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Abstract
Microglia have fundamental roles in health and disease; however, effects of age, sex, 
and genetic factors on human microglia have not been fully explored. We applied bulk 
and single-cell approaches to comprehensively characterize human microglia tran-
scriptomes and their associations with age, sex, and APOE. We identified a novel mi-
croglial signature, characterized its expression in bulk tissue and single-cell microglia 
transcriptomes. We discovered microglial co-expression network modules associated 
with age, sex, and APOE-ε4 that are enriched for lipid and carbohydrate metabolism 
genes. Integrated analyses of modules with single-cell transcriptomes revealed sig-
nificant overlap between age-associated module genes and both pro-inflammatory 
and disease-associated microglial clusters. These modules and clusters harbor known 
neurodegenerative disease genes including APOE, PLCG2, and BIN1. Meta-analyses 
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1  |  INTRODUC TION

Microglia are the resident macrophages of the central nervous sys-
tem (CNS), responsible for clearance of cellular debris and patho-
logical protein aggregates. In the healthy brain, they exist in a 
homeostatic state and can be induced to a reactive state in response 
to changes in the CNS microenvironment, such as inflammation 
and neuronal damage (Masuda et al., 2020). They are fundamental 
to maintaining brain homeostasis during development, aging, and 
disease; therefore, microglial dysfunction could ultimately lead 
to neurodegeneration (Li & Barres, 2018). Microglia are integral 
to the pathophysiology of neurodegenerative diseases, including 
Alzheimer's disease (AD) and multiple sclerosis, with chronic inflam-
mation implicated as a contributing factor (Hickman et al., 2018; 
Keren-Shaul et al., 2017; Krasemann et al., 2017).

Fresh human brain tissue studies are imperative to the characteri-
zation of the microglial transcriptome in health and disease; however, 
accessibility is limited. Although single nuclei studies using frozen tis-
sue provide an easier alternative, recent studies have demonstrated 
limitations in detecting substantial populations of less abundant cell 
types (Del-Aguila et al., 2019; Mathys et al., 2019). Additionally, it was 
recently reported that many microglial activation genes are expressed 
in the cytosol and therefore are likely to be missed by single nuclei 
RNA sequencing (snRNAseq; Thrupp et al., 2020). Recent single-cell 
studies aiming to characterize microglial gene expression using fresh 
tissue have highlighted the heterogeneity in microglial phenotypes 
(Masuda et al., 2019; Olah et al., 2020; Sankowski et al., 2019). This 
has revealed that phenotypic changes are not binary but rather a spec-
trum of states in which microglia can simultaneously co-exist during 
transition from homeostatic to more reactive states. Additionally, 
these different subsets could have specialized functions in brain ho-
meostasis and dysfunction. Thus, it is increasingly important to char-
acterize these heterogeneous subpopulations to understand their 
roles in health and disease. This could also help facilitate the design 
of novel therapeutic approaches to target-specific subpopulations of 
cells and modulate their activity (Li & Barres, 2018).

Obtaining fresh human tissue from neurosurgeries allows 
us to study the mechanisms of microglial function in living cells. 
Unfortunately, this tissue is usually excised from surgical procedures 
for tumor resection or relieving temporal lobe epilepsy, rendering it 
difficult to distinguish between normal and disease-affected tissue. 
Darmanis et al. (2017) investigated the effect of GBM tumors on CNS 
cell types and surrounding tissue, revealing that myeloid cells are 
greatly affected by the tumor microenvironment. They found that 

peri-tumor myeloid populations were primarily pro-inflammatory mi-
croglia compared to macrophages within the tumor core (Darmanis 
et al., 2017). In temporal lobe epilepsy, two distinct microglial phe-
notypes have been identified with microglia present in sclerotic 
areas with few neurons expressing markers of activation, including 
anti-inflammatory cytokine IL10 (Kinoshita & Koyama, 2021; Morin-
Brureau et al., 2018). The other phenotype occurs transiently follow-
ing a seizure, with secretion of interleukins CXCL8 and IL1B mediated 
by the NLRP3 inflammasome (Morin-Brureau et al., 2018).

Microglial expression has also been shown to be affected by 
aging (Galatro et al., 2017; Olah et al., 2018); however, few studies 
have investigated the effects of sex and genetic factors on human 
microglia. Sex differences in microglia have been previously re-
ported in mice, with females being predisposed to harboring more 
activated microglia than males (Frigerio et al., 2019; Nelson et al., 
2017; Stephen et al., 2019). APOE, a lipoprotein of which the ε4 al-
lele (APOE-ε4) is a major risk factor for AD and also implicated in 
other neurodegenerative diseases (Yamazaki et al., 2019]), is upregu-
lated in disease-associated microglia (DAM) in mice and humans, but 
downregulated in astrocyte and oligodendrocyte subpopulations 
(Grubman et al., 2019; Hammond et al., 2019; Keren-Shaul et al., 
2017; Mathys et al., 2019). In microglia and neurons, APOE inter-
acts with LDL receptors to facilitate endocytosis of cholesterol and 
phospholipids and modulate lipid homeostasis in the brain (Gamache 
et al., 2020). Such studies provide growing support for cell type-
specific functions of APOE; however, its effects on microglia remain 
to be fully elucidated. Thereby, identifying age, sex, and APOE-
associated pathways in microglia will provide greater insight into 
the functions of specific microglial subsets in relation to these risk 
factors. Interindividual variability and diversity in functional states 
makes targeting specific microglial subsets in disease challenging for 
modulating these cells (Li & Barres, 2018). Identifying the mecha-
nisms regulating microglial homeostasis and activation can allow us 
to manipulate these cells for therapeutic purposes.

In this study, we leveraged both bulk and single-cell approaches 
to provide a comprehensive characterization of the adult human mi-
croglial transcriptome. We obtained fresh intraoperative neurosur-
gical brain tissue and isolated an enriched population of microglial 
cells to investigate transcriptional changes associated with age, sex, 
and APOE-ε4 in bulk microglia and further explored these in single 
microglial cells. Our findings support age-, sex-, and APOE-related 
microglial transcriptome changes involving lipid and carbohydrate 
metabolic pathways and implicate microglial immunometabolism 
perturbations relevant to neurodegenerative diseases.

with published bulk and single-cell microglial datasets further supported our find-
ings. Thus, these data represent a well-characterized human microglial transcriptome 
resource and highlight age, sex, and APOE-related microglial immunometabolism per-
turbations with potential relevance in neurodegeneration.
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2  |  RESULTS

To uncover microglial transcriptional profiles and their associa-
tions with age, sex, and APOE, we performed microglial cell type-
specific and single-cell RNA sequencing (scRNAseq) studies in 
fresh human brain tissue. We obtained neurosurgical tissue un-
affected by the primary disease process from 19 human donors 
(Figure S1). Microglia were isolated by CD11b+ microbead selec-
tion followed by FACS sorting of cells expressing the CD11b+/

CD45intermediate microglial signature to acquire a more purified 
population. These samples underwent bulk microglia RNAseq, 
with subsets of these and additional samples also undergoing 
10x scRNAseq (n = 5) and bulk tissue RNAseq (n = 9; Figure 1a; 
Table 1). Validation of sorted microglia using qPCR showed the 
expected CD11b+/CD45intermediate/P2RY12+ microglial signature (Li 
& Barres, 2018) with no expression of other cell type markers, in-
dicating that we isolated a highly enriched microglial population 
(Figure S2).

F I G U R E  1 Characterization of our core human microglial signature. (a) Schematic illustrating our experimental approach for isolating 
microglial populations from fresh brain tissue and data analyses. [Created with BioRender.com] (b) MSigDB GO terms enriched in our 
microglial signature genes and top 25 genes for each. (c) Venn diagram showing number of overlapping genes between our microglial 
signature and those previously reported from Galatro et al. (2017), Gosselin et al. (2017) and Olah et al. (2018). (d) Hypergeometric tests of 
overrepresentation showing overlap with the published signatures
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2.1  |  Identification of a core human microglial 
transcriptional signature

To define a core human microglial signature, we calculated log2 
fold change and q-values of differential expression for each gene 
between bulk microglia RNAseq data in our study and bulk brain 
RNAseq data from 7 AMP-AD datasets provided by Mayo Clinic 
(Allen et al., 2016]), Mount Sinai Brain Bank (Wang et al., 2018), 
and Rush University Religious Orders Study and Memory and Aging 
Project (ROSMAP; De Jager et al., 2018) representing 6 brain re-
gions from 515 human samples. Using a cutoff of 4-fold greater ex-
pression in our bulk microglia and a q-value threshold of 0.05, we 
identified 1971 genes (Table S1–S6). These genes were expressed at 
significantly greater levels in our bulk microglial transcriptome data 
in comparison with each of the bulk brain transcriptome datasets. 
Therefore, we considered these 1971 genes as the core microglial 
signature in our dataset. This signature comprises several known 
marker genes, with 12.7% of the genes being BRETIGEA (McKenzie 
et al., 2018) microglial genes, suggesting that it also likely harbors 
novel microglial markers of interest (Table S7). GO enrichment using 
MSigDB showed that this signature was enriched for genes involved 
in immune-related and inflammatory response pathways as would 
be expected, and leukocyte-mediated immunity (Figure 1b).

To determine the ability of bulk brain tissue data to capture mi-
croglial genes, we assessed the expression levels of our microglial 
signature genes in each of the 7 AMP-AD bulk brain RNAseq data-
sets. Of the 1971 microglial signature genes in our study, 37–47% 
were captured in these bulk brain datasets (Figure S3A-B). Our mi-
croglial signature genes comprised 3.6–4.5% of the expressed bulk 
brain transcriptome, consistent with prior estimations (Mathys et al., 
2019; Wang et al., 2020). We next compared bulk microglia RNAseq 
transcript levels to that obtained from bulk tissue RNAseq of neu-
rosurgical fresh brain tissue samples. Bulk fresh brain tissue does 
not capture all microglial marker genes, as demonstrated by the low 
correlation between bulk tissue and bulk microglia data (R = 0.46, 
p  =  0.94; Figures S3C, S4, Table S6). This reiterates the need for 
complementary single-cell type data to deconvolute cell type-
specific expression. We provide the list of microglial signature genes 
that are also expressed at high levels in bulk brain tissue data (Table 
S5), which can serve as a validated resource for microglial signature 
gene markers in bulk RNAseq datasets.

To determine how the microglial signature in this study compared 
to previously published signatures, we performed hypergeomet-
ric tests of overrepresentation with Galatro et al. (2017), Gosselin 
et al. (2017) and Olah et al. (2018) studies. Significant overlap was 
observed across all datasets, with 350 genes common to all datasets 
(Figure 1c-d, Tables S3–S4, S8). This comprised several established 
microglial marker genes, including P2RY12, TMEM119, and CX3CR1. 
The most significant overlap was shared with Gosselin, et al. 
(Gosselin et al., 2017) signature [OR = 19.6 (17.0-Inf) p = 3.8E-261], 
where 49.7% of their genes were also present in our signature, and 
22% of ours in their signature. Gosselin et al. (2017) samples were 
also obtained from neurosurgical tissue resections like our cohort 

and are unlike Galatro et al. (2017) and Olah et al. (2018) samples 
that were harvested during autopsy. Although there appears to be 
a common set of microglial genes consistent across signatures, each 
also harbors many unique genes, which could be due to study or 
individual specific differences.

2.2  |  Transcriptional profiling of microglia discovers 
co-expression networks and implicates lipid and 
carbohydrate metabolism pathways associated with 
age, sex, and APOE

We generated gene co-expression networks using WGCNA 
(Langfelder & Horvath, 2008) to reduce number of tests and in-
crease power to detect genetic associations with age, sex, and APOE. 
We identified 7  modules with significant associations (Figure 2; 
Figure S5; Table S9). Modules ME14 and ME34 associated with age, 
however, in opposite directions. ME14 was enriched for genes in-
volved in the lipid localization pathway that were upregulated with 
age (R = 0.50, p = 0.03; Figure 2a-c). ME34, enriched for DNA en-
doreduplication genes, had negative association with both age 
(R = −0.55, p = 0.01) and APOE-ε4 (R = −0.50, p = 0.03), indicating 
that microglial transcripts involved in this pathway are downregu-
lated with aging and in APOE-ε4 carriers (Figure 2a). Several other 
modules also associated with APOE-ε4, in either direction. The only 
module associated with sex was ME26, which was downregulated 
in females (R  =  −0.54, p =  0.02), and enriched for genes involved 
in cholesterol absorption and lipid digestion. This module also had 
the most significant association with APOE, in the positive direction 
with presence of APOE-ε4 (R = 0.66, p = 0.002; Figure 2a,b,e). Of the 
APOE-associated modules, ME23  had the second most significant 
association (R = −0.61, p = 0.006) and was enriched for carbohydrate 
metabolism genes (Figure 2a,b,d). Given recent discoveries in micro-
glial immunometabolism (Bernier et al., 2020; Chausse et al., 2020; 
Loving & Bruce, 2020; Marschallinger et al., 2020), we focused on 
ME14, ME23, and ME26 that are enriched for lipid and carbohydrate 
metabolism genes.

ME14 co-expression network (Figure 2c) hub genes NPC2, MSR1, 
and PLAU are also microglial signature genes in our study and known 
to be involved in microglial functions (Butovsky & Weiner, 2018; 
Colombo et al., 2021; Cunningham et al., 2009; DePaula-Silva et al., 
2019; El Khoury et al., 1998]; Mehra et al., 2016). Several disease-
associated microglial (DAM) markers are also present in this net-
work, including CD9, ARAP2, and MYO1E (Keren-Shaul et al., 2017; 
Rangaraju et al., 2018a; Sobue et al., 2021) that are increased with 
aging, implicating activated microglial lipid localization pathways in 
aging (Figure 2f). Several genes in this module were also previously 
linked to neurodegeneration, including MYO1E (Gerrits et al., 2021]; 
Rangaraju et al., 2018b), CTSL, (Cermak et al., 2016) and UNC5B (Ahn 
et al., 2020; Xu et al., 2016). Due to the nature of the tissue, we 
compared expression levels of the key module genes within tumor 
and epilepsy samples (Figure S6). We observed significant differ-
ences due to diagnosis in NPC2, PLAU, APOC1, and IKBKE; therefore, 
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it is important to note that some of their associations may be con-
founded due to the disease state.

Our microglial signature (Tables S1–S3) had significant overrep-
resentation of the age-associated ME14 genes (Table S9; OR = 1.55 
[95% CI = 1.23-INF], p = 0.001), highlighting age-related increases 
in microglial signature genes. Galatro et al. (2017) and Olah et al. 
(2018) also reported age-related microglial signatures. Comparison 
of ME14 genes revealed significant overlap with Olah et al. (2018) 
(OR = 1.34 [95% CI = 1.05-INF] p = 0.03), but not with Galatro et al. 
(2017) microglial aging signature genes (OR = 1.09 [95% CI = 0.81-
INF] p = 0.33).

ME26 cholesterol metabolism pathway genes exhibited re-
duced expression in males and were elevated in APOE-ε4 carriers 
(Figure 2a,b). This module contains known microglial genes LDLR, 
CD36, and CRIP1 (Figure 2e,f). Assessment of individual ME26 net-
work genes revealed C17orf49, RP11-589P10.7, and MIR497HG to be 
the only microglial signature genes in this network to be associated 
with both sex and APOE (Figure 2e). Other microglial signature genes 
in ME26 associated with only sex or only APOE, suggesting that 

these traits may have independent effects on expression of some 
microglial genes. Several APOE-associated genes in ME26 were pre-
viously implicated in AD, including CASP7 (Ayers et al., 2016; Zhang 
et al., 2019) and LDLR (Katsouri & Georgopoulos, 2011; Lämsä et al., 
2008; Figure 2f).

Carbohydrate metabolism gene enriched module ME23 is down-
regulated in APOE-ε4 carriers (Figure 2a,b,d). AD risk genes BIN1 
(Crotti et al., 2019) and PLCG2 (Sims et al., 2017) are present in this 
network, which have both been implicated in microglial dysfunction 
in neurodegeneration (Figure 2d).

2.3  |  Single-cell transcriptome reveals specific 
subtypes of microglia

To uncover distinct microglial subtypes, a subset of sorted micro-
glial samples from neurosurgical brain tissue underwent single-cell 
expression profiling. We obtained 26,558 cells from 5 unique indi-
viduals, including one individual who underwent epilepsy surgery 

F I G U R E  2 Age, sex and APOE ε4 pathway correlations in bulk microglia. (a) Heatmap showing correlation of age, sex and APOE ε4 status 
with WGCNA module eigengenes (MEs) significantly associated (p < 0.05) with traits, with top GO terms listed for each module. (b) Module 
eigengenes stratified by age or APOE ε4 status. (c) Module M14 gene co-expression network, with genes of interest highlighted according to 
the key. Genes upregulated with age shown in red triangle ( ). Bar plot of top 10 significant GO terms (p < 0.05) for this module. (d) Module 
23 gene co-expression network, with genes downregulated in APOE ε4 carriers shown in blue arrow ( ). Bar plot of top 10 significant GO 
terms (p < 0.05) for this module. (e) Module 26 gene co-expression network, with genes upregulated in APOE ε4 carriers shown in orange 
triangle ( ). Bar plot of top 10 significant GO terms (p < 0.05) for this module. (f) Violin plots showing expression of key genes in modules, 
stratified by age or APOE. *p < 0.05; **p < 0.01; ***p < 0.001
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F I G U R E  3 Single-cell microglial data. (a) UMAP of clustered cells annotated with putative subtypes using cell type markers from the 
literature. (b) Stacked bar plot showing the distribution of cells across the clusters. (c) Dot plot showing the expression of key significant 
module genes across clusters. (d) Hierarchical clustering to highlight relationships between clusters. (e) Hypergeometric distribution of 
enrichment between module genes and clusters, showing number of overlapping genes. * Represents module genes that were significantly 
enriched in the cluster (p < 0.05)
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and had samples from two brain regions (Table 1). Analysis of the 
scRNAseq data from these samples revealed 13 distinct cell clus-
ters, which were annotated using established neuronal and glial 
marker genes from the literature (Darmanis et al., 2015; Keren-Shaul 
et al., 2017; Masuda et al., 2019; Mathys et al., 2019; Olah et al., 
2020; Rangaraju et al., 2018a; Sankowski et al., 2019; Zhou et al., 
2020; Figure 3a, Tables S10-S16). Myeloid markers (AIF1, PTPRC, 
and C1QA) were detected in all clusters except cluster 12 which ex-
pressed oligodendrocyte markers (PLP1, MBP, and MOBP). Cluster 
9 expressed macrophage-specific markers (VCAN, FCN1, CRIP1, and 
S100A8). These two clusters comprised <3% of all cells, indicating 
that our sorted samples represent a very pure microglial popula-
tion. Each myeloid cluster had cellular contributions from all sam-
ples, albeit with some variability in their proportions, likely due to 
intrinsic differences between individuals (Figure 3b, Table S11). For 
these samples, the most marked difference was observed for mac-
rophages (cluster 9) and homeostatic microglia (cluster 2), which had 
greater contributions from the mesiotemporal and anterior temporal 
regions, respectively. This could be due to the proximity of the mesi-
otemporal sample to the disease-affected region.

We characterized the microglial clusters by their expression of es-
tablished microglial subtype markers (Figure 3c, Figure S7) and their 
most significant marker genes (Figure S8). Homeostatic (TMEM119, 
P2RY12, and CX3CR1; Masuda et al., 2019; Rangaraju et al., 2018a; 
Sankowski et al., 2019; Zhou et al., 2020), pro-inflammatory (CCL2, 
CCL4, Masuda et al., 2019; Sankowski et al., 2019) and DAM markers 
(APOE, C1QA, and C1QB; Hammond et al., 2019; Keren-Shaul et al., 
2017; Olah et al., 2020; Sankowski et al., 2019) were observed in 
clusters 2, 1/6, and 10, respectively. Cluster marker genes are de-
fined as those expressed in at least 70% of the cells in the cluster 
with log fold change >0.6 and q < 0.05 in comparison to all other clus-
ters. Expression levels of the top marker genes per cluster are shown 
(Figure 3c; Figure S8; Table S12). Most of these markers are distinct 
to a single cluster, although some clusters appeared to have simi-
larities in their marker expressions. To define the proximity of their 
transcriptional profiles, we performed hierarchical clustering of the 
microglial clusters (Figure 3d). We determined that the homeostatic 
microglia cluster 2 was transcriptionally closest to clusters 7 and 11, 
which may represent subtypes of homeostatic microglia. Cluster 11 
is enriched for markers of cell proliferation (STMN1, H2AFZ, PCNA, 
and MKI67), some of which were also observed by Olah et al. (2020), 
suggesting that these could be proliferating microglia. Clusters 1 and 
6 both expressed inflammatory chemokines CCL2 and CCL4 and anti-
inflammatory molecule EGR2; however, cluster 6 was more closely 
related to DAM, whereas cluster 1 (named as Leukocyte-recruiting 
cluster) represented a more pro-inflammatory signature with greater 
expression of IL6 and TNFα. Cluster 6 (named as interferon-response 
cluster) also highly expressed interferon-related marker IFITM3 and 
ISG15, also observed in a cluster by Olah et al. (2020), which they 
defined as an interferon response-enriched subset. The upregula-
tion of chemokines and interleukins in these clusters suggest that 
they could be involved in recruitment of other immune cells. These 
findings highlight different transcriptional profiles for these two 

inflammatory clusters that may represent distinct activated microg-
lia subtypes. Cluster 3 highly expressed heat shock protein HSPA1A, 
an immediate early gene (Schmunk et al., 2020) reportedly involved 
in antigen processing (Aung et al., 2012), response to stress and 
injury and exhibiting decreased gene expression in multiple sclero-
sis patients (Gandhi et al., 2010; Satoh et al., 2005). Several were 
upregulated in this cluster, suggesting that this may represent cells 
that underwent dissociation-induced stress (Sankowski et al., 2019). 
Several of the clusters did not express well known existing cell type 
markers. Clusters 5/8 and FOS+0/4 were transcriptionally closest to 
one another (Figure 3d). Cluster 5 has distinct expression of immu-
noreactive marker CD163, which was not observed in other subsets 
except macrophages. Several HLA genes are also highly expressed 
in this cluster, suggesting that these may be immunoreactive mi-
croglia (Hendrickx et al., 2017). Cluster 8 marker FTL has recently 
been used to characterize iron-accumulating microglia (Kenkhuis 
et al., 2021). Our findings highlight transcriptional profiles for known 
microglial clusters, describe the transcriptional proximity of these 
clusters and suggest that less well-defined clusters could potentially 
represent novel or intermediate transcriptional states of microglia. 
Our microglial signature was significantly enriched in more clusters 
expressing more activated markers (Table S13), implicating this as 
the dominant expression profile within our samples. However, there 
is also enrichment of homeostatic cluster 2, demonstrating that we 
have not only captured activated cells as might be expected due to 
the nature of the tissue.

To determine whether the bulk microglial co-expression net-
works (Figure 2a,c-e, Figure S5) were representative of microglial 
subtypes, we performed enrichment analyses of the module genes 
within the myeloid clusters with sufficient cell numbers (Figure 3e; 
full enrichment statistics provided in Table S15). Age-associated 
co-expression network ME14, implicated in lipid metabolism, was 
significantly enriched in interferon-response (cluster 6) and DAM 
(cluster 10) clusters. Genes within module 28, which was significantly 
upregulated with APOE-ε4, had statistically significant enrichment in 
all clusters except cluster 7. There was no statistically significant en-
richment for any of the other microglial modules that had significant 
age, sex, or APOE associations, suggesting that these factors may 
have ubiquitous effects on most microglial subtypes. Some of the 
remaining microglial co-expression networks had distinct patterns 
of cluster enrichment (Figure S9), suggesting that some but not all 
networks could be representative of distinct microglial subtypes.

2.4  |  Meta-analyses with published datasets 
support age, sex, and APOE associations

Each dataset was individually processed through the same MAPR-seq 
pipeline for quality control to minimize variability due to data pro-
cessing. Meta-analysis of WGCNA results was performed by coerc-
ing the external dataset co-expression networks onto our existing 
co-expression networks. The forest plot in Figure 4a highlights the 
individual and combined associations for networks of interest across 
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the datasets where age, sex, or APOE information was available (Table 
S17). For module ME14 associations with age, Galatro et al. (2017) 
also exhibited a similar direction of effect (R = 0.30, p = 0.06), whereas 
Srinivasan et al. (2020) did not show any association (R  =  −0.003, 
p = 0.99), likely due to a higher median age of individuals in the study. 
When meta-analyzed, sex-associated ME26 genes were significantly 
downregulated in males in all datasets, supporting our finding. This 

module was also significantly associated with APOE e4 carriers in the 
Srinivasan dataset (R = 0.42, p = 0.04). However, Srinivasan samples 
were inversely correlated with APOE for ME23 in comparison to our 
data (R = 0.61, p = 0.07). Srinivasan et al. (2020) was inversely cor-
related with age and APOE for ME23, but not with sex or APOE for 
ME26. Overall, it appears that the direction of effects was similar for 
correlation with these traits in most datasets (Figure S10).

F I G U R E  4 Meta-analysis with published datasets. (a) Forest plots of module eigengene correlations across datasets and meta-analyzed. 
(b) Integrated UMAP of our and Olah et al. (2020) single-cell data, split by dataset. (c) Stacked bar plot showing the distribution of cells across 
the clusters. (d) Dot plot showing the expression of key significant module genes across clusters
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We subsequently integrated microglial single-cell data from Olah 
et al. (2020) (n  =  9, 15,819 cells) with our samples (n  =  6, 26,856 
cells) to show how these single-cell datasets compared. The UMAP 
in Figure 4b is split by study and shows relatively even contributions 
to each cluster from both datasets, also observed in the stacked bar 
plot in Figure 4c. However, a greater number of Olah cells were ob-
served in cluster 10, which had similar expression patterns to our 
original FOS+ cluster 0. Hypergeometric tests of enrichment showed 
significant overlap between several of the original and integrated 
clusters, showcasing the high congruence between our data and 
Olah et al (Tables S18–S20). To further identify where our individual 
cells clustered when combined with the Olah dataset, we overlaid 
the cell IDs from the original clusters to the integrated dataset and 
calculated the percentage overlap (Table S20). A larger proportion of 
cells from Olah et al expressed markers of activation than homeo-
static genes, indicating a greater enrichment for activated microg-
lia. Many clusters retained their identity, as evidenced by the dot 
plot (Figure 4d) which shows some of the same top marker genes to 
that in Figure 3c. Additionally, enrichment of our microglial signature 
in the integrated single-cell dataset was observed in several clus-
ters, many of which highly expressed markers of activated microglia 
(Table S18). This is similar to what we observed in our single-cell data 
(Table S13), supporting the notion that our microglial signature is en-
riched for activated cells.

3  |  DISCUSSION

Given their critical functions in maintaining homeostasis in the cen-
tral nervous system (CNS) in health and their multifaceted roles dur-
ing neurological diseases (Hickman et al., 2018; Li & Barres, 2018), 
understanding the biology of microglia and characterizing microglial 
subtypes is essential. Large-scale studies in bulk brain tissue (Allen 
et al., 2016]; De Jager et al., 2018; Wang et al., 2018) have been in-
strumental in establishing transcriptional profiles in health and neu-
rodegenerative diseases. Although these studies yielded information 
on brain expression signatures and uncovered perturbed pathways 
and molecules implicated in Alzheimer's disease and other neurologi-
cal disorders (Allen et al., 2018a, 2018b; Mostafavi et al., 2018; Neff 
et al., 2021), they are limited in their ability to provide cell type-specific 
transcriptional outcomes, especially for less abundant CNS cells such 
as microglia (Wang et al., 2020). Analytic deconvolution approaches 
began to leverage these bulk tissue transcriptome datasets to esti-
mate cell type-specific expression profiles (McKenzie et al., 2018; 
Wang et al., 2020), but the accuracy of these methods relies on the 
availability of high-quality single cell-type datasets. Such microglia-
specific transcriptome datasets are gradually emerging (Galatro 
et al., 2017; Gosselin et al., 2017; Olah et al., 2018, 2020), although 
the numbers of unique samples assessed remain limited given the 
arduous nature of collecting fresh human brain tissue. Additionally, 
comparative assessment of bulk brain vs. single cell-type bulk micro-
glia vs. single-cell microglia studies are still rare (Alsema et al., 2020; 
Olah et al., 2020; Srinivasan et al., 2020). To our knowledge, there 

are no studies that evaluate human microglial transcriptome using all 
three approaches, as in our study. Further, investigations on effects 
of genetic and other factors on microglial transcriptional signatures in 
humans is likewise sparse, with the exception of age-related effects 
assessed in a few studies (Galatro et al., 2017; Gosselin et al., 2017; 
Olah et al., 2018). Finally, unlike in bulk tissue studies (Allen et al., 
2018a, 2018b; McKenzie et al., 2018; Mostafavi et al., 2018; Neff 
et al., 2021), microglia-specific co-expression networks, their molecu-
lar signatures and functional implications have not been evaluated.

In this study, we sought to overcome these knowledge gaps by 
characterizing the transcriptome of sorted bulk and single-cell mi-
croglial populations isolated from fresh human brain tissue. We iden-
tified a robust microglial signature comprising 1971 genes enriched 
for immune-related functions. These signature genes were selected 
due to their consistently higher expression levels in our sorted bulk 
microglial transcriptome in comparison with 7 different bulk brain 
tissue datasets from 6 different regions (Allen et al., 2016; De Jager 
et al., 2018; Wang et al., 2018). We also compared sorted bulk mi-
croglia to bulk fresh brain tissue and identified transcripts that are ex-
pressed in both. The microglial signature genes that are also reliably 
detected in bulk brain tissue represent a validated list of microglial 
markers that can be utilized in bulk brain tissue transcriptome ana-
lytic deconvolution studies (McKenzie et al., 2018; Wang et al., 2020).

Our microglial signature significantly overlapped with other sig-
natures from bulk microglia previously reported by Galatro et al. 
(2017), Gosselin et al. (2017) and Olah et al. (2018), implicating a core 
set of genes consistently expressed in this cell type. However, there 
were additional genes unique to each signature, likely to be driven by 
factors such as patient demographics or study differences. Galatro 
et al. (2017) and Olah et al. (2018) both also reported age-related 
microglial expression signatures. We found significant overlap of our 
age-associated microglial gene expression module ME14 genes with 
the latter, which was also enriched for our microglial signature. This 
indicates that bulk microglial profiles can effectively capture genes 
affected by aging in microglia.

We leveraged the co-expression network structure of sorted 
bulk microglia to further explore whether microglial subsets were 
associated with age, sex, or APOE-ε4. To our knowledge, sex differ-
ences in microglial transcriptome were previously studied only in 
mice (Frigerio et al., 2019; Nelson et al., 2017; Stephen et al., 2019); 
however, APOE genotype-specific microglial interactions with am-
yloid plaques have been previously observed in mice (Shi et al., 
2019; Stephen et al., 2019) and humans (Nguyen et al., 2020). We 
identified two network modules associated with age, one with sex 
and six with APOE-ε4. We observed that two modules, ME14 that is 
positively associated with increased age; and ME26 that is positively 
associated with both APOE-ε4 and female sex, were both enriched 
for lipid metabolism biological terms (Chausse et al., 2020; Loving 
& Bruce, 2020; Marschallinger et al., 2020). Module ME14 included 
genes involved in lipid localization and storage pathways (PLIN2, IL6, 
LPL, MSR1, ENPP1, PPARG, PTPN2, SOAT1, IKBKE) and ME26  had 
lipid digestion/cholesterol transport pathway genes (CD36, LDLR). 
Both modules harbored known microglial genes (LDLR, CD36, CRIP1, 
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NPC2, MSR1, PLAU) and those that are included in our microglial sig-
nature (PLIN2, IL6, MSR1, SOAT1, IKBKE, NPC2, PLAU).

Comparing the sorted bulk microglial network modules to 
scRNAseq microglial clusters, we determined that ME14 genes were 
significantly over-represented in interferon-response cluster 6 and 
disease-associated microglia (DAM) cluster 10. In our study, DAM 
cluster 10 included APOE, APOC1, ASAH1, and CTSD. Of these APOE 
(Leduc et al., 2010; Loving & Bruce, 2020; Yamazaki et al., 2019), 
APOC1 and ASAH1 (Paciotti et al., 2020) are involved in lipid metab-
olism and neurodegenerative diseases. APOE (Hammond et al., 2019; 
Keren-Shaul et al., 2017; Krasemann et al., 2017), APOC1(Hammond 
et al., 2019), and CTSD (Keren-Shaul et al., 2017) were also signature 
genes in mouse models of neurodegenerative diseases (Keren-Shaul 
et al., 2017; Krasemann et al., 2017) or aging (Hammond et al., 2019). 
Our interferon-response cluster 6 also included genes associated 
with mice microglial neurodegenerative (FTH1 Keren-Shaul et al. 
(2017)) or aging signatures (CCL4 Hammond et al. (2019)), as well 
as IFITM3 (Marschallinger et al., 2020) and GOLGA4 (Marschallinger 
et al., 2020), previously shown to be upregulated in aging lipid drop-
let accumulating microglia (Marschallinger et al., 2020). Our find-
ings that integrate human sorted bulk RNAseq and scRNAseq data, 
support a model where aging human microglia transition to a pro-
inflammatory and disease-associated transcriptional profile, which is 
also associated with perturbations in lipid metabolism in these cells.

There is increasing evidence that tightly controlled lipid metabo-
lism is essential to the functions of microglia during development and 
homeostatic functions of adulthood and may be disrupted in aging 
and disease (Chausse et al., 2020; Loving & Bruce, 2020). The com-
plex interactions between microglial lipid metabolism and its cellular 
functions rely on lipid sensing by microglial receptors such as CD36 
and TREM2 and uptake of lipids, including LDL and APOE (Chausse 
et al., 2020; Loving & Bruce, 2020). These interactions are necessary 
for microglia to become activated and perform functions including 
phagocytosis of myelin (Nugent et al., 2020) and misfolded proteins 
like amyloid ß (Yeh et al., 2016), cytokine release, migration and pro-
liferation (Bernier et al., 2020; Chausse et al., 2020). Studies primarily 
focused on in vitro and animal models suggest disruption of the mi-
croglial immunometabolism and assumption of a pro-inflammatory 
phenotype with aging (Hammond et al., 2019; Koellhoffer et al., 
2017; Marschallinger et al., 2020; Norden & Godbout, 2013) and 
diseases including multiple sclerosis (MS) and Alzheimer's disease 
(Keren-Shaul et al., 2017; Krasemann et al., 2017; Ulland et al., 2017). 
Interestingly, microglial lipid droplet accumulation has been demon-
strated under all these conditions (Chausse et al., 2020; Loving & 
Bruce, 2020; Marschallinger et al., 2020; Nugent et al., 2020) and 
lipid droplet accumulating microglia in aging mice were shown to 
have a unique transcriptional state (Marschallinger et al., 2020). 
Our findings in sorted cells from fresh human brain tissue provide 
transcriptional evidence for immunometabolism changes and pro-
inflammatory phenotype with microglial aging, thereby contributing 
essential complementary data from humans for this cell type.

Besides module ME14, we determined that ME26 is also enriched 
for lipid metabolism genes. ME26 module expression is higher in both 

APOE-ε4 and female sex; however, we note that in our sorted bulk 
microglia RNAseq samples, there were no male APOE-ε4 carriers. 
Therefore, the distinct influence of sex and APOE on the expression of 
this module remains to be established. APOE-ε4, a major risk factor for 
Alzheimer's disease, has the lowest lipid binding efficiency compared 
with other APOE isoforms (Chausse et al., 2020). Increased choles-
terol accumulation has been reported in both iPSC-driven astrocytes 
from APOE-ε4 carriers (Lin et al., 2018) and in Apoe-deficient microg-
lia (Nugent et al., 2020). These findings collectively support a role for 
APOE-ε4 associated microglial transcriptional changes and disrupted 
cholesterol metabolism. Using our sorted microglia RNAseq data, we 
identified five additional modules that associate with APOE-ε4, one in 
a positive direction (ME28) and four negatively (ME4, ME23, ME34, 
and ME36). Of these, module ME23 had the second most significant 
APOE-ε4 association after ME26. Interestingly, ME23 was enriched for 
carbohydrate metabolism biological processes, which are also tightly 
regulated in microglia (Bernier et al., 2020). Module ME23 harbors 
known AD risk genes BIN1 and PLCG2, where the latter is a microg-
lial gene that modulates signaling through TREM2 (Andreone et al., 
2020) and also a hub gene in this module. ME23 genes BIN1, JUN, and 
TGFBR2 were found to be reduced in a mouse microglial neurode-
generative phenotype gene signature (Krasemann et al., 2017). These 
findings further demonstrate the consistency of our human microglial 
data with that from mouse models and supports perturbed microglial 
immunometabolism as a potential pathogenic mechanism in neurode-
generation. Many of the meta-analysis results comprising published 
datasets from Galatro et al. (2017), Olah et al. (2018), and Srinivasan 
et al. (2020) supported the directions of effects we had observed in 
our study despite small sample numbers.

In addition to analyzing gene expression modules from sorted 
bulk microglia, we also identified microglial clusters from sorted mi-
croglial scRNAseq data. To our knowledge, there are only two prior 
publications of scRNAseq characterizations on human microglia 
(Masuda et al., 2019; Olah et al., 2020). Masuda et al. (2019) analyzed 
1,602 microglia isolated from 5 control and 5 MS patient brains, 
compared their findings to those from mice demonstrating clusters 
that are common and others that are species-specific. Olah et al. as-
sessed 16,242 microglia from 17 individuals and characterized sub-
clusters of microglia from patients with mild cognitive impairment, 
AD, and epilepsy (Olah et al., 2020). Our scRNAseq dataset is from 
5 unique individuals comprising 26,558 cells, 99.98% of which have 
myeloid markers. A small cluster highly enriched for mature oligo-
dendrocyte and some neuronal marker genes were observed (Table 
S11). As there were only 5 cells in this cluster, this is likely to denote 
contamination from the sorting procedures. We identified microglial 
clusters that share characteristics of those previously reported in 
mice (Keren-Shaul et al., 2017) and humans (Nguyen et al., 2020; 
Olah et al., 2020), such as DAM. We also uncovered clusters that 
had not been previously characterized in the literature, including 
cluster 7, exhibiting high expression levels of astrocytic marker gene 
SLC1A3. Microglial expression of SLC1A3 was previously shown to 
occur in mice and humans especially in disease states (Chrétien et al., 
2004; Grassivaro et al., 2020; Wilhelmsson et al., 2017). We also 
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leveraged these scRNAseq data to further characterize the sorted 
bulk microglial expression modules. Integration of our samples with 
Olah et al. allowed us to explore microglial subtypes at single-cell 
resolution with increased power. We found that even in this larger 
dataset, our microglial signature was similarly enriched in the more 
activated subtype clusters, demonstrating the robustness of this sig-
nature across datasets. The homogeneity in clustering highlighted 
shared expression patterns between cells from both datasets, pro-
viding further support for the putative microglial subtypes we iden-
tified here. Hence, our microglial scRNAseq data contribute further 
to the emerging single-cell landscape of this cell type.

Activated microglia are a hallmark in both brain cancers and tem-
poral lobe epilepsy in response to the inflammation (Darmanis et al., 
2017; Kaminska et al., 2021; Kinoshita & Koyama, 2021; Morin-
Brureau et al., 2018; Ochocka et al., 2021). We acknowledge that 
the tissue used in this study is sourced from tumor or epileptogenic 
tissue adjacent regions in individuals with diagnoses of brain tumors 
or epilepsy, meaning it is not entirely healthy. Therefore, it is possible 
that the activated subtypes we identify here may be due to the na-
ture of the tissue. Additionally, sex-specific expression differences 
have been observed in glioma-activated microglia (Ochocka et al., 
2021). Nonetheless, we did not observe significant differences in 
most genes we highlighted here due to diagnosis (Figure S5). There 
is also a large cluster of homeostatic microglia present in these sam-
ples, indicating that not all cells are activated. While the focus of our 
work is AD, these findings also have potential relevance in the fields 
of cancers, epilepsy, and other diseases.

We recognize that our study has several limitations, primarily 
owing to the difficulty in obtaining high-quality neurosurgical brain 
tissue, which leads to limited sample size and variability in tissue, diag-
noses, and patient demographics. Even though we have utilized tissue 
surgically separated from disease tissue, the samples are from epilepsy 
and various brain tumor patients representing multiple diagnoses. We 
isolated microglia using an approach which should minimize activation; 
however, we cannot definitively rule out stress-induced transcriptomic 
changes during isolation. Despite these caveats, we could identify 
microglial co-expression modules and subclusters with multiple fea-
tures that are consistent with prior publications from model systems 
(Hammond et al., 2019; Keren-Shaul et al., 2017; Krasemann et al., 
2017; Marschallinger et al., 2020). Our scRNAseq clusters have con-
tributions from both tumor and epilepsy samples, suggesting that our 
findings are unlikely to be driven by any one diagnoses. Furthermore, 
there are few published studies using fresh brain tissue to study mi-
croglia and thus our integrated single-cell data showing a homogenous 
cluster of microglia highlights the robustness of the methodology.

In summary, our study on sorted bulk microglia RNAseq and 
scRNAseq from fresh brain tissue yield several key findings. We iden-
tify a microglial gene signature from sorted bulk microglia, character-
ize its expression in bulk brain RNAseq across 7 datasets comprising 
6 regions, in bulk fresh brain RNAseq and in microglial scRNAseq 
subtype clusters. This signature provides a well-characterized re-
source which can be utilized in analytic deconvolution studies of bulk 
transcriptome data (McKenzie et al., 2018; Wang et al., 2020). We 

uncovered microglial gene expression modules associated with age, 
sex and/or APOE-ε4. Modules with age and APOE-ε4-associated tran-
scriptional changes implicate microglial lipid and carbohydrate metab-
olism perturbations and microglial activation. Microglial scRNAseq 
data highlight the transcriptional complexity of this cell type, reveal 
both known and novel cell types, and demonstrate utility of this data 
in characterizing sorted bulk RNAseq data. These findings provide 
support for the emerging microglial immunometabolism (Bernier 
et al., 2020; Chausse et al., 2020) pathway as a plausible therapeu-
tic target in aging-related disorders; and provide a well-characterized 
human transcriptome resource for the research community on this 
cell type with central roles in health and disease (Masuda et al., 2020).

4  |  MATERIAL S AND METHODS

4.1  |  Patient samples

Fresh human brain tissue was obtained from patients undergoing 
neurosurgical procedures for epilepsy or tumor resection. Tissues 
determined to be grossly unaffected by the primary disease process 
were utilized for the present study (Figure 1). Patient samples were 
transported from the operating room to the laboratory in 1X DPBS 
(Thermo Fisher; 14287080) for processing within 1–2 h of resection. 
Human tissue was collected with informed consent prior to surgery 
and all procedures were approved by the Mayo Clinic Institutional 
Review Board and are HIPAA compliant.

4.2  |  Tissue dissociation

Tissue was dissected to remove necrotic tissue, white matter and 
excess vascular tissue, to retain only cortical gray matter. The re-
maining tissue was cut into sagittal slices and weighed before being 
processed using the Adult Brain Dissociation Kit (Miltenyi; 130-107-
677) as per the manufacturer's protocol. Debris removal (Miltenyi; 
130-109-398) and red blood cell lysis (Miltenyi; 130-094-183) were 
also performed. All procedures were carried out on ice. The resulting 
homogenate was filtered through a 70-µm filter before proceeding.

4.3  |  Magnetic-activated cell sorting (MACS)

The cell suspension was first enriched for CD11b+ cells by incubat-
ing with anti-CD11b microbeads (Miltenyi; 130–049–601  clone 
M1/70) for 15 minutes according to manufacturer's recommenda-
tion. This was then washed with PB buffer (0.5% BSA, 1X PBS Ca2+/
Mg2+ free pH 7.4) and filtered through a 70µm cell strainer before 
being applied to a large separation column (Miltenyi; 130-042-401) 
in a QuadroMACS separator magnet (Miltenyi; 130-090-976). The 
CD11b+ fraction was collected and resuspended in sterile filtered 
FACS staining buffer (1X PBS Ca2+/Mg2+ free, 0.5% BSA, 2% FBS, 
3mM EDTA) for antibody staining.
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4.4  |  Fluorescence-activated cell sorting (FACS)

MACS sorted CD11b+ cells subsequently underwent FACS sorting 
to further purify the microglial population. The cell suspension was 
incubated in Human TruStain FcX blocking solution (1:20, Biolegend; 
422302) at room temperature for 10  min. Subsequently, cells were 
stained with anti-CD11b PE/Cy7 (1:100, Biolegend; 101206, M1/70) 
and anti-CD45 Alexa Fluor 647 (1:100, Biolegend; 304056, HI30) an-
tibodies for 30 min on ice. Following two washes with FACS staining 
buffer, SYTOX Green viability dye (1:1000, Thermo Fisher; S7020) was 
added for an additional 20 minutes. Single-cell suspensions were filtered 
through a 40µm cell strainer (Falcon; 352235) before sorting on a BD 
FACS Aria II (BD Biosciences). CD11b+/CD45intermediate/SYTOX green− 
cells were sorted directly into FACS staining buffer. Independently 
CD11b and CD45 are not microglial specific markers; however, gating 
cells with a CD11b+/CD45intermediate signature allowed us to differenti-
ate microglia from peripheral myeloid cells, such as macrophages, which 
are expected to be CD45high. An example of our FACS gating strategy is 
provided in Figure S2A. Briefly, we used cell lines expressing the mark-
ers of interest as positive controls to independently set the gates for 
CD11b (RAW 264.5 mouse macrophage cells) and CD45 (Jurkat cells) 
expression. CD45 intermediate cells were determined by selecting for 
mid-level fluorescence within this gate. This was used to sort cells for 
both bulk and single-cell RNAseq data generation to reduce the likeli-
hood of peripheral myeloid cell contamination in the samples.

4.5  |  RNA isolation and sequencing

RNA from sorted microglial cells was isolated using the miRNe-
asy Serum/Plasma Kit (QIAGEN; 217184) and quantified on the 
Agilent BioAnalyzer 2100. cDNA libraries were generated using 
SMARTSeq2 v4 and Nextera Low Input Library Prep Kit. Samples 
were multiplexed and sequenced on the Illumina HiSeq 4000.

RNA from frozen bulk tissue was isolated using Trizol and chloro-
form, followed by DNase and clean up using the Rneasy Kit (QIAGEN; 
74106). Libraries were generated using the TruSeq Stranded mRNA 
Library Prep Kit. Samples were multiplexed and sequenced on the 
Illumina HiSeq 4000. Base-calling of all sequence data was per-
formed using Illumina's RTA v2.7.7.

4.6  |  10X Single cell 3’ v3 library preparation of 
sorted microglia

Viability of MACS plus FACS sorted cells was assessed by Trypan 
blue (Gibco; 15250061) exclusion and cell density was determined 
using a hemocytometer prior to adjustment to target 4000–5000 
cells. Cells were loaded onto a 10X Chromium chip and run on the 
GemCode Single Cell Instrument (10X Genomics) to generate single-
cell gel beads-in-emulsion (GEMs). Single-cell RNAseq libraries were 
prepared using the Chromium Single Cell 3’ Gel Bead and Library Kit 
v2 and v3 (10X Genomics; 120237) and the Chromium i7 Multiplex 

Kit (10X Genomics; 120262) according to the manufacturer's instruc-
tions. Quality of cDNA libraries was determined using a BioAnalyzer 
2100 DNA High Sensitivity assay (Agilent; 5067–4626) prior to se-
quencing one per lane on an Illumina HiSeq 4000.

4.7  |  Validation with quantitative real-time PCR

Total RNA was extracted from sorted cells using the miRNeasy Serum/
Plasma Kit (QIAGEN; 217184). Concentration and quality were as-
sessed using the Agilent BioAnalyzer RNA 6000 Pico Kit (Agilent; 5067-
1514). RNA was normalized to 0.5ng/µl for cDNA synthesis using the 
SuperScript IV VILO Master Mix (Thermo Fisher; 11756050). TaqMan 
PreAmp Master Mix (Thermo Fisher; 4391128) was used to pre-amplify 
the cDNA, followed by TaqMan Universal PCR Master Mix (Thermo 
Fisher; 4304437) with the following gene expression probes: MOG, 
AQP4, THY1, PTPRC, ITGAM, P2RY12, PECAM1, CD34, GAPDH (Thermo 
Fisher; Hs01555268_m1, Hs00242342_m1, Hs00174816_m1, 
Hs04189704_m1, Hs00355885_m1, Hs00224470_m1, Hs01065279_
m1, Hs02576480_m1, Hs99999905_m1). RT-qPCR was performed on 
a QuantStudio 7 Flex Real-Time PCR System (Thermo Fisher) using a 
relative standard curve to quantify gene expression.

4.8  |  Validation with immunocytochemistry

Cultured cells were fixed with 4% paraformaldehyde (PFA) over-
night at 4°C and blocked with blocking solution (10% BSA, 5% nor-
mal goat serum and 0.1% Triton-X). Fixed cells were stained with 
anti-TMEM119 (1:100, Biolegend; 853302) extracellular primary 
antibody with Goat anti-mouse IgG secondary antibody conjugated 
to Alexa-488 (1:100, Abcam; ab150113). Nuclei were stained with 
1µg/ml DAPI (1:1000, Thermo Fisher; 62248) before mounting with 
AquaPoly Mount (Poly Sciences, 18606-20). Images were acquired 
with a Zeiss LSM880 Confocal microscope using a Plan-Apochromat 
20x magnification and 0.8 objective at 1024 by 1024 pixels with a 
0.5 microsecond pixel dwell time.

4.9  |  Data analysis

4.9.1  |  Bulk microglia RNAseq processing

The MAPR-Seq pipeline (Kalari et al., 2014) was used to align reads to 
human reference genome hg38 using STAR (Dobin et al., 2013) and 
count reads using featureCounts (Liao et al., 2014). FastQC was used 
for quality control (QC) of raw sequence reads, and RseQC was used for 
QC of mapped reads. Quality measures were examined including base 
calling quality, GC content, mapping statistics and sex check to ensure 
consistency between the recorded and inferred sex from expression 
of chromosome Y genes. Raw read counts were normalized using 
Conditional Quantile Normalization (CQN) to generate log2  scaled 
expression values via the Bioconductor package cqn, accounting for 
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sequencing depth, gene length and GC content. Normalized CQN 
expression values were assessed using Principal components analysis 
(PCA) to identify and remove outliers, defined as greater than 4 stand-
ard deviations from the mean of the first two principal components. In 
addition, RPKM (reads per kilo bases per million) values were calculated.

4.10  |  Identification of a core microglial signature 
from bulk microglia data

To define a core microglial signature, we compared our bulk microglia 
data to cognitively normal control samples from the AMP-AD bulk 
tissue transcriptome data from 7 different datasets representing 6 
brain regions (Synapse ID: syn2580853); Mayo Clinic (Allen et al., 
2016]) (cerebellum and superior temporal gyrus), Mount Sinai Brain 
Bank (Wang et al., 2018) BM10 (frontal pole), BM22 (superior tem-
poral gyrus), BM36 (parahippocampal gyrus), BM44 (inferior frontal 
gyrus), and Rush University Religious Order Study-Memory and Aging 
Project (ROSMAP; De Jager et al., 2018) (dorsolateral prefrontal cor-
tex). Raw gene counts and metadata (see Acknowledgments) were 
obtained from the AMP-AD RNAseq Harmonization study which had 
performed alignment and processing of all datasets and brain regions 
through a consensus pipeline (Wan et al., 2020). Samples were re-
moved that had inconsistent sex between that indicated in metadata 
and that inferred from RNAseq expression; a RIN <5; were identified 
as gene expression outliers based on principal component analysis 
(PCA) (>4 standard deviation (SD) from mean PC1 or PC2), or miss-
ing metadata. In addition, duplicates (lowest read count sample re-
moved) and those with rRNA (>5%) were removed from the MSBB 
datasets. Furthermore, samples not meeting neuropathological cri-
teria as Alzheimer's disease (AD; McKhann et al., 1984) or control 
were excluded. To generate the microglial expression signature, only 
control samples from the AMP-AD datasets were included. Raw read 
counts were normalized using Conditional Quantile Normalization 
(CQN). Log2 fold change and q-values between each bulk tissue brain 
region and the bulk microglia profiles were calculated for each gene 
via linear regression using log2 (RPKM) without correction for covari-
ates. Genes were filtered using a cutoff of 4-fold greater expression 
in bulk microglia compared to each bulk tissue region and q < 0.05. 
Genes that passed these criteria and were significant in comparisons 
with all 7 bulk brain datasets determined the microglial signature. 
These signature genes were assessed for GO term enrichment with 
biological pathways using MsigDB. REViGO (Supek et al., 2011) tree 
plots were generated in R using GO terms obtained from MsigDB.

4.11  |  Weighted gene co-expression 
network analysis

The CQN normalized expression values from bulk microglia were 
input to R WGCNA (Langfelder & Horvath, 2008) package v1.69. 
This analysis included 14,149 expressed genes, that is, median (CQN) 
> 2. Modules were identified, their eigengenes were calculated and 

merged if correlation of eigengenes > 0.7. Genes in the 40 modules 
identified were tested for GO term enrichment via WGCNA. Module 
membership (MM) for each gene was calculated as the correlation be-
tween expression of each gene and its module eigengene. Genes with 
MM ≥ 0.7 are considered the hub genes for the network. Gene co-
expression network plots were generated in Cytoscape v3.8 (http://
www.cytos​cape.org/). Each module eigengene was tested for asso-
ciation with age, sex and APOE e4 carrier status independently using 
Pearson correlation. Co-expression network genes were annotated 
if they were significantly associated (p < 0.05) with the tested trait.

4.12  |  Over-representation and 
correlation analyses

Hypergeometric testing was performed in R to determine the en-
richment of a select set of genes in previously reported signatures, 
bulk tissue expressed genes, WGCNA modules or 10X single-cell 
clusters. Correlation between bulk tissue and bulk microglial nor-
malized CQN data was calculated using Spearman's rank correlation. 
Concordant and discordantly correlated genes were determined 
using the upper and lower quartiles from each dataset.

4.13  |  Single-cell data analysis

For single-cell RNA samples, 10X Genomics Cell Ranger Single Cell 
Software Suite v3.1.0 (Zheng et al., 2017) was used to demultiplex 
raw base call files generated from the sequencer into FASTQ files. 
Raw reads were aligned to human genome build GRCh38. Reads 
aligned to gene transcript locus were counted to generate raw UMI 
counts per gene per barcode for each sample. The raw UMI matrices 
were filtered to only keep barcodes with >500 UMIs and those that 
were classified as cells by Cell Ranger's cell calling algorithm.

Quality control, normalization, clustering, and marker gene identi-
fication were performed with Seurat v3 (Stuart et al., 2019), followed 
by annotation of clusters using established cell type markers. We kept 
(1) barcodes with >10% of UMI mapped to mitochondrial genome; 
(2) barcodes with <400 or >8000 detected genes; (3) barcodes with 
<500 or >46,425 mapped UMIs; (4) genes that are detected in <5 
cells. These thresholds were determined by UMI or gene distribution 
to identify undetectable genes and outlier barcodes that may encode 
background, damaged or multiple cells. UMI counts of remaining cells 
and genes were normalized using NormalizeData function, which gave 
natural log transformed expression adjusted for total UMI counts in 
each cell. The top 2000 genes whose normalized expression varied 
the most across cells were identified through FindVariableFeatures 
function with default parameters. Using those genes, cells from 
6  samples were integrated using functions FindIntegrationAnchors 
and IntegrateData with default parameters. Principal components 
(PCs) of the integrated and scaled data were computed; and the first 
31 PCs, which accounted for >95% variance, were used in cluster-
ing cells. Cell clustering was performed using FindNeighbors and 

http://www.cytoscape.org/
http://www.cytoscape.org/
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FindClusters with default parameters. Marker genes were identified 
in each cluster using FindMarkers in Seurat. Marker genes on one 
cluster must (1) be present in >20% cells in the cluster; (2) the log(fold 
change) between expression in the cluster and other clusters must be 
>0.25; (3) the rank sum test p-value (Bonferroni-adjusted) between 
cells in the cluster and cells in other clusters <0.05.

4.14  |  Meta-analysis of bulk microglia 
RNAseq datasets

We obtained sets of co-expression genes, that is, WGCNA modules 
from our own data and identified several modules whose eigengenes 
were correlated with age/sex/APOE. To check whether these cor-
relations hold for external datasets, we downloaded raw reads in 
FASTQ format for three external bulk microglia datasets listed in 
Table S17. Reads were mapped to human genome build hg38 and 
were counted and normalized in the same fashion as described pre-
viously. For each WGCNA module, we identified the central genes 
(i.e., genes whose Pearson correlation with module eigengene > 
0.75). Using these central genes, module eigengenes were calculated 
in all datasets—ours and three external ones. We correlated mod-
ule eigengenes with traits. Finally, we performed meta-analysis to 
combine correlations from multiple datasets using metacor function 
(random effect model) in R meta package.

4.15  |  Meta-analysis of single-cell RNAseq datasets

Raw single-cell RNAseq data from Olah et al. (2020) was down-
loaded through Synapse (syn21438358) and processed through Cell 
Ranger. Quality control was performed as described prior to inte-
gration with our samples using Seurat v4.0.4. Integration was per-
formed to combine the datasets by individual rather than sample. A 
total of 9 samples and 15,819 cells were retained from the Olah data. 
Cells were annotated to include dataset of origin. Hypergeometric 
tests were performed to determine the enrichment of our microglial 
signature within each integrated cluster. Additionally, we also looked 
at overlap between integrated cluster genes and marker genes from 
our original single-cell dataset. To identify where our original cells 
localized within the integrated dataset, we mapped the original cell 
IDs to the integrated clusters and calculated percentage overlap.
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