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Abstract
Microglia	have	fundamental	roles	in	health	and	disease;	however,	effects	of	age,	sex,	
and	genetic	factors	on	human	microglia	have	not	been	fully	explored.	We	applied	bulk	
and	 single-	cell	 approaches	 to	 comprehensively	 characterize	 human	microglia	 tran-
scriptomes	and	their	associations	with	age,	sex,	and	APOE.	We	identified	a	novel	mi-
croglial	signature,	characterized	its	expression	in	bulk	tissue	and	single-	cell	microglia	
transcriptomes.	We	discovered	microglial	co-	expression	network	modules	associated	
with	age,	sex,	and	APOE-	ε4 that are enriched for lipid and carbohydrate metabolism 
genes.	 Integrated	analyses	of	modules	with	single-	cell	 transcriptomes	 revealed	sig-
nificant	overlap	between	age-	associated	module	genes	 and	both	pro-	inflammatory	
and	disease-	associated	microglial	clusters.	These	modules	and	clusters	harbor	known	
neurodegenerative disease genes including APOE, PLCG2, and BIN1.	Meta-	analyses	
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1  |  INTRODUC TION

Microglia	are	the	resident	macrophages	of	the	central	nervous	sys-
tem	 (CNS),	 responsible	 for	 clearance	 of	 cellular	 debris	 and	 patho-
logical	 protein	 aggregates.	 In	 the	 healthy	 brain,	 they	 exist	 in	 a	
homeostatic state and can be induced to a reactive state in response 
to	 changes	 in	 the	 CNS	 microenvironment,	 such	 as	 inflammation	
and	neuronal	damage	(Masuda	et	al.,	2020).	They	are	fundamental	
to maintaining brain homeostasis during development, aging, and 
disease; therefore, microglial dysfunction could ultimately lead 
to	 neurodegeneration	 (Li	 &	 Barres,	 2018).	 Microglia	 are	 integral	
to the pathophysiology of neurodegenerative diseases, including 
Alzheimer's	disease	(AD)	and	multiple	sclerosis,	with	chronic	inflam-
mation	 implicated	 as	 a	 contributing	 factor	 (Hickman	 et	 al.,	 2018; 
Keren-	Shaul	et	al.,	2017;	Krasemann	et	al.,	2017).

Fresh human brain tissue studies are imperative to the characteri-
zation	of	the	microglial	transcriptome	in	health	and	disease;	however,	
accessibility	is	limited.	Although	single	nuclei	studies	using	frozen	tis-
sue provide an easier alternative, recent studies have demonstrated 
limitations in detecting substantial populations of less abundant cell 
types	(Del-	Aguila	et	al.,	2019;	Mathys	et	al.,	2019).	Additionally,	it	was	
recently	reported	that	many	microglial	activation	genes	are	expressed	
in	the	cytosol	and	therefore	are	 likely	to	be	missed	by	single	nuclei	
RNA	sequencing	(snRNAseq;	Thrupp	et	al.,	2020).	Recent	single-	cell	
studies	aiming	to	characterize	microglial	gene	expression	using	fresh	
tissue have highlighted the heterogeneity in microglial phenotypes 
(Masuda	et	al.,	2019; Olah et al., 2020;	Sankowski	et	al.,	2019).	This	
has revealed that phenotypic changes are not binary but rather a spec-
trum	of	states	in	which	microglia	can	simultaneously	co-	exist	during	
transition	 from	 homeostatic	 to	 more	 reactive	 states.	 Additionally,	
these	different	subsets	could	have	specialized	functions	in	brain	ho-
meostasis	and	dysfunction.	Thus,	it	is	increasingly	important	to	char-
acterize	 these	 heterogeneous	 subpopulations	 to	 understand	 their	
roles	in	health	and	disease.	This	could	also	help	facilitate	the	design	
of	novel	therapeutic	approaches	to	target-	specific	subpopulations	of	
cells	and	modulate	their	activity	(Li	&	Barres,	2018).

Obtaining fresh human tissue from neurosurgeries allows 
us to study the mechanisms of microglial function in living cells. 
Unfortunately,	this	tissue	is	usually	excised	from	surgical	procedures	
for tumor resection or relieving temporal lobe epilepsy, rendering it 
difficult	 to	distinguish	between	normal	and	disease-	affected	 tissue.	
Darmanis et al. (2017)	investigated	the	effect	of	GBM	tumors	on	CNS	
cell types and surrounding tissue, revealing that myeloid cells are 
greatly	 affected	 by	 the	 tumor	microenvironment.	 They	 found	 that	

peri-	tumor	myeloid	populations	were	primarily	pro-	inflammatory	mi-
croglia compared to macrophages within the tumor core (Darmanis 
et al., 2017).	 In	 temporal	 lobe	epilepsy,	 two	distinct	microglial	phe-
notypes have been identified with microglia present in sclerotic 
areas	with	 few	neurons	expressing	markers	of	 activation,	 including	
anti-	inflammatory	cytokine	IL10	(Kinoshita	&	Koyama,	2021;	Morin-	
Brureau	et	al.,	2018).	The	other	phenotype	occurs	transiently	follow-
ing	a	seizure,	with	secretion	of	interleukins	CXCL8	and	IL1B	mediated	
by	the	NLRP3	inflammasome	(Morin-	Brureau	et	al.,	2018).

Microglial	 expression	 has	 also	 been	 shown	 to	 be	 affected	 by	
aging (Galatro et al., 2017; Olah et al., 2018);	however,	few	studies	
have	investigated	the	effects	of	sex	and	genetic	factors	on	human	
microglia.	 Sex	 differences	 in	 microglia	 have	 been	 previously	 re-
ported in mice, with females being predisposed to harboring more 
activated microglia than males (Frigerio et al., 2019; Nelson et al., 
2017;	Stephen	et	al.,	2019).	APOE, a lipoprotein of which the ε4 al-
lele (APOE-	ε4)	 is	 a	major	 risk	 factor	 for	AD	and	also	 implicated	 in	
other	neurodegenerative	diseases	(Yamazaki	et	al.,	2019]),	is	upregu-
lated	in	disease-	associated	microglia	(DAM)	in	mice	and	humans,	but	
downregulated in astrocyte and oligodendrocyte subpopulations 
(Grubman et al., 2019; Hammond et al., 2019;	 Keren-	Shaul	 et	 al.,	
2017;	Mathys	 et	 al.,	 2019).	 In	microglia	 and	 neurons,	APOE inter-
acts with LDL receptors to facilitate endocytosis of cholesterol and 
phospholipids and modulate lipid homeostasis in the brain (Gamache 
et al., 2020).	 Such	 studies	 provide	 growing	 support	 for	 cell	 type-	
specific functions of APOE; however, its effects on microglia remain 
to	 be	 fully	 elucidated.	 Thereby,	 identifying	 age,	 sex,	 and	 APOE-	
associated pathways in microglia will provide greater insight into 
the	functions	of	specific	microglial	subsets	in	relation	to	these	risk	
factors. Interindividual variability and diversity in functional states 
makes	targeting	specific	microglial	subsets	in	disease	challenging	for	
modulating	 these	cells	 (Li	&	Barres,	2018).	 Identifying	 the	mecha-
nisms regulating microglial homeostasis and activation can allow us 
to manipulate these cells for therapeutic purposes.

In	this	study,	we	leveraged	both	bulk	and	single-	cell	approaches	
to	provide	a	comprehensive	characterization	of	the	adult	human	mi-
croglial	transcriptome.	We	obtained	fresh	intraoperative	neurosur-
gical brain tissue and isolated an enriched population of microglial 
cells	to	investigate	transcriptional	changes	associated	with	age,	sex,	
and APOE-	ε4	in	bulk	microglia	and	further	explored	these	in	single	
microglial	 cells.	Our	 findings	 support	 age-	,	 sex-	,	 and	APOE-	related	
microglial transcriptome changes involving lipid and carbohydrate 
metabolic pathways and implicate microglial immunometabolism 
perturbations relevant to neurodegenerative diseases.

with	 published	 bulk	 and	 single-	cell	microglial	 datasets	 further	 supported	 our	 find-
ings.	Thus,	these	data	represent	a	well-	characterized	human	microglial	transcriptome	
resource	and	highlight	age,	sex,	and	APOE-	related	microglial	immunometabolism	per-
turbations with potential relevance in neurodegeneration.

K E Y W O R D S
APOE, lipid metabolism, microglia, neurodegeneration, single cell, transcriptomics
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2  |  RESULTS

To	 uncover	 microglial	 transcriptional	 profiles	 and	 their	 associa-
tions	with	age,	sex,	and	APOE,	we	performed	microglial	cell	type-	
specific	 and	 single-	cell	 RNA	 sequencing	 (scRNAseq)	 studies	 in	
fresh	 human	 brain	 tissue.	We	 obtained	 neurosurgical	 tissue	 un-
affected	by	 the	 primary	 disease	 process	 from	19	human	donors	
(Figure	S1).	Microglia	were	 isolated	by	CD11b+ microbead selec-
tion	 followed	 by	 FACS	 sorting	 of	 cells	 expressing	 the	 CD11b+/

CD45intermediate	 microglial	 signature	 to	 acquire	 a	 more	 purified	
population.	 These	 samples	 underwent	 bulk	 microglia	 RNAseq,	
with subsets of these and additional samples also undergoing 
10x	scRNAseq	(n =	5)	and	bulk	tissue	RNAseq	(n =	9;	Figure 1a; 
Table 1).	 Validation	 of	 sorted	microglia	 using	 qPCR	 showed	 the	
expected	CD11b+/CD45intermediate/P2RY12+ microglial signature (Li 
&	Barres,	2018)	with	no	expression	of	other	cell	type	markers,	in-
dicating that we isolated a highly enriched microglial population 
(Figure	S2).

F I G U R E  1 Characterization	of	our	core	human	microglial	signature.	(a)	Schematic	illustrating	our	experimental	approach	for	isolating	
microglial	populations	from	fresh	brain	tissue	and	data	analyses.	[Created	with	BioRender.com]	(b)	MSigDB	GO	terms	enriched	in	our	
microglial	signature	genes	and	top	25	genes	for	each.	(c)	Venn	diagram	showing	number	of	overlapping	genes	between	our	microglial	
signature and those previously reported from Galatro et al. (2017),	Gosselin	et	al.	(2017)	and	Olah	et	al.	(2018).	(d)	Hypergeometric	tests	of	
overrepresentation showing overlap with the published signatures
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2.1  |  Identification of a core human microglial 
transcriptional signature

To	 define	 a	 core	 human	 microglial	 signature,	 we	 calculated	 log2 
fold change and q-	values	 of	 differential	 expression	 for	 each	 gene	
between	 bulk	microglia	 RNAseq	 data	 in	 our	 study	 and	 bulk	 brain	
RNAseq	 data	 from	 7	 AMP-	AD	 datasets	 provided	 by	Mayo	 Clinic	
(Allen	 et	 al.,	 2016]),	 Mount	 Sinai	 Brain	 Bank	 (Wang	 et	 al.,	 2018),	
and	Rush	University	Religious	Orders	Study	and	Memory	and	Aging	
Project	 (ROSMAP;	De	 Jager	 et	 al.,	2018)	 representing	 6	 brain	 re-
gions	from	515	human	samples.	Using	a	cutoff	of	4-	fold	greater	ex-
pression	 in	our	bulk	microglia	and	a	q-	value	 threshold	of	0.05,	we	
identified	1971	genes	(Table	S1–	S6).	These	genes	were	expressed	at	
significantly	greater	levels	in	our	bulk	microglial	transcriptome	data	
in	comparison	with	each	of	 the	bulk	brain	 transcriptome	datasets.	
Therefore,	we	considered	 these	1971	genes	as	 the	core	microglial	
signature	 in	 our	 dataset.	 This	 signature	 comprises	 several	 known	
marker	genes,	with	12.7%	of	the	genes	being	BRETIGEA	(McKenzie	
et al., 2018)	microglial	genes,	 suggesting	 that	 it	also	 likely	harbors	
novel	microglial	markers	of	interest	(Table	S7).	GO	enrichment	using	
MSigDB	showed	that	this	signature	was	enriched	for	genes	involved	
in	 immune-	related	 and	 inflammatory	 response	pathways	 as	would	
be	expected,	and	leukocyte-	mediated	immunity	(Figure 1b).

To	determine	the	ability	of	bulk	brain	tissue	data	to	capture	mi-
croglial	 genes,	we	assessed	 the	expression	 levels	of	our	microglial	
signature	genes	in	each	of	the	7	AMP-	AD	bulk	brain	RNAseq	data-
sets.	Of	 the	1971	microglial	 signature	genes	 in	our	study,	37–	47%	
were	captured	in	these	bulk	brain	datasets	(Figure	S3A-	B).	Our	mi-
croglial	signature	genes	comprised	3.6–	4.5%	of	the	expressed	bulk	
brain	transcriptome,	consistent	with	prior	estimations	(Mathys	et	al.,	
2019;	Wang	et	al.,	2020).	We	next	compared	bulk	microglia	RNAseq	
transcript	 levels	to	that	obtained	from	bulk	tissue	RNAseq	of	neu-
rosurgical	 fresh	 brain	 tissue	 samples.	 Bulk	 fresh	 brain	 tissue	 does	
not	capture	all	microglial	marker	genes,	as	demonstrated	by	the	low	
correlation	between	bulk	tissue	and	bulk	microglia	data	 (R = 0.46, 
p =	 0.94;	 Figures	 S3C,	 S4,	 Table	 S6).	 This	 reiterates	 the	 need	 for	
complementary	 single-	cell	 type	 data	 to	 deconvolute	 cell	 type-	
specific	expression.	We	provide	the	list	of	microglial	signature	genes	
that	are	also	expressed	at	high	levels	in	bulk	brain	tissue	data	(Table	
S5),	which	can	serve	as	a	validated	resource	for	microglial	signature	
gene	markers	in	bulk	RNAseq	datasets.

To	determine	how	the	microglial	signature	in	this	study	compared	
to previously published signatures, we performed hypergeomet-
ric tests of overrepresentation with Galatro et al. (2017),	Gosselin	
et al. (2017)	and	Olah	et	al.	 (2018)	studies.	Significant	overlap	was	
observed across all datasets, with 350 genes common to all datasets 
(Figure 1c-	d,	Tables	S3–	S4,	S8).	This	comprised	several	established	
microglial	marker	genes,	including	P2RY12, TMEM119, and CX3CR1. 
The	 most	 significant	 overlap	 was	 shared	 with	 Gosselin,	 et	 al.	
(Gosselin et al., 2017)	signature	[OR	=	19.6	(17.0-	Inf)	p =	3.8E-	261],	
where	49.7%	of	their	genes	were	also	present	in	our	signature,	and	
22%	of	ours	in	their	signature.	Gosselin	et	al.	 (2017)	samples	were	
also	obtained	 from	neurosurgical	 tissue	 resections	 like	our	 cohort	

and	are	unlike	Galatro	et	al.	 (2017)	and	Olah	et	al.	 (2018)	 samples	
that	were	harvested	during	autopsy.	Although	there	appears	to	be	
a common set of microglial genes consistent across signatures, each 
also	 harbors	many	 unique	 genes,	which	 could	 be	 due	 to	 study	 or	
individual specific differences.

2.2  |  Transcriptional profiling of microglia discovers 
co- expression networks and implicates lipid and 
carbohydrate metabolism pathways associated with 
age, sex, and APOE

We	 generated	 gene	 co-	expression	 networks	 using	 WGCNA	
(Langfelder	 &	 Horvath,	 2008)	 to	 reduce	 number	 of	 tests	 and	 in-
crease	power	to	detect	genetic	associations	with	age,	sex,	and	APOE. 
We	 identified	 7	 modules	 with	 significant	 associations	 (Figure 2; 
Figure	S5;	Table	S9).	Modules	ME14	and	ME34	associated	with	age,	
however,	 in	opposite	directions.	ME14	was	enriched	 for	genes	 in-
volved	in	the	lipid	localization	pathway	that	were	upregulated	with	
age (R = 0.50, p = 0.03; Figure 2a-	c).	ME34,	enriched	for	DNA	en-
doreduplication genes, had negative association with both age 
(R =	−0.55,	p =	0.01)	and	APOE-	ε4 (R =	−0.50,	p =	0.03),	indicating	
that microglial transcripts involved in this pathway are downregu-
lated with aging and in APOE-	ε4 carriers (Figure 2a).	Several	other	
modules also associated with APOE-	ε4,	in	either	direction.	The	only	
module	associated	with	sex	was	ME26,	which	was	downregulated	
in females (R =	 −0.54,	p =	 0.02),	 and	enriched	 for	 genes	 involved	
in	cholesterol	absorption	and	 lipid	digestion.	This	module	also	had	
the most significant association with APOE, in the positive direction 
with presence of APOE-	ε4 (R = 0.66, p = 0.002; Figure 2a,b,e).	Of	the	
APOE-	associated	modules,	ME23	 had	 the	 second	most	 significant	
association (R =	−0.61,	p =	0.006)	and	was	enriched	for	carbohydrate	
metabolism genes (Figure 2a,b,d).	Given	recent	discoveries	in	micro-
glial	immunometabolism	(Bernier	et	al.,	2020;	Chausse	et	al.,	2020; 
Loving	&	Bruce,	2020;	Marschallinger	et	al.,	2020),	we	focused	on	
ME14,	ME23,	and	ME26	that	are	enriched	for	lipid	and	carbohydrate	
metabolism genes.

ME14	co-	expression	network	(Figure 2c)	hub	genes	NPC2, MSR1, 
and PLAU	are	also	microglial	signature	genes	in	our	study	and	known	
to	 be	 involved	 in	 microglial	 functions	 (Butovsky	 &	Weiner,	 2018; 
Colombo	et	al.,	2021;	Cunningham	et	al.,	2009;	DePaula-	Silva	et	al.,	
2019;	El	Khoury	et	al.,	1998];	Mehra	et	al.,	2016).	Several	disease-	
associated	 microglial	 (DAM)	 markers	 are	 also	 present	 in	 this	 net-
work,	 including	CD9, ARAP2, and MYO1E	 (Keren-	Shaul	et	al.,	2017; 
Rangaraju et al., 2018a;	Sobue	et	al.,	2021)	that	are	increased	with	
aging,	implicating	activated	microglial	lipid	localization	pathways	in	
aging (Figure 2f).	Several	genes	in	this	module	were	also	previously	
linked	to	neurodegeneration,	including	MYO1E (Gerrits et al., 2021]; 
Rangaraju et al., 2018b),	CTSL,	(Cermak	et	al.,	2016)	and	UNC5B	(Ahn	
et al., 2020;	 Xu	 et	 al.,	2016).	Due	 to	 the	 nature	 of	 the	 tissue,	we	
compared	expression	levels	of	the	key	module	genes	within	tumor	
and	 epilepsy	 samples	 (Figure	 S6).	We	 observed	 significant	 differ-
ences due to diagnosis in NPC2, PLAU, APOC1, and IKBKE; therefore, 
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it is important to note that some of their associations may be con-
founded due to the disease state.

