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Abstract. 	Maternal factors stored in eggs and oocytes are necessary for reprogramming sperm for embryonic development. 
This reprogramming activity of maternal factors also works towards somatic cells, including terminally differentiated cells. 
Several different experimental systems utilizing egg and oocyte materials have been applied to study nuclear reprogramming 
by maternal factors. Among these systems, the most widely used is the transfer of a somatic cell nucleus to an oocyte arrested 
at the metaphase II stage, leading to the production of a cloned animal. Nuclear transfer to an unfertilized oocyte thus provides 
a unique opportunity to examine reprogramming processes involved in acquiring totipotency. Other experimental systems 
are also available to study maternal reprogramming, such as nuclear transfer to Xenopus laevis oocytes at the germinal 
vesicle stage, treatment with extracts obtained from eggs or oocytes, and induced pluripotency with overexpressed maternal 
factors. Each system can be used for answering different types of scientific questions. This review describes currently 
available reprogramming systems using egg and oocyte materials and discusses how we can deepen our understanding of 
reprogramming mechanisms by taking advantage of these various experimental systems.
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Introduction

In the 1950s, successful cloning using differentiated frog cells was 
achieved by transplanting the cell nucleus into an unfertilized egg 

whose genomic materials had been destroyed [1, 2]. Several decades 
later, mammalian species were cloned from adult somatic cells [3, 4]. 
In mammalian nuclear transfer (NT), a somatic nucleus is transferred 
into an unfertilized, enucleