of scats Mean search

Total scats per trial unit distance (km)
363 6.1, (1-15) 6.0
259 16.2, (1-30) 23.9
145 3.2,(1-7) 11.3
104 4.9,(1-9) 17.9
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otherwise found. This was not always possible for a variety of rea-
sons including scat destruction by insect activity, local disturbance

by stock, or heavy rain.

2.4 | Analysis

The cumulative distance searched to find each of the trial scats was
treated as the “failure time” and used in a survival analysis. The anal-
ogy was that each scat was considered to be “alive” at the start of
searching and that detection of the scat by the searchers resulted
in the “death” of the scat, with the distance searched to that point
treated as the survival time. Search distance was used rather than
search time, because detection probability was likely to be directly
related to area searched. However, as searchers were constantly mov-
ing, search distance and search time were likely interchangeable. As
searchers started at random locations with respect to scat locations
and searching occurred at a relatively constant rate, the distribution
of survival distances S (d) would be expected to follow an exponential
distribution.

S(d)y=exp (=Ad), (1)

where ) is the detection rate (i.e., to the first detection) and d is dis-
tance. This model assumes that the detection rate is constant over all
distances searched. However, if searching efficiency decreases with
distance searched (e.g., due to fatigue), then the detection rate may
decrease with distance, which can be accommodated by adopting a
Weibull distribution for the survival distances.

S(d)y=exp (-rd*) (2)

where the shape parameter a allows the detection rate to decrease (or
increase) with distance searched. All scats not detected by searchers
were treated as right-censored observations with a censored survival
distance equal to the maximum distance searched in the unit by that
team. For these models, the scat detection rate A was made to be a
function of team type (dog or person teams) and grid size (3 km vs.
1 km), using a log link. As multiple scats were placed in each survey
unit (Table 1), the detection rate was dependent on the number of
scats placed at each unit (i.e., more scats would lead to a shorter dis-
tance searched before detecting the first scat). Assuming n scats are
placed in each survey unit and scats are detected independently, then
the detection distances within survey units can be modeled by sub-
stituting A with n) in Equations 1 and 2 (e.g., McCarthy et al., 2013).
In addition, we also treated data for each trial within a survey unit
as a random effect (some units were subject to multiple trials). The
random effects for trial served the purpose of capturing residual vari-
ation due to differences in vegetation, features, terrain, and weather
among trials.

Survival models were fitted to the data using Markov chain
Monte Carlo methods in JAGS version 4.2.0 (Plummer, 2003).
Weakly informative normal priors N(O, 10) were placed on fixed
regression coefficients with a gamma prior Ga(1, 0.01) used for

the Weibull shape parameter a. The trial ID random effects were
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assumed to be normally distributed with mean zero and standard
deviation &, with an uniform prior distribution U(O, 20) used for
this parameter. Three MCMC chains were run and checked for con-
vergence using the Brook—Gelman—Rubin convergence diagnostic
(Brooks & Gelman, 1998) with convergence achieved after 20,000
iterations (<1.01 for all parameters). Thereafter, sampling continued
for a further 10,000 iterations giving 30,000 samples for posterior
summaries. JAGS code for the exponential and Weibull survival
models are provided in the supplementary materials (Appendix S1).
We compared the relative fit of the exponential and Weibull models
using the widely applicable information criterion (WAIC) calculated
using the R package loo (Vehtari, Gelman, & Gabry, 2016). WAIC is
an improvement on the deviance information criterion (DIC) that is
popularly used for Bayesian model comparison (e.g., Spiegelhalter,
Best, Carlin, & Van Der Linde, 2002). Unlike DIC, which is based on
the log likelihood for a point estimate of the parameters, WAIC is
fully Bayesian, being based on the log likelihood evaluated across
the posterior distribution of the parameter values. Asymptotically,
WAIC is equivalent to Bayesian leave-one-out cross-validation and
hence, is a better reflection of the relative predictive performance
of a model than is DIC (Vehtari et al., 2016). We calculated the dif-
ference in the expected predictive accuracy of the two models by
calculating the difference in WAIC and associated standard error
(Vehtari et al., 2016). The goodness of fit of the most supported
model was calculated using posterior predictive distributions. This
involved drawing replicated data from the generating model y™P,
the same size as the original data y and comparing the discrep-
ancy between the observed and replicated data with a chi-squared
discrepancy measure and calculating a Bayesian p value (Gelman,
Meng, & Stern, 1996).

2.5 | Power of scat monitoring strategies to
detect foxes

Although the scat detection trials described above estimate the prob-
ability that monitoring will detect a fox scat, this is not the same as
estimating the probability that monitoring will detect a fox, given one
is present. The probability of detecting one or more foxes using scat

detection surveys will also depend on the following:

1. The minimum number of foxes that could reasonably constitute
an extant fox population. We used values that encompass a
single fox to a social group (see Parameters below).

2. The number of survey units where scats are likely to be deposited
by a resident fox or fox group. This will depend on both the survey
unit size and home range size.

3. The expected number of scats that are available for detection
within a survey unit that is occupied by a fox. We used the esti-
mate derived recently under Tasmanian conditions by Brown et al.
(2014) in which the expected number of fox scats within a fox
home range was estimated as the equilibrium between the scat
deposition rate by a fox and the scat degradation rate in the
environment (see Appendix S3).
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4. The sensitivity of the mtDNA diagnostic test used to assign a putative
predator scat as belonging to a fox (i.e., the probability that a fox scat
is successfully diagnosed as a fox). This was estimated recently by
Ramsey, MacDonald, Quasim, Barclay, and Sarre (2015) to be 0.85.

Points 1-4 above constitute the information necessary for defining
both the number of fox scats that are at risk of being detected through
scat monitoring and their spatial distribution in the environment.

We used Monte Carlo simulation techniques to evaluate the likeli-
hood that structured and unstructured scat monitoring conducted be-
tween 2011 and 2015 would detect a fox(s) or fox family group(s), given
they were present within the region of priority fox habitat. This was
possible as all teams undertaking both structured and unstructured scat
monitoring recorded actual search paths (track logs) during monitoring
activities. Track log data were overlaid on the map of priority fox habitat
delineated into 1 x 1 km units, and the total distance searched for each
unit that intersected a track log was calculated (Figure 1a). This was
then repeated for the 3 x 3 km map of priority fox habitat (Figure 1b).
Track logs often intersected more than one survey unit as tracks often
meandered into survey units adjacent to the unit that was the focus of
monitoring. We included all survey units that had at least some mon-
itoring effort, even if only a small amount, in the power analysis. The
design of the simulation study then used the following algorithm

1. Randomly place a fox(s) or fox group(s) home range (a circle
of given radius for convenience) within the area of priority fox
habitat divided into all potential 1 x 1 km monitoring units (i.e.,
Figure 1a).

2. Determine how many survey units were intersected by the fox

home range.

3. Place a random number of fox scats, based on the expected num-
ber to be extant in the environment (net between production and
degradation), in units overlapped by the fox home range according
to distribution type (see below).

4. Place the sampling design over the landscape (i.e., actual sampled
1 x 1 or 3 x 3 km units). For sampled 3 x 3 km units, the number of
fox scats “at risk” of detection was calculated by aggregating the
scats from the nine 1 x 1 km units that corresponded to the loca-
tion of the sampled 3 x 3 km unit.

5. If a sampled survey unit coincides with a unit intersected by a fox
home range, then scats in the unit are detected with probability
estimated from the scat detection trials undertaken above, given
the actual distance searched.

6. Each detected “fox scat” was then subject to a simulated mtDNA
test which assigns the scat as belonging to a fox with a designated
probability (test sensitivity).

7. Replicate the simulated monitoring design multiple times, drawing
random samples from distributions of model parameters at each
iteration to incorporate their uncertainty in the estimated proba-

bilities of fox detection.

2.6 | Parameters

We varied several parameters to determine their effect on the power
of recent scat monitoring efforts to detect fox presence, including the

following:

1. Number of single foxes or fox groups (home ranges) (between
1 and 20)

FIGURE 1 (a) Priority fox habitat estimated for Tasmania delineated in (a) 1 x 1 km and (b) 3 x 3 km survey units (gray shading). Blue shaded
cells indicate monitoring units subject to scat detection surveys between 2011 and 2015
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2. Home range size of single foxes (120, 470, 1000, 1900 ha)
3. Distribution of scats deposited within the home range by a fox

(random, clumped)

For the purposes of this study a fox “group” was defined as a family
group consisting of an adult male/female pair and 4 cubs. The number of
cubs is consistent with the mean litter size for adult females in Australia
(Saunders, Kinnear, Braysher, & Coman, 1995). The home range size of a
family group was also defined as 1.5 times the size of a single fox range
size, varied as per (2) above. For each combination of these parameters,
10,000 replicated scat detection surveys were simulated, with each sim-
ulated survey varying the locations of foxes, the expected number of fox
scats per home range (varying scat deposition and degradation), and the
scat detection probability, given actual search distances (estimated from
the detection trials above), which were drawn from predefined probabil-
ity distributions. All simulations were conducted using R version 3.2.2 (R
Development Core Team 2015). More details regarding the Monte Carlo
algorithm, parameters, and distributions used in the simulation study are
provided in the supplementary materials (Appendix S2). Finally, we also
investigated how sensitive the estimated detection probability from the
simulation study was to variation in the key parameters of the Monte
Carlo algorithm using sensitivity analysis. We performed a global sensi-
tivity analysis using the fourier amplitude sensitivity test (FAST) (Saltelli,
Tarantola, & Chan, 1999) using the R package fast (Saltelli, Chan, & Scott,
2000). Further details of the sensitivity analysis are given in the supple-

mentary materials (Appendix S4).

3 | RESULTS

3.1 | Fox scat detection trials

A total of 142 scat detection trials were undertaken using a total of
871 “fox” scats. Four different dog teams undertook 105 detection tri-
als across 87 survey units, searching for an average of 6.0 and 11.3 km
on 1-km and 3-km survey units, respectively. Twenty different per-
son search teams undertook 37 detection trials across 31 survey units,

searching for an average of 23.9 and 17.4 km for 1-km and 3-km survey
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units, respectively (Table 1). The longer average searching distance for
person teams on 1-km units was a reflection of higher average search
distances undertaken at the four dedicated 1-km detection trial sites.

Bayesian survival models fitted to the distance to scat detection
revealed that an exponential model had a lower WAIC value than
the Weibull model (difference of 6.5, SE = 1.41) and therefore, was
a better fit to the data indicating that scat detection occurred at a
relatively constant rate (Table 2). The Bayesian p value estimated for
the exponential model was .77, indicating no strong evidence of lack-
of-fit. The exponential model also showed a good fit to the observed
data on cumulative proportion of scats detected with search distance
(Figure 2). Dog teams had higher rates of scat detection than person
teams, regardless of survey unit size (Table 2 and Figure 2). The re-
sulting probabilities of detection with distance searched indicated
that for dog teams, the probability of scat detection given a single scat
present in the unit was 0.053 (95% CI; 0.0-0.217) and 0.037 (95%
Cl; 0.0-0.224) after 10 km of search effort in 1-km and 3-km survey
units, respectively. In contrast, the corresponding detection probabili-
ties for person teams were 0.015 (95% Cl; 0.0-0.064) and 0.016 (95%
Cl; 0.0-0.095) after 10 km of search effort in 1-km and 3-km units,
respectively (Table 2 and Figure 3).

3.2 | Power of scat monitoring strategies to
detect foxes

Track logs from unstructured and structured scat monitoring conducted
at the 1 x 1 km scale between 2011 and 2015 intersected 994 monitor-
ing units covering priority fox habitat (Figure 1a). Of these, 384 were
searched by person teams, 784 were searched by dog teams, and 174
were searched by both team types. Track logs from structured scat mon-
itoring conducted at the 3 x 3 km scale between 2011 and 2015 inter-
sected 1,065 monitoring units covering priority fox habitat (Figure 1b).
Of these, 438 were searched by person teams, 707 were searched by
dog teams, and 80 were searched by both team types. Overall, person
teams searched for a total of 8,044 km while dog teams searched for a
total of 9,808 km. A total of 3,030 scats were collected during this pe-

riod with none testing positive for fox using the mtDNA test.

TABLE 2 Parameter estimates of the detection rate for a single scat per km of search effort (log scale) for the Bayesian exponential and
Weibull survival models fitted to the search distance data for each search team type (dog, person) and monitoring unit size (1-km, 3-km).
Estimates are the mean of the posterior distribution and 95% Cl is the 95% credible interval. Shape—Weibull shape parameter; c—standard
deviation of random effect for trial ID for each grid size; WAIC, widely applicable information criterion

Exponential Weibull
Parameter Estimate 95% CI Estimate 95% CI Shape 95% CI
Dog (1 km) -5.68 -6.15,-5.24 -5.76 -6.39,-5.17 1.04 0.81,1.28
Person (1 km) -7.02 -7.76,-6.29 -6.99 -7.89,-6.13 0.99 0.84,1.16
Dog (3 km) -6.55 -7.63,-5.74 -6.53 -8.10, -5.22 1.01 0.60, 1.51
Person (3 km) -7.46 -8.73,-6.45 -7.03 -9.11,-5.38 0.85 0.38,1.48
6 (1 km) 1.03 0.54, 1.64 1.04 0.55, 1.66
6 (3 km) 1.47 0.53, 2.47 1.41 0.37,2.40
WAIC 1952.5 1959.0
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FIGURE 2 The probability of detecting a fox scat with distance
searched by dog and person teams in either 1-km or 3-km monitoring
units conditional on the total number of scats available for detection.
Points are the observed proportion of scats surviving, given distance
searched, calculated using the Kaplan-Meier estimator (open circles:
dog team, 1-km units; open triangles: dog team, 3-km units; crosses:
person team, 1-km units; open squares: person team, 3-km units)

The Monte Carlo simulation results suggest that the probability
that the scat monitoring undertaken between 2011 and 2015
would have detected a single fox, given it was extant somewhere
within the area of priority fox habitat, was low, at just 0.08 (range
0.06-0.09; Figure 4a). Moderate probabilities of detection (>0.50)
were obtained if single foxes were present in at least 9 locations. If
20 foxes were extant independently within the area of priority fox
habitat, then the probability that at least one would be detected
increased to 0.80 (range 0.74-0.84; Figure 4a). In general, there
was little uncertainty due to variation in scat distribution patterns
within units (uniform or clumped) or variation in home range size
(Figure 4a).

Probabilities of detecting a fox group were higher than detecting a
single fox; the mean probability of detecting evidence of a fox, when
a single group was present, was 0.26 (range 0.19-0.32) (Figure 4b).
Moderate probabilities of detecting evidence of fox presence (>0.50)
were obtained when fox groups were present in at least 3 locations.
The probability of detecting fox presence increased to 0.80 (range
0.72-0.89) (Figure 4b) if six independent fox groups were present in
the area of priority fox habitat. The mean number of fox scats detected
was also higher for fox groups compared with single foxes, averaging
around 2.7 scats for a single group compared with 1.5 scats for a single
fox (Figure 4c,d).

The sensitivity of the estimated fox detection probability to varia-
tion in key model parameters indicated that the probability of detec-
tion was most sensitive to variation in the scat degradation rate, which
explained 28% of the variance in detection probability (Appendix S4).

The next highest sensitivity was due to variation in the scat detection
rates for both dogs and people on 3-km monitoring units, which ex-
plained 18% and 17% of the variance in detection, respectively, fol-
lowed by the proportion of scats on linear features, which explained
5% of the variance in detection probability. The other five parameters
collectively only explained 4.5% of the variance (Appendix S4).

4 | DISCUSSION

4.1 | Fox scat detection trials

To our knowledge, this is the first study to assess the probability of
detection of individual scats by either scat-detector dogs or person
searchers under operational conditions. By operational conditions,
we mean that detection trials were undertaken during a spatially and
temporally extensive monitoring program (~25,000 km? over 8 years)
designed to detect the presence of an invasive species. As might be
expected, probabilities of detecting single scats placed on linear fea-
tures within a survey unit were low, at <6% after 10 km of search
effort. Dog search teams had higher probabilities of detecting a scat
within both 1-km and 3-km units compared to person search teams.
However, the difference was not as large as might be expected. This
is because the detection rates estimated here implicitly include the
probability of scat encounter, which is equivalent to the proportion
of the potential search area that was actually searched. We elaborate
more on this point below.

The extensive area that could be subject to a scat search within an
individual survey unit was alleviated somewhat by limiting the search
to areas of “linear” habitat features. However, there were still usu-
ally many more linear features within a unit than could reasonably be
searched within a day by a single search team. Consequently, the sur-
vey team selected a subset of these to search. This meant that some
features in a survey unit were never searched and hence, the prob-
ability of detecting any scats on those features was effectively zero.
Naturally, there can be high variation in feature “richness” between
survey units which in turn would affect scat detection. However, this
variation was adequately sampled within the field trials and was sim-
ilar to the other factors impacting on scat detection rates: variation
between searcher ability and experience (both people and dogs);
variation between days due to weather conditions (temperature and
humidity for dog detection); variation between seasons and substrate
affecting scat degradation (detailed in Brown et al., 2014).

The probabilities of scat detection by scat-detector dogs (and
handlers) in the trials reported here are lower than have been re-
ported in other studies (e.g., Leigh & Dominick, 2015; Long et al.,
2007; Oliveira et al., 2012; Reed et al., 2011; Vynne et al., 2011).
For example, Leigh and Dominick (2015) reported detection prob-
abilities of at least 0.83 for dog detections of spotted-tail quoll
(Dasyurus maculatus) scats on transects in mixed vegetation types,
and Reed et al. (2011) reported detection probabilities of 0.68 and
0.77 for a similar transect-based study of multiple species of carni-
vore, while Fukuhara et al. (2010) reported detection probabilities
of 0.92 for Indian mongoose. The main disparity between previous
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FIGURE 3 The probability of detecting a fox scat with distance searched by dog and person teams in either 1-km or 3-km monitoring units
conditional on a single scat being available for detection (solid lines). Dashed lines are 95% credible intervals

studies and the present study is that previous studies used scats
placed on defined transects that were then subject to a search by
the dog and handler. This design ensured that almost all trial scats
had a very high chance of being encountered by the dog. In contrast,
the trials undertaken as part of structured monitoring in the present
study sought to replicate operational monitoring conditions on large
survey units where scat encounter rates were likely to be low. This
means our estimates of individual scat detection probabilities are
likely to be more realistic for actual operational conditions involving

large areas being monitored, compared to previous studies.

4.2 | Power of scat monitoring strategies to
detect foxes

Using estimates of individual scat detection probabilities and
other information on fox defecation and scat degradation rates in
Tasmania, we could derive realistic probabilities of detecting a fox
by scat monitoring using Monte Carlo techniques. The estimates ob-
tained on the probabilities of fox detection are relatively precise,
which was mostly a reflection of having good prior estimates of

some of the fundamental parameters of the simulation algorithm,
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such as scat degradation rates in Tasmania, scat detection rates by
dog and people searches (this study) and diagnostic test sensitivity.
Sensitivity analysis revealed that our estimates of fox scat monitor-
ing power were most sensitive to variation in the scat degradation
rate, followed by scat detection probabilities in 3-km survey units.
Variation due to some of the more uncertain parameters in the
model such as fox home range size and scat deposition patterns had
relatively minor impact on our estimates (Appendix S4). Therefore,
as the parameters contributing the highest variance in model out-
put were those where we had good estimates based on previously
collected data, we were confident that our simulation algorithm
adequately captured the important variability influencing the power

of scat monitoring.

Using our algorithm, we examined the likelihood that scat mon-
itoring effort undertaken from 2011 to 2015 would have detected
fox populations (single foxes or family groups) of various sizes. Results
suggest that, despite the high level of monitoring effort undertaken,
probabilities of detecting an individual fox or fox group were low, with
a probability of detecting a single fox averaging 0.08 and the probabil-
ity of detecting a single fox group averaging 0.26. High probability of
detection (>0.80) of fox evidence at a single location (either of a single
fox or a fox group) was not obtained until at least 20 individuals, or six
family groups were independently located within the area of priority
fox habitat.

Whether this level of power to detect foxes using scat monitoring

would be considered adequate, requires further investigation. On the
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one hand, a one in five chance of failing to detect up to six fox family
(i.e., breeding) groups would seem to represent a significant risk for the
state of Tasmania that may be unacceptable. To examine the risk more
critically, it would be necessary to consider the cost of monitoring and
management and the likelihood of effecting eradication of small popu-
lations of foxes versus the consequences of failing to detect and erad-
icate a fox incursion. Similar studies have examined the issues around
determining the optimal amount of resources to allocate to monitoring
and management for managing pest incursions or threatened species
(Chades et al., 2008; McCarthy et al., 2010; Rout, Moore, Possingham,
& McCarthy, 2011). One scenario suggests that the optimal approach
may be to wait until an incursion reaches a certain size before attempt-
ing management, as the knowledge gained in the initial stages of an
incursion would allow more efficient management to occur (Baxter &
Possingham, 2011). However, it is generally considered that early in-
tervention is the most cost-effective approach to reduce the impacts
from pest incursions (Bogich, Liebhold, & Shea, 2008; Rout, Kirkwood,
etal, 2014).

To facilitate early detection of a fox incursion, improvements to the
scat monitoring program could be considered to increase monitoring
power. Although a large amount of monitoring effort was undertaken
in Tasmania, the distribution of effort was not random and/or system-
atically distributed across all identified fox habitat, with many large
areas of fox habitat remaining unmonitored (Figure 1). Here, analysis
of the optimal allocation of monitoring effort could be undertaken, to
determine whether it would be better to survey each monitoring unit
more intensively, increase the number of units surveyed to obtain bet-
ter coverage or stratify the survey effort to increase coverage toward
areas more likely to be subject to an incursion (Garrard et al., 2008;
Moore et al., 2011; Rout et al., 2011).

Additionally, consideration should also be given to alternative
sources of monitoring information that could supplement scat
monitoring. For example, passively acquired monitoring sources
of fox presence produced by processes such as vehicle collisions
or incidental encounters by hunters (e.g., Caley & Barry, 2014;
Caley, Hosack, & Barry, 2017; Caley et al., 2015) may be a more
cost-effective and powerful option for detecting a fox incursion in

Tasmania.
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