Our	microglial	signature	(Tables	S1–	S3)	had	significant	overrep-
resentation	of	the	age-	associated	ME14	genes	(Table	S9;	OR	= 1.55 
[95%	CI	=	1.23-	INF],	p =	0.001),	highlighting	age-	related	increases	
in microglial signature genes. Galatro et al. (2017)	 and	Olah	 et	 al.	
(2018)	also	reported	age-	related	microglial	signatures.	Comparison	
of	ME14	genes	revealed	significant	overlap	with	Olah	et	al.	 (2018)	
(OR =	1.34	[95%	CI	=	1.05-	INF]	p =	0.03),	but	not	with	Galatro	et	al.	
(2017)	microglial	aging	signature	genes	(OR	=	1.09	[95%	CI	=	0.81-	
INF] p =	0.33).

ME26	 cholesterol	 metabolism	 pathway	 genes	 exhibited	 re-
duced	expression	 in	males	 and	were	 elevated	 in	APOE-	ε4 carriers 
(Figure 2a,b).	 This	module	 contains	 known	microglial	 genes	 LDLR, 
CD36, and CRIP1 (Figure 2e,f).	Assessment	of	individual	ME26	net-
work	genes	revealed	C17orf49, RP11-	589P10.7, and MIR497HG to be 
the	only	microglial	signature	genes	in	this	network	to	be	associated	
with	both	sex	and	APOE (Figure 2e).	Other	microglial	signature	genes	
in	 ME26	 associated	 with	 only	 sex	 or	 only	 APOE, suggesting that 

these	 traits	may	have	 independent	effects	on	expression	of	 some	
microglial	genes.	Several	APOE-	associated	genes	in	ME26	were	pre-
viously	implicated	in	AD,	including	CASP7	(Ayers	et	al.,	2016; Zhang 
et al., 2019)	and	LDLR	(Katsouri	&	Georgopoulos,	2011; Lämsä et al., 
2008; Figure 2f).

Carbohydrate	metabolism	gene	enriched	module	ME23	is	down-
regulated in APOE-	ε4 carriers (Figure 2a,b,d).	 AD	 risk	 genes	BIN1 
(Crotti	et	al.,	2019)	and	PLCG2	(Sims	et	al.,	2017)	are	present	in	this	
network,	which	have	both	been	implicated	in	microglial	dysfunction	
in neurodegeneration (Figure 2d).

2.3  |  Single- cell transcriptome reveals specific 
subtypes of microglia

To	uncover	distinct	microglial	 subtypes,	 a	 subset	of	 sorted	micro-
glial	samples	from	neurosurgical	brain	tissue	underwent	single-	cell	
expression	profiling.	We	obtained	26,558	cells	from	5	unique	indi-
viduals, including one individual who underwent epilepsy surgery 

F I G U R E  2 Age,	sex	and	APOE ε4	pathway	correlations	in	bulk	microglia.	(a)	Heatmap	showing	correlation	of	age,	sex	and	APOE ε4 status 
with	WGCNA	module	eigengenes	(MEs)	significantly	associated	(p <	0.05)	with	traits,	with	top	GO	terms	listed	for	each	module.	(b)	Module	
eigengenes stratified by age or APOE ε4	status.	(c)	Module	M14	gene	co-	expression	network,	with	genes	of	interest	highlighted	according	to	
the	key.	Genes	upregulated	with	age	shown	in	red	triangle	( ).	Bar	plot	of	top	10	significant	GO	terms	(p <	0.05)	for	this	module.	(d)	Module	
23	gene	co-	expression	network,	with	genes	downregulated	in	APOE ε4 carriers shown in blue arrow ( ).	Bar	plot	of	top	10	significant	GO	
terms (p <	0.05)	for	this	module.	(e)	Module	26	gene	co-	expression	network,	with	genes	upregulated	in	APOE ε4 carriers shown in orange 
triangle ( ).	Bar	plot	of	top	10	significant	GO	terms	(p <	0.05)	for	this	module.	(f)	Violin	plots	showing	expression	of	key	genes	in	modules,	
stratified by age or APOE. *p < 0.05; **p < 0.01; ***p < 0.001
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F I G U R E  3 Single-	cell	microglial	data.	(a)	UMAP	of	clustered	cells	annotated	with	putative	subtypes	using	cell	type	markers	from	the	
literature.	(b)	Stacked	bar	plot	showing	the	distribution	of	cells	across	the	clusters.	(c)	Dot	plot	showing	the	expression	of	key	significant	
module	genes	across	clusters.	(d)	Hierarchical	clustering	to	highlight	relationships	between	clusters.	(e)	Hypergeometric	distribution	of	
enrichment between module genes and clusters, showing number of overlapping genes. * Represents module genes that were significantly 
enriched in the cluster (p <	0.05)
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and had samples from two brain regions (Table 1).	Analysis	of	 the	
scRNAseq	data	 from	 these	 samples	 revealed	13	distinct	 cell	 clus-
ters, which were annotated using established neuronal and glial 
marker	genes	from	the	literature	(Darmanis	et	al.,	2015;	Keren-	Shaul	
et al., 2017;	Masuda	 et	 al.,	 2019;	Mathys	 et	 al.,	 2019; Olah et al., 
2020; Rangaraju et al., 2018a;	Sankowski	et	al.,	2019; Zhou et al., 
2020; Figure 3a,	 Tables	 S10-	S16).	 Myeloid	 markers	 (AIF1, PTPRC, 
and C1QA)	were	detected	in	all	clusters	except	cluster	12	which	ex-
pressed	oligodendrocyte	markers	 (PLP1, MBP, and MOBP).	 Cluster	
9	expressed	macrophage-	specific	markers	(VCAN, FCN1, CRIP1, and 
S100A8).	These	two	clusters	comprised	<3%	of	all	cells,	 indicating	
that our sorted samples represent a very pure microglial popula-
tion.	Each	myeloid	 cluster	had	cellular	 contributions	 from	all	 sam-
ples,	albeit	with	some	variability	 in	 their	proportions,	 likely	due	to	
intrinsic differences between individuals (Figure 3b,	Table	S11).	For	
these	samples,	the	most	marked	difference	was	observed	for	mac-
rophages	(cluster	9)	and	homeostatic	microglia	(cluster	2),	which	had	
greater contributions from the mesiotemporal and anterior temporal 
regions,	respectively.	This	could	be	due	to	the	proximity	of	the	mesi-
otemporal	sample	to	the	disease-	affected	region.

We	characterized	the	microglial	clusters	by	their	expression	of	es-
tablished	microglial	subtype	markers	(Figure 3c,	Figure	S7)	and	their	
most	significant	marker	genes	(Figure	S8).	Homeostatic	(TMEM119, 
P2RY12, and CX3CR1;	Masuda	et	al.,	2019; Rangaraju et al., 2018a; 
Sankowski	et	al.,	2019; Zhou et al., 2020),	pro-	inflammatory	(CCL2, 
CCL4,	Masuda	et	al.,	2019;	Sankowski	et	al.,	2019)	and	DAM	markers	
(APOE, C1QA, and C1QB; Hammond et al., 2019;	Keren-	Shaul	et	al.,	
2017; Olah et al., 2020;	 Sankowski	 et	 al.,	 2019)	were	observed	 in	
clusters	2,	1/6,	and	10,	 respectively.	Cluster	marker	genes	are	de-
fined	as	those	expressed	 in	at	 least	70%	of	the	cells	 in	the	cluster	
with log fold change >0.6 and q < 0.05 in comparison to all other clus-
ters.	Expression	levels	of	the	top	marker	genes	per	cluster	are	shown	
(Figure 3c;	Figure	S8;	Table	S12).	Most	of	these	markers	are	distinct	
to a single cluster, although some clusters appeared to have simi-
larities	in	their	marker	expressions.	To	define	the	proximity	of	their	
transcriptional profiles, we performed hierarchical clustering of the 
microglial clusters (Figure 3d).	We	determined	that	the	homeostatic	
microglia cluster 2 was transcriptionally closest to clusters 7 and 11, 
which	may	represent	subtypes	of	homeostatic	microglia.	Cluster	11	
is	enriched	for	markers	of	cell	proliferation	(STMN1, H2AFZ, PCNA, 
and MKI67),	some	of	which	were	also	observed	by	Olah	et	al.	(2020),	
suggesting	that	these	could	be	proliferating	microglia.	Clusters	1	and	
6	both	expressed	inflammatory	chemokines	CCL2 and CCL4	and	anti-	
inflammatory molecule EGR2; however, cluster 6 was more closely 
related	to	DAM,	whereas	cluster	1	(named	as	Leukocyte-	recruiting	
cluster)	represented	a	more	pro-	inflammatory	signature	with	greater	
expression	of	IL6 and TNFα.	Cluster	6	(named	as	interferon-	response	
cluster)	also	highly	expressed	interferon-	related	marker	IFITM3 and 
ISG15, also observed in a cluster by Olah et al. (2020),	which	they	
defined	 as	 an	 interferon	 response-	enriched	 subset.	 The	upregula-
tion	of	chemokines	and	 interleukins	 in	 these	clusters	 suggest	 that	
they	could	be	involved	in	recruitment	of	other	immune	cells.	These	
findings highlight different transcriptional profiles for these two 

inflammatory clusters that may represent distinct activated microg-
lia	subtypes.	Cluster	3	highly	expressed	heat	shock	protein	HSPA1A, 
an	immediate	early	gene	(Schmunk	et	al.,	2020)	reportedly	involved	
in	 antigen	 processing	 (Aung	 et	 al.,	 2012),	 response	 to	 stress	 and	
injury	and	exhibiting	decreased	gene	expression	in	multiple	sclero-
sis patients (Gandhi et al., 2010;	 Satoh	et	 al.,	2005).	 Several	were	
upregulated in this cluster, suggesting that this may represent cells 
that	underwent	dissociation-	induced	stress	(Sankowski	et	al.,	2019).	
Several	of	the	clusters	did	not	express	well	known	existing	cell	type	
markers.	Clusters	5/8	and	FOS+0/4 were transcriptionally closest to 
one another (Figure 3d).	Cluster	5	has	distinct	expression	of	immu-
noreactive	marker	CD163, which was not observed in other subsets 
except	macrophages.	Several	HLA	genes	are	also	highly	expressed	
in this cluster, suggesting that these may be immunoreactive mi-
croglia	 (Hendrickx	et	al.,	2017).	Cluster	8	marker	FTL	has	recently	
been	 used	 to	 characterize	 iron-	accumulating	 microglia	 (Kenkhuis	
et al., 2021).	Our	findings	highlight	transcriptional	profiles	for	known	
microglial	 clusters,	 describe	 the	 transcriptional	 proximity	 of	 these	
clusters	and	suggest	that	less	well-	defined	clusters	could	potentially	
represent novel or intermediate transcriptional states of microglia. 
Our microglial signature was significantly enriched in more clusters 
expressing	more	 activated	markers	 (Table	 S13),	 implicating	 this	 as	
the	dominant	expression	profile	within	our	samples.	However,	there	
is also enrichment of homeostatic cluster 2, demonstrating that we 
have	not	only	captured	activated	cells	as	might	be	expected	due	to	
the nature of the tissue.

To	 determine	 whether	 the	 bulk	 microglial	 co-	expression	 net-
works	 (Figure 2a,c-	e,	 Figure	 S5)	were	 representative	 of	microglial	
subtypes, we performed enrichment analyses of the module genes 
within the myeloid clusters with sufficient cell numbers (Figure 3e; 
full	 enrichment	 statistics	 provided	 in	 Table	 S15).	 Age-	associated	
co-	expression	 network	ME14,	 implicated	 in	 lipid	metabolism,	was	
significantly	 enriched	 in	 interferon-	response	 (cluster	 6)	 and	 DAM	
(cluster	10)	clusters.	Genes	within	module	28,	which	was	significantly	
upregulated with APOE-	ε4, had statistically significant enrichment in 
all	clusters	except	cluster	7.	There	was	no	statistically	significant	en-
richment for any of the other microglial modules that had significant 
age,	 sex,	 or	APOE associations, suggesting that these factors may 
have	ubiquitous	effects	on	most	microglial	 subtypes.	Some	of	 the	
remaining	microglial	 co-	expression	networks	had	distinct	 patterns	
of	cluster	enrichment	 (Figure	S9),	suggesting	that	some	but	not	all	
networks	could	be	representative	of	distinct	microglial	subtypes.

2.4  |  Meta- analyses with published datasets 
support age, sex, and APOE associations

Each	dataset	was	individually	processed	through	the	same	MAPR-	seq	
pipeline	 for	quality	 control	 to	minimize	variability	due	 to	data	pro-
cessing.	Meta-	analysis	of	WGCNA	results	was	performed	by	coerc-
ing	 the	 external	 dataset	 co-	expression	 networks	 onto	 our	 existing	
co-	expression	networks.	The	forest	plot	 in	Figure 4a highlights the 
individual	and	combined	associations	for	networks	of	interest	across	
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the	datasets	where	age,	sex,	or	APOE	information	was	available	(Table	
S17).	For	module	ME14	associations	with	age,	Galatro	et	al.	 (2017)	
also	exhibited	a	similar	direction	of	effect	(R = 0.30, p =	0.06),	whereas	
Srinivasan	 et	 al.	 (2020)	 did	 not	 show	 any	 association	 (R =	 −0.003,	
p =	0.99),	likely	due	to	a	higher	median	age	of	individuals	in	the	study.	
When	meta-	analyzed,	sex-	associated	ME26	genes	were	significantly	
downregulated	in	males	in	all	datasets,	supporting	our	finding.	This	

module was also significantly associated with APOE e4 carriers in the 
Srinivasan	dataset	(R = 0.42, p =	0.04).	However,	Srinivasan	samples	
were inversely correlated with APOE	for	ME23	in	comparison	to	our	
data (R = 0.61, p =	0.07).	Srinivasan	et	al.	(2020)	was	inversely	cor-
related with age and APOE	for	ME23,	but	not	with	sex	or	APOE for 
ME26.	Overall,	it	appears	that	the	direction	of	effects	was	similar	for	
correlation	with	these	traits	in	most	datasets	(Figure	S10).

F I G U R E  4 Meta-	analysis	with	published	datasets.	(a)	Forest	plots	of	module	eigengene	correlations	across	datasets	and	meta-	analyzed.	
(b)	Integrated	UMAP	of	our	and	Olah	et	al.	(2020)	single-	cell	data,	split	by	dataset.	(c)	Stacked	bar	plot	showing	the	distribution	of	cells	across	
the	clusters.	(d)	Dot	plot	showing	the	expression	of	key	significant	module	genes	across	clusters
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We	subsequently	integrated	microglial	single-	cell	data	from	Olah	
et al. (2020)	 (n =	 9,	15,819	cells)	with	our	 samples	 (n = 6, 26,856 
cells)	to	show	how	these	single-	cell	datasets	compared.	The	UMAP	
in Figure 4b is split by study and shows relatively even contributions 
to	each	cluster	from	both	datasets,	also	observed	in	the	stacked	bar	
plot in Figure 4c. However, a greater number of Olah cells were ob-
served	 in	 cluster	10,	which	had	 similar	expression	patterns	 to	our	
original	FOS+ cluster 0. Hypergeometric tests of enrichment showed 
significant overlap between several of the original and integrated 
clusters, showcasing the high congruence between our data and 
Olah	et	al	(Tables	S18–	S20).	To	further	identify	where	our	individual	
cells clustered when combined with the Olah dataset, we overlaid 
the cell IDs from the original clusters to the integrated dataset and 
calculated	the	percentage	overlap	(Table	S20).	A	larger	proportion	of	
cells	from	Olah	et	al	expressed	markers	of	activation	than	homeo-
static genes, indicating a greater enrichment for activated microg-
lia.	Many	 clusters	 retained	 their	 identity,	 as	 evidenced	by	 the	dot	
plot (Figure 4d)	which	shows	some	of	the	same	top	marker	genes	to	
that in Figure 3c.	Additionally,	enrichment	of	our	microglial	signature	
in	 the	 integrated	 single-	cell	 dataset	was	 observed	 in	 several	 clus-
ters,	many	of	which	highly	expressed	markers	of	activated	microglia	
(Table	S18).	This	is	similar	to	what	we	observed	in	our	single-	cell	data	
(Table	S13),	supporting	the	notion	that	our	microglial	signature	is	en-
riched for activated cells.

3  |  DISCUSSION

Given their critical functions in maintaining homeostasis in the cen-
tral	nervous	system	(CNS)	in	health	and	their	multifaceted	roles	dur-
ing	neurological	diseases	 (Hickman	et	al.,	2018;	Li	&	Barres,	2018),	
understanding	the	biology	of	microglia	and	characterizing	microglial	
subtypes	 is	essential.	Large-	scale	studies	 in	bulk	brain	tissue	 (Allen	
et al., 2016];	De	Jager	et	al.,	2018;	Wang	et	al.,	2018)	have	been	in-
strumental in establishing transcriptional profiles in health and neu-
rodegenerative	diseases.	Although	these	studies	yielded	information	
on	brain	expression	signatures	and	uncovered	perturbed	pathways	
and	molecules	implicated	in	Alzheimer's	disease	and	other	neurologi-
cal	disorders	(Allen	et	al.,	2018a, 2018b;	Mostafavi	et	al.,	2018; Neff 
et al., 2021),	they	are	limited	in	their	ability	to	provide	cell	type-	specific	
transcriptional	outcomes,	especially	for	less	abundant	CNS	cells	such	
as	microglia	(Wang	et	al.,	2020).	Analytic	deconvolution	approaches	
began	to	 leverage	these	bulk	tissue	transcriptome	datasets	to	esti-
mate	 cell	 type-	specific	 expression	 profiles	 (McKenzie	 et	 al.,	 2018; 
Wang	et	al.,	2020),	but	the	accuracy	of	these	methods	relies	on	the	
availability	of	high-	quality	single	cell-	type	datasets.	Such	microglia-	
specific transcriptome datasets are gradually emerging (Galatro 
et al., 2017; Gosselin et al., 2017; Olah et al., 2018, 2020),	although	
the	 numbers	 of	 unique	 samples	 assessed	 remain	 limited	 given	 the	
arduous	nature	of	collecting	fresh	human	brain	tissue.	Additionally,	
comparative	assessment	of	bulk	brain	vs.	single	cell-	type	bulk	micro-
glia	vs.	single-	cell	microglia	studies	are	still	rare	(Alsema	et	al.,	2020; 
Olah et al., 2020;	Srinivasan	et	al.,	2020).	To	our	knowledge,	 there	

are no studies that evaluate human microglial transcriptome using all 
three approaches, as in our study. Further, investigations on effects 
of genetic and other factors on microglial transcriptional signatures in 
humans	is	likewise	sparse,	with	the	exception	of	age-	related	effects	
assessed in a few studies (Galatro et al., 2017; Gosselin et al., 2017; 
Olah et al., 2018).	 Finally,	unlike	 in	bulk	 tissue	 studies	 (Allen	et	al.,	
2018a, 2018b;	McKenzie	 et	 al.,	2018;	Mostafavi	 et	 al.,	2018; Neff 
et al., 2021),	microglia-	specific	co-	expression	networks,	their	molecu-
lar signatures and functional implications have not been evaluated.

In	 this	study,	we	sought	to	overcome	these	knowledge	gaps	by	
characterizing	 the	 transcriptome	 of	 sorted	 bulk	 and	 single-	cell	mi-
croglial	populations	isolated	from	fresh	human	brain	tissue.	We	iden-
tified	a	robust	microglial	signature	comprising	1971	genes	enriched	
for	immune-	related	functions.	These	signature	genes	were	selected	
due	to	their	consistently	higher	expression	levels	in	our	sorted	bulk	
microglial	 transcriptome	 in	 comparison	with	 7	 different	 bulk	 brain	
tissue	datasets	from	6	different	regions	(Allen	et	al.,	2016;	De	Jager	
et al., 2018;	Wang	et	al.,	2018).	We	also	compared	sorted	bulk	mi-
croglia	to	bulk	fresh	brain	tissue	and	identified	transcripts	that	are	ex-
pressed	in	both.	The	microglial	signature	genes	that	are	also	reliably	
detected	 in	bulk	brain	 tissue	represent	a	validated	 list	of	microglial	
markers	that	can	be	utilized	 in	bulk	brain	tissue	transcriptome	ana-
lytic	deconvolution	studies	(McKenzie	et	al.,	2018;	Wang	et	al.,	2020).

Our microglial signature significantly overlapped with other sig-
natures	 from	 bulk	 microglia	 previously	 reported	 by	 Galatro	 et	 al.	
(2017),	Gosselin	et	al.	(2017)	and	Olah	et	al.	(2018),	implicating	a	core	
set	of	genes	consistently	expressed	in	this	cell	type.	However,	there	
were	additional	genes	unique	to	each	signature,	likely	to	be	driven	by	
factors such as patient demographics or study differences. Galatro 
et al. (2017)	 and	Olah	et	al.	 (2018)	both	also	 reported	age-	related	
microglial	expression	signatures.	We	found	significant	overlap	of	our	
age-	associated	microglial	gene	expression	module	ME14	genes	with	
the	latter,	which	was	also	enriched	for	our	microglial	signature.	This	
indicates	that	bulk	microglial	profiles	can	effectively	capture	genes	
affected by aging in microglia.

We	 leveraged	 the	 co-	expression	 network	 structure	 of	 sorted	
bulk	microglia	 to	 further	 explore	whether	microglial	 subsets	were	
associated	with	age,	sex,	or	APOE-	ε4.	To	our	knowledge,	sex	differ-
ences in microglial transcriptome were previously studied only in 
mice (Frigerio et al., 2019; Nelson et al., 2017;	Stephen	et	al.,	2019);	
however, APOE	 genotype-	specific	microglial	 interactions	with	 am-
yloid	 plaques	 have	 been	 previously	 observed	 in	 mice	 (Shi	 et	 al.,	
2019;	Stephen	et	al.,	2019)	and	humans	 (Nguyen	et	al.,	2020).	We	
identified	two	network	modules	associated	with	age,	one	with	sex	
and	six	with	APOE-	ε4.	We	observed	that	two	modules,	ME14	that	is	
positively	associated	with	increased	age;	and	ME26	that	is	positively	
associated with both APOE-	ε4	and	female	sex,	were	both	enriched	
for	 lipid	metabolism	biological	 terms	 (Chausse	et	al.,	2020; Loving 
&	Bruce,	2020;	Marschallinger	et	al.,	2020).	Module	ME14	included	
genes	involved	in	lipid	localization	and	storage	pathways	(PLIN2, IL6, 
LPL, MSR1, ENPP1, PPARG, PTPN2, SOAT1, IKBKE)	 and	ME26	 had	
lipid digestion/cholesterol transport pathway genes (CD36, LDLR).	
Both	modules	harbored	known	microglial	genes	(LDLR, CD36, CRIP1, 
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NPC2, MSR1, PLAU) and those that are included in our microglial sig-
nature (PLIN2, IL6, MSR1, SOAT1, IKBKE, NPC2, PLAU).

Comparing	 the	 sorted	 bulk	 microglial	 network	 modules	 to	
scRNAseq	microglial	clusters,	we	determined	that	ME14	genes	were	
significantly	over-	represented	 in	 interferon-	response	cluster	6	and	
disease-	associated	microglia	 (DAM)	 cluster	 10.	 In	 our	 study,	DAM	
cluster 10 included APOE, APOC1, ASAH1, and CTSD. Of these APOE 
(Leduc et al., 2010;	 Loving	&	Bruce,	2020;	 Yamazaki	 et	 al.,	 2019),	
APOC1 and ASAH1 (Paciotti et al., 2020)	are	involved	in	lipid	metab-
olism and neurodegenerative diseases. APOE (Hammond et al., 2019; 
Keren-	Shaul	et	al.,	2017;	Krasemann	et	al.,	2017),	APOC1(Hammond 
et al., 2019), and CTSD	(Keren-	Shaul	et	al.,	2017)	were	also	signature	
genes	in	mouse	models	of	neurodegenerative	diseases	(Keren-	Shaul	
et al., 2017;	Krasemann	et	al.,	2017)	or	aging	(Hammond	et	al.,	2019).	
Our	 interferon-	response	 cluster	 6	 also	 included	 genes	 associated	
with mice microglial neurodegenerative (FTH1	 Keren-	Shaul	 et	 al.	
(2017))	 or	 aging	 signatures	 (CCL4 Hammond et al. (2019)),	 as	well	
as IFITM3	(Marschallinger	et	al.,	2020)	and	GOLGA4	(Marschallinger	
et al., 2020),	previously	shown	to	be	upregulated	in	aging	lipid	drop-
let	 accumulating	microglia	 (Marschallinger	 et	 al.,	2020).	 Our	 find-
ings	that	integrate	human	sorted	bulk	RNAseq	and	scRNAseq	data,	
support	a	model	where	aging	human	microglia	 transition	to	a	pro-	
inflammatory	and	disease-	associated	transcriptional	profile,	which	is	
also associated with perturbations in lipid metabolism in these cells.

There	is	increasing	evidence	that	tightly	controlled	lipid	metabo-
lism is essential to the functions of microglia during development and 
homeostatic functions of adulthood and may be disrupted in aging 
and	disease	(Chausse	et	al.,	2020;	Loving	&	Bruce,	2020).	The	com-
plex	interactions	between	microglial	lipid	metabolism	and	its	cellular	
functions	rely	on	lipid	sensing	by	microglial	receptors	such	as	CD36	
and	TREM2	and	uptake	of	lipids,	including	LDL	and	APOE	(Chausse	
et al., 2020;	Loving	&	Bruce,	2020).	These	interactions	are	necessary	
for microglia to become activated and perform functions including 
phagocytosis of myelin (Nugent et al., 2020)	and	misfolded	proteins	
like	amyloid	ß	(Yeh	et	al.,	2016),	cytokine	release,	migration	and	pro-
liferation	(Bernier	et	al.,	2020;	Chausse	et	al.,	2020).	Studies	primarily	
focused on in vitro and animal models suggest disruption of the mi-
croglial	 immunometabolism	and	 assumption	of	 a	 pro-	inflammatory	
phenotype with aging (Hammond et al., 2019;	 Koellhoffer	 et	 al.,	
2017;	 Marschallinger	 et	 al.,	 2020;	 Norden	 &	 Godbout,	 2013)	 and	
diseases	 including	 multiple	 sclerosis	 (MS)	 and	 Alzheimer's	 disease	
(Keren-	Shaul	et	al.,	2017;	Krasemann	et	al.,	2017;	Ulland	et	al.,	2017).	
Interestingly, microglial lipid droplet accumulation has been demon-
strated	 under	 all	 these	 conditions	 (Chausse	 et	 al.,	2020;	 Loving	&	
Bruce,	2020;	Marschallinger	et	 al.,	2020; Nugent et al., 2020)	 and	
lipid droplet accumulating microglia in aging mice were shown to 
have	 a	 unique	 transcriptional	 state	 (Marschallinger	 et	 al.,	 2020).	
Our findings in sorted cells from fresh human brain tissue provide 
transcriptional	 evidence	 for	 immunometabolism	 changes	 and	 pro-	
inflammatory phenotype with microglial aging, thereby contributing 
essential complementary data from humans for this cell type.

Besides	module	ME14,	we	determined	that	ME26	is	also	enriched	
for	lipid	metabolism	genes.	ME26	module	expression	is	higher	in	both	

APOE-	ε4	and	 female	sex;	however,	we	note	 that	 in	our	sorted	bulk	
microglia	 RNAseq	 samples,	 there	 were	 no	 male	 APOE-	ε4 carriers. 
Therefore,	the	distinct	influence	of	sex	and	APOE	on	the	expression	of	
this module remains to be established. APOE-	ε4,	a	major	risk	factor	for	
Alzheimer's	disease,	has	the	lowest	lipid	binding	efficiency	compared	
with other APOE	 isoforms	 (Chausse	et	 al.,	2020).	 Increased	choles-
terol	accumulation	has	been	reported	in	both	iPSC-	driven	astrocytes	
from APOE-	ε4 carriers (Lin et al., 2018)	and	in	Apoe-	deficient	microg-
lia (Nugent et al., 2020).	These	findings	collectively	support	a	role	for	
APOE-	ε4 associated microglial transcriptional changes and disrupted 
cholesterol	metabolism.	Using	our	sorted	microglia	RNAseq	data,	we	
identified five additional modules that associate with APOE-	ε4, one in 
a	positive	direction	(ME28)	and	four	negatively	(ME4,	ME23,	ME34,	
and	ME36).	Of	these,	module	ME23	had	the	second	most	significant	
APOE-	ε4	association	after	ME26.	Interestingly,	ME23	was	enriched	for	
carbohydrate metabolism biological processes, which are also tightly 
regulated	 in	microglia	 (Bernier	 et	 al.,	2020).	Module	ME23	harbors	
known	AD	risk	genes	BIN1 and PLCG2, where the latter is a microg-
lial gene that modulates signaling through TREM2	 (Andreone	et	 al.,	
2020)	and	also	a	hub	gene	in	this	module.	ME23	genes	BIN1, JUN, and 
TGFBR2 were found to be reduced in a mouse microglial neurode-
generative	phenotype	gene	signature	(Krasemann	et	al.,	2017).	These	
findings further demonstrate the consistency of our human microglial 
data with that from mouse models and supports perturbed microglial 
immunometabolism as a potential pathogenic mechanism in neurode-
generation.	Many	of	the	meta-	analysis	results	comprising	published	
datasets from Galatro et al. (2017),	Olah	et	al.	(2018),	and	Srinivasan	
et al. (2020)	supported	the	directions	of	effects	we	had	observed	in	
our study despite small sample numbers.

In	 addition	 to	 analyzing	 gene	 expression	modules	 from	 sorted	
bulk	microglia,	we	also	identified	microglial	clusters	from	sorted	mi-
croglial	scRNAseq	data.	To	our	knowledge,	there	are	only	two	prior	
publications	 of	 scRNAseq	 characterizations	 on	 human	 microglia	
(Masuda	et	al.,	2019; Olah et al., 2020).	Masuda	et	al.	(2019)	analyzed	
1,602	microglia	 isolated	 from	 5	 control	 and	 5	MS	 patient	 brains,	
compared their findings to those from mice demonstrating clusters 
that	are	common	and	others	that	are	species-	specific.	Olah	et	al.	as-
sessed	16,242	microglia	from	17	individuals	and	characterized	sub-
clusters of microglia from patients with mild cognitive impairment, 
AD,	and	epilepsy	(Olah	et	al.,	2020).	Our	scRNAseq	dataset	is	from	
5	unique	individuals	comprising	26,558	cells,	99.98%	of	which	have	
myeloid	markers.	A	small	cluster	highly	enriched	 for	mature	oligo-
dendrocyte	and	some	neuronal	marker	genes	were	observed	(Table	
S11).	As	there	were	only	5	cells	in	this	cluster,	this	is	likely	to	denote	
contamination	from	the	sorting	procedures.	We	identified	microglial	
clusters that share characteristics of those previously reported in 
mice	 (Keren-	Shaul	 et	 al.,	2017)	 and	 humans	 (Nguyen	 et	 al.,	2020; 
Olah et al., 2020),	 such	as	DAM.	We	also	uncovered	clusters	 that	
had	 not	 been	 previously	 characterized	 in	 the	 literature,	 including	
cluster	7,	exhibiting	high	expression	levels	of	astrocytic	marker	gene	
SLC1A3.	Microglial	expression	of	SLC1A3 was previously shown to 
occur	in	mice	and	humans	especially	in	disease	states	(Chrétien	et	al.,	
2004; Grassivaro et al., 2020;	Wilhelmsson	 et	 al.,	2017).	We	 also	
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leveraged	these	scRNAseq	data	to	further	characterize	the	sorted	
bulk	microglial	expression	modules.	Integration	of	our	samples	with	
Olah	et	 al.	 allowed	us	 to	explore	microglial	 subtypes	at	 single-	cell	
resolution	with	increased	power.	We	found	that	even	in	this	larger	
dataset, our microglial signature was similarly enriched in the more 
activated subtype clusters, demonstrating the robustness of this sig-
nature	 across	datasets.	The	homogeneity	 in	 clustering	highlighted	
shared	expression	patterns	between	cells	from	both	datasets,	pro-
viding further support for the putative microglial subtypes we iden-
tified	here.	Hence,	our	microglial	scRNAseq	data	contribute	further	
to	the	emerging	single-	cell	landscape	of	this	cell	type.

Activated	microglia	are	a	hallmark	in	both	brain	cancers	and	tem-
poral lobe epilepsy in response to the inflammation (Darmanis et al., 
2017;	 Kaminska	 et	 al.,	 2021;	 Kinoshita	 &	 Koyama,	 2021;	 Morin-	
Brureau	et	 al.,	2018;	Ochocka	et	 al.,	2021).	We	acknowledge	 that	
the tissue used in this study is sourced from tumor or epileptogenic 
tissue adjacent regions in individuals with diagnoses of brain tumors 
or	epilepsy,	meaning	it	is	not	entirely	healthy.	Therefore,	it	is	possible	
that the activated subtypes we identify here may be due to the na-
ture	of	the	tissue.	Additionally,	sex-	specific	expression	differences	
have	been	observed	 in	 glioma-	activated	microglia	 (Ochocka	et	 al.,	
2021).	 Nonetheless,	we	 did	 not	 observe	 significant	 differences	 in	
most	genes	we	highlighted	here	due	to	diagnosis	(Figure	S5).	There	
is also a large cluster of homeostatic microglia present in these sam-
ples,	indicating	that	not	all	cells	are	activated.	While	the	focus	of	our	
work	is	AD,	these	findings	also	have	potential	relevance	in	the	fields	
of cancers, epilepsy, and other diseases.

We	 recognize	 that	 our	 study	 has	 several	 limitations,	 primarily	
owing	 to	 the	difficulty	 in	obtaining	high-	quality	 neurosurgical	 brain	
tissue,	which	leads	to	limited	sample	size	and	variability	in	tissue,	diag-
noses,	and	patient	demographics.	Even	though	we	have	utilized	tissue	
surgically separated from disease tissue, the samples are from epilepsy 
and	various	brain	tumor	patients	representing	multiple	diagnoses.	We	
isolated	microglia	using	an	approach	which	should	minimize	activation;	
however,	we	cannot	definitively	rule	out	stress-	induced	transcriptomic	
changes during isolation. Despite these caveats, we could identify 
microglial	co-	expression	modules	and	subclusters	with	multiple	 fea-
tures that are consistent with prior publications from model systems 
(Hammond et al., 2019;	Keren-	Shaul	 et	 al.,	2017;	 Krasemann	 et	 al.,	
2017;	Marschallinger	et	al.,	2020).	Our	scRNAseq	clusters	have	con-
tributions from both tumor and epilepsy samples, suggesting that our 
findings	are	unlikely	to	be	driven	by	any	one	diagnoses.	Furthermore,	
there are few published studies using fresh brain tissue to study mi-
croglia	and	thus	our	integrated	single-	cell	data	showing	a	homogenous	
cluster of microglia highlights the robustness of the methodology.

In	 summary,	 our	 study	 on	 sorted	 bulk	 microglia	 RNAseq	 and	
scRNAseq	from	fresh	brain	tissue	yield	several	key	findings.	We	iden-
tify	a	microglial	gene	signature	from	sorted	bulk	microglia,	character-
ize	its	expression	in	bulk	brain	RNAseq	across	7	datasets	comprising	
6	 regions,	 in	 bulk	 fresh	 brain	 RNAseq	 and	 in	microglial	 scRNAseq	
subtype	 clusters.	 This	 signature	 provides	 a	 well-	characterized	 re-
source	which	can	be	utilized	in	analytic	deconvolution	studies	of	bulk	
transcriptome	data	 (McKenzie	et	 al.,	2018;	Wang	et	al.,	2020).	We	

uncovered	microglial	gene	expression	modules	associated	with	age,	
sex	and/or	APOE-	ε4.	Modules	with	age	and	APOE-	ε4-	associated	tran-
scriptional changes implicate microglial lipid and carbohydrate metab-
olism	 perturbations	 and	microglial	 activation.	Microglial	 scRNAseq	
data	highlight	the	transcriptional	complexity	of	this	cell	type,	reveal	
both	known	and	novel	cell	types,	and	demonstrate	utility	of	this	data	
in	 characterizing	 sorted	bulk	RNAseq	data.	 These	 findings	provide	
support	 for	 the	 emerging	 microglial	 immunometabolism	 (Bernier	
et al., 2020;	Chausse	et	al.,	2020)	pathway	as	a	plausible	therapeu-
tic	target	in	aging-	related	disorders;	and	provide	a	well-	characterized	
human transcriptome resource for the research community on this 
cell	type	with	central	roles	in	health	and	disease	(Masuda	et	al.,	2020).

4  |  MATERIAL S AND METHODS

4.1  |  Patient samples

Fresh human brain tissue was obtained from patients undergoing 
neurosurgical	 procedures	 for	 epilepsy	or	 tumor	 resection.	 Tissues	
determined to be grossly unaffected by the primary disease process 
were	utilized	for	the	present	study	(Figure 1).	Patient	samples	were	
transported	from	the	operating	room	to	the	laboratory	in	1X	DPBS	
(Thermo	Fisher;	14287080)	for	processing	within	1–	2	h	of	resection.	
Human tissue was collected with informed consent prior to surgery 
and	all	procedures	were	approved	by	the	Mayo	Clinic	 Institutional	
Review	Board	and	are	HIPAA	compliant.

4.2  |  Tissue dissociation

Tissue	was	dissected	 to	 remove	necrotic	 tissue,	white	matter	 and	
excess	 vascular	 tissue,	 to	 retain	only	 cortical	 gray	matter.	 The	 re-
maining tissue was cut into sagittal slices and weighed before being 
processed	using	the	Adult	Brain	Dissociation	Kit	(Miltenyi;	130-	107-	
677)	as	per	the	manufacturer's	protocol.	Debris	removal	 (Miltenyi;	
130-	109-	398)	and	red	blood	cell	lysis	(Miltenyi;	130-	094-	183)	were	
also	performed.	All	procedures	were	carried	out	on	ice.	The	resulting	
homogenate	was	filtered	through	a	70-	µm filter before proceeding.

4.3  |  Magnetic- activated cell sorting (MACS)

The	cell	suspension	was	first	enriched	for	CD11b+ cells by incubat-
ing	 with	 anti-	CD11b	 microbeads	 (Miltenyi;	 130–	049–	601	 clone	
M1/70)	 for	15	minutes	according	 to	manufacturer's	 recommenda-
tion.	This	was	then	washed	with	PB	buffer	(0.5%	BSA,	1X	PBS	Ca2+/
Mg2+	free	pH	7.4)	and	filtered	through	a	70µm cell strainer before 
being	applied	to	a	large	separation	column	(Miltenyi;	130-	042-	401)	
in	a	QuadroMACS	separator	magnet	 (Miltenyi;	130-	090-	976).	The	
CD11b+ fraction was collected and resuspended in sterile filtered 
FACS	staining	buffer	 (1X	PBS	Ca2+/Mg2+	 free,	0.5%	BSA,	2%	FBS,	
3mM	EDTA)	for	antibody	staining.
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4.4  |  Fluorescence- activated cell sorting (FACS)

MACS	 sorted	 CD11b+	 cells	 subsequently	 underwent	 FACS	 sorting	
to	 further	 purify	 the	 microglial	 population.	 The	 cell	 suspension	 was	
incubated	 in	Human	TruStain	FcX	blocking	 solution	 (1:20,	Biolegend;	
422302)	 at	 room	 temperature	 for	 10	 min.	 Subsequently,	 cells	 were	
stained	with	anti-	CD11b	PE/Cy7	(1:100,	Biolegend;	101206,	M1/70)	
and	anti-	CD45	Alexa	Fluor	647	(1:100,	Biolegend;	304056,	HI30)	an-
tibodies	for	30	min	on	 ice.	Following	two	washes	with	FACS	staining	
buffer,	SYTOX	Green	viability	dye	(1:1000,	Thermo	Fisher;	S7020)	was	
added	for	an	additional	20	minutes.	Single-	cell	suspensions	were	filtered	
through a 40µm	cell	strainer	(Falcon;	352235)	before	sorting	on	a	BD	
FACS	Aria	II	(BD	Biosciences).	CD11b+/CD45intermediate/SYTOX	green− 
cells	 were	 sorted	 directly	 into	 FACS	 staining	 buffer.	 Independently	
CD11b	and	CD45	are	not	microglial	specific	markers;	however,	gating	
cells	with	a	CD11b+/CD45intermediate signature allowed us to differenti-
ate microglia from peripheral myeloid cells, such as macrophages, which 
are	expected	to	be	CD45high.	An	example	of	our	FACS	gating	strategy	is	
provided	in	Figure	S2A.	Briefly,	we	used	cell	lines	expressing	the	mark-
ers of interest as positive controls to independently set the gates for 
CD11b	(RAW	264.5	mouse	macrophage	cells)	and	CD45	(Jurkat	cells)	
expression.	CD45	intermediate	cells	were	determined	by	selecting	for	
mid-	level	fluorescence	within	this	gate.	This	was	used	to	sort	cells	for	
both	bulk	and	single-	cell	RNAseq	data	generation	to	reduce	the	likeli-
hood of peripheral myeloid cell contamination in the samples.

4.5  |  RNA isolation and sequencing

RNA	 from	 sorted	 microglial	 cells	 was	 isolated	 using	 the	 miRNe-
asy	 Serum/Plasma	 Kit	 (QIAGEN;	 217184)	 and	 quantified	 on	 the	
Agilent	 BioAnalyzer	 2100.	 cDNA	 libraries	 were	 generated	 using	
SMARTSeq2	v4	and	Nextera	Low	 Input	Library	Prep	Kit.	 Samples	
were	multiplexed	and	sequenced	on	the	Illumina	HiSeq	4000.

RNA	from	frozen	bulk	tissue	was	isolated	using	Trizol	and	chloro-
form,	followed	by	DNase	and	clean	up	using	the	Rneasy	Kit	(QIAGEN;	
74106).	Libraries	were	generated	using	the	TruSeq	Stranded	mRNA	
Library	Prep	Kit.	Samples	were	multiplexed	and	sequenced	on	the	
Illumina	 HiSeq	 4000.	 Base-	calling	 of	 all	 sequence	 data	 was	 per-
formed	using	Illumina's	RTA	v2.7.7.

4.6  |  10X Single cell 3’ v3 library preparation of 
sorted microglia

Viability	of	MACS	plus	FACS	 sorted	cells	was	assessed	by	Trypan	
blue	(Gibco;	15250061)	exclusion	and	cell	density	was	determined	
using	 a	hemocytometer	prior	 to	 adjustment	 to	 target	4000–	5000	
cells.	Cells	were	loaded	onto	a	10X	Chromium	chip	and	run	on	the	
GemCode	Single	Cell	Instrument	(10X	Genomics)	to	generate	single-	
cell	gel	beads-	in-	emulsion	(GEMs).	Single-	cell	RNAseq	libraries	were	
prepared	using	the	Chromium	Single	Cell	3’	Gel	Bead	and	Library	Kit	
v2	and	v3	(10X	Genomics;	120237)	and	the	Chromium	i7	Multiplex	

Kit	(10X	Genomics;	120262)	according	to	the	manufacturer's	instruc-
tions.	Quality	of	cDNA	libraries	was	determined	using	a	BioAnalyzer	
2100	DNA	High	Sensitivity	assay	(Agilent;	5067–	4626)	prior	to	se-
quencing	one	per	lane	on	an	Illumina	HiSeq	4000.

4.7  |  Validation with quantitative real- time PCR

Total	RNA	was	extracted	from	sorted	cells	using	the	miRNeasy	Serum/
Plasma	 Kit	 (QIAGEN;	 217184).	 Concentration	 and	 quality	 were	 as-
sessed	using	the	Agilent	BioAnalyzer	RNA	6000	Pico	Kit	(Agilent;	5067-	
1514).	RNA	was	normalized	to	0.5ng/µl	for	cDNA	synthesis	using	the	
SuperScript	IV	VILO	Master	Mix	(Thermo	Fisher;	11756050).	TaqMan	
PreAmp	Master	Mix	(Thermo	Fisher;	4391128)	was	used	to	pre-	amplify	
the	cDNA,	 followed	by	TaqMan	Universal	PCR	Master	Mix	 (Thermo	
Fisher;	 4304437)	with	 the	 following	 gene	 expression	 probes:	MOG, 
AQP4, THY1, PTPRC, ITGAM, P2RY12, PECAM1, CD34, GAPDH	(Thermo	
Fisher; Hs01555268_m1, Hs00242342_m1, Hs00174816_m1, 
Hs04189704_m1,	Hs00355885_m1,	Hs00224470_m1,	Hs01065279_
m1,	Hs02576480_m1,	Hs99999905_m1).	RT-	qPCR	was	performed	on	
a	QuantStudio	7	Flex	Real-	Time	PCR	System	(Thermo	Fisher)	using	a	
relative	standard	curve	to	quantify	gene	expression.

4.8  |  Validation with immunocytochemistry

Cultured	 cells	 were	 fixed	 with	 4%	 paraformaldehyde	 (PFA)	 over-
night	at	4°C	and	blocked	with	blocking	solution	(10%	BSA,	5%	nor-
mal	 goat	 serum	 and	 0.1%	Triton-	X).	 Fixed	 cells	were	 stained	with	
anti-	TMEM119	 (1:100,	 Biolegend;	 853302)	 extracellular	 primary	
antibody	with	Goat	anti-	mouse	IgG	secondary	antibody	conjugated	
to	Alexa-	488	 (1:100,	Abcam;	ab150113).	Nuclei	were	stained	with	
1µg/ml	DAPI	(1:1000,	Thermo	Fisher;	62248)	before	mounting	with	
AquaPoly	Mount	(Poly	Sciences,	18606-	20).	 Images	were	acquired	
with	a	Zeiss	LSM880	Confocal	microscope	using	a	Plan-	Apochromat	
20x	magnification	and	0.8	objective	at	1024	by	1024	pixels	with	a	
0.5	microsecond	pixel	dwell	time.

4.9  |  Data analysis

4.9.1  |  Bulk	microglia	RNAseq	processing

The	MAPR-	Seq	pipeline	(Kalari	et	al.,	2014)	was	used	to	align	reads	to	
human	 reference	genome	hg38	using	STAR	 (Dobin	et	 al.,	2013)	 and	
count	reads	using	featureCounts	(Liao	et	al.,	2014).	FastQC	was	used	
for	quality	control	(QC)	of	raw	sequence	reads,	and	RseQC	was	used	for	
QC	of	mapped	reads.	Quality	measures	were	examined	including	base	
calling	quality,	GC	content,	mapping	statistics	and	sex	check	to	ensure	
consistency	between	 the	 recorded	and	 inferred	 sex	 from	expression	
of	 chromosome	 Y	 genes.	 Raw	 read	 counts	 were	 normalized	 using	
Conditional	 Quantile	 Normalization	 (CQN)	 to	 generate	 log2 scaled 
expression	values	via	 the	 Bioconductor	 package	 cqn,	 accounting	 for	
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sequencing	 depth,	 gene	 length	 and	 GC	 content.	 Normalized	 CQN	
expression	values	were	assessed	using	Principal	components	analysis	
(PCA)	to	identify	and	remove	outliers,	defined	as	greater	than	4	stand-
ard deviations from the mean of the first two principal components. In 
addition,	RPKM	(reads	per	kilo	bases	per	million)	values	were	calculated.

4.10  |  Identification of a core microglial signature 
from bulk microglia data

To	define	a	core	microglial	signature,	we	compared	our	bulk	microglia	
data	to	cognitively	normal	control	samples	from	the	AMP-	AD	bulk	
tissue transcriptome data from 7 different datasets representing 6 
brain	 regions	 (Synapse	 ID:	 syn2580853);	Mayo	Clinic	 (Allen	 et	 al.,	
2016])	(cerebellum	and	superior	temporal	gyrus),	Mount	Sinai	Brain	
Bank	(Wang	et	al.,	2018)	BM10	(frontal	pole),	BM22	(superior	tem-
poral	gyrus),	BM36	(parahippocampal	gyrus),	BM44	(inferior	frontal	
gyrus),	and	Rush	University	Religious	Order	Study-	Memory	and	Aging	
Project	(ROSMAP;	De	Jager	et	al.,	2018)	(dorsolateral	prefrontal	cor-
tex).	Raw	gene	counts	and	metadata	 (see	Acknowledgments)	were	
obtained	from	the	AMP-	AD	RNAseq	Harmonization	study	which	had	
performed alignment and processing of all datasets and brain regions 
through	a	consensus	pipeline	 (Wan	et	al.,	2020).	Samples	were	re-
moved	that	had	inconsistent	sex	between	that	indicated	in	metadata	
and	that	inferred	from	RNAseq	expression;	a	RIN	<5; were identified 
as	gene	expression	outliers	based	on	principal	component	analysis	
(PCA)	(>4	standard	deviation	(SD)	from	mean	PC1	or	PC2),	or	miss-
ing metadata. In addition, duplicates (lowest read count sample re-
moved)	and	those	with	rRNA	(>5%)	were	removed	from	the	MSBB	
datasets. Furthermore, samples not meeting neuropathological cri-
teria	 as	Alzheimer's	disease	 (AD;	McKhann	et	 al.,	 1984)	or	 control	
were	excluded.	To	generate	the	microglial	expression	signature,	only	
control	samples	from	the	AMP-	AD	datasets	were	included.	Raw	read	
counts	 were	 normalized	 using	 Conditional	 Quantile	 Normalization	
(CQN).	Log2	fold	change	and	q-	values	between	each	bulk	tissue	brain	
region	and	the	bulk	microglia	profiles	were	calculated	for	each	gene	
via linear regression using log2	(RPKM)	without	correction	for	covari-
ates.	Genes	were	filtered	using	a	cutoff	of	4-	fold	greater	expression	
in	bulk	microglia	compared	to	each	bulk	tissue	region	and	q < 0.05. 
Genes that passed these criteria and were significant in comparisons 
with	 all	 7	 bulk	 brain	 datasets	 determined	 the	microglial	 signature.	
These	signature	genes	were	assessed	for	GO	term	enrichment	with	
biological	pathways	using	MsigDB.	REViGO	(Supek	et	al.,	2011)	tree	
plots	were	generated	in	R	using	GO	terms	obtained	from	MsigDB.

4.11  |  Weighted gene co- expression 
network analysis

The	 CQN	 normalized	 expression	 values	 from	 bulk	 microglia	 were	
input	 to	 R	WGCNA	 (Langfelder	 &	 Horvath,	 2008)	 package	 v1.69.	
This	analysis	included	14,149	expressed	genes,	that	is,	median	(CQN)	
>	2.	Modules	were	identified,	their	eigengenes	were	calculated	and	

merged if correlation of eigengenes > 0.7. Genes in the 40 modules 
identified	were	tested	for	GO	term	enrichment	via	WGCNA.	Module	
membership	(MM)	for	each	gene	was	calculated	as	the	correlation	be-
tween	expression	of	each	gene	and	its	module	eigengene.	Genes	with	
MM	≥	0.7	are	considered	the	hub	genes	for	the	network.	Gene	co-	
expression	network	plots	were	generated	in	Cytoscape	v3.8	(http://
www.cytos cape.org/).	Each	module	eigengene	was	tested	for	asso-
ciation	with	age,	sex	and	APOE e4 carrier status independently using 
Pearson	 correlation.	Co-	expression	network	 genes	were	 annotated	
if they were significantly associated (p <	0.05)	with	the	tested	trait.

4.12  |  Over- representation and 
correlation analyses

Hypergeometric testing was performed in R to determine the en-
richment of a select set of genes in previously reported signatures, 
bulk	 tissue	 expressed	 genes,	WGCNA	modules	 or	 10X	 single-	cell	
clusters.	 Correlation	 between	 bulk	 tissue	 and	 bulk	microglial	 nor-
malized	CQN	data	was	calculated	using	Spearman's	rank	correlation.	
Concordant	 and	 discordantly	 correlated	 genes	 were	 determined	
using	the	upper	and	lower	quartiles	from	each	dataset.

4.13  |  Single- cell data analysis

For	single-	cell	RNA	samples,	10X	Genomics	Cell	Ranger	Single	Cell	
Software	Suite	v3.1.0	(Zheng	et	al.,	2017)	was	used	to	demultiplex	
raw	base	call	files	generated	from	the	sequencer	into	FASTQ	files.	
Raw	 reads	 were	 aligned	 to	 human	 genome	 build	 GRCh38.	 Reads	
aligned	to	gene	transcript	locus	were	counted	to	generate	raw	UMI	
counts	per	gene	per	barcode	for	each	sample.	The	raw	UMI	matrices	
were	filtered	to	only	keep	barcodes	with	>500	UMIs	and	those	that	
were	classified	as	cells	by	Cell	Ranger's	cell	calling	algorithm.

Quality	control,	normalization,	clustering,	and	marker	gene	identi-
fication	were	performed	with	Seurat	v3	(Stuart	et	al.,	2019),	followed	
by	annotation	of	clusters	using	established	cell	type	markers.	We	kept	
(1)	 barcodes	with	>10%	of	UMI	mapped	 to	mitochondrial	 genome;	
(2)	barcodes	with	<400 or >8000	detected	genes;	(3)	barcodes	with	
<500 or >46,425	mapped	UMIs;	 (4)	genes	 that	are	detected	 in	<5 
cells.	These	thresholds	were	determined	by	UMI	or	gene	distribution	
to identify undetectable genes and outlier barcodes that may encode 
background,	damaged	or	multiple	cells.	UMI	counts	of	remaining	cells	
and	genes	were	normalized	using	NormalizeData	function,	which	gave	
natural	log	transformed	expression	adjusted	for	total	UMI	counts	in	
each	cell.	The	top	2000	genes	whose	normalized	expression	varied	
the	most	across	 cells	were	 identified	 through	FindVariableFeatures	
function	 with	 default	 parameters.	 Using	 those	 genes,	 cells	 from	
6	 samples	were	 integrated	 using	 functions	 FindIntegrationAnchors	
and IntegrateData with default parameters. Principal components 
(PCs)	of	the	integrated	and	scaled	data	were	computed;	and	the	first	
31	PCs,	which	 accounted	 for	>95%	variance,	were	used	 in	 cluster-
ing	 cells.	 Cell	 clustering	 was	 performed	 using	 FindNeighbors	 and	

http://www.cytoscape.org/
http://www.cytoscape.org/
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FindClusters	with	default	parameters.	Marker	genes	were	identified	
in	 each	 cluster	 using	 FindMarkers	 in	 Seurat.	Marker	 genes	 on	 one	
cluster	must	(1)	be	present	in	>20%	cells	in	the	cluster;	(2)	the	log(fold	
change)	between	expression	in	the	cluster	and	other	clusters	must	be	
>0.25;	 (3)	the	rank	sum	test	p-	value	 (Bonferroni-	adjusted)	between	
cells in the cluster and cells in other clusters <0.05.

4.14  |  Meta- analysis of bulk microglia 
RNAseq datasets

We	obtained	sets	of	co-	expression	genes,	that	is,	WGCNA	modules	
from our own data and identified several modules whose eigengenes 
were	correlated	with	age/sex/APOE.	To	check	whether	 these	cor-
relations	 hold	 for	 external	 datasets,	we	 downloaded	 raw	 reads	 in	
FASTQ	 format	 for	 three	 external	 bulk	microglia	 datasets	 listed	 in	
Table	 S17.	Reads	were	mapped	 to	human	genome	build	hg38	 and	
were	counted	and	normalized	in	the	same	fashion	as	described	pre-
viously.	For	each	WGCNA	module,	we	identified	the	central	genes	
(i.e., genes whose Pearson correlation with module eigengene > 
0.75).	Using	these	central	genes,	module	eigengenes	were	calculated	
in	all	datasets—	ours	and	 three	external	ones.	We	correlated	mod-
ule	eigengenes	with	 traits.	Finally,	we	performed	meta-	analysis	 to	
combine correlations from multiple datasets using metacor function 
(random	effect	model)	in	R	meta	package.

4.15  |  Meta- analysis of single- cell RNAseq datasets

Raw	 single-	cell	 RNAseq	 data	 from	 Olah	 et	 al.	 (2020)	 was	 down-
loaded	through	Synapse	(syn21438358)	and	processed	through	Cell	
Ranger. Quality control was performed as described prior to inte-
gration	with	our	samples	using	Seurat	v4.0.4.	 Integration	was	per-
formed	to	combine	the	datasets	by	individual	rather	than	sample.	A	
total	of	9	samples	and	15,819	cells	were	retained	from	the	Olah	data.	
Cells	were	annotated	to	 include	dataset	of	origin.	Hypergeometric	
tests were performed to determine the enrichment of our microglial 
signature	within	each	integrated	cluster.	Additionally,	we	also	looked	
at	overlap	between	integrated	cluster	genes	and	marker	genes	from	
our	original	single-	cell	dataset.	To	 identify	where	our	original	cells	
localized	within	the	integrated	dataset,	we	mapped	the	original	cell	
IDs to the integrated clusters and calculated percentage overlap.
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Dataset Data Type Description SynapseID DoD

Mayo	
RNAseq	
TCX

Metadata Individual 
human 
and 
RNAseq

syn5550404 na

Mayo	
RNAseq	
CER

Metadata Individual 
human 
and 
RNAseq

syn5550404 na

Mayo	
RNAseq	
TCX

RNASeq	
Expression

Consensus	
processed 
RNASeq	
raw 
counts

syn8690799 10/2/2019

Mayo	
RNAseq	
CER

RNASeq	
Expression

Consensus	
processed 
RNASeq	
raw 
counts

syn8690904 10/2/2019

ROSMAP Metadata ID	Key syn3382527 10/2/2019

ROSMAP Metadata Individual 
human

syn3191087 10/2/2019

ROSMAP Metadata Assay	RNAseq syn21088596 1/2/2020

ROSMAP RNASeq	
Expression

Consensus	
processed 
RNASeq	
raw 
counts

syn8691134 10/2/2019

MSBB Metadata Individual 
human

syn6101474 11/22/2019

MSBB Metadata Assay	RNAseq syn6100548 10/2/2019
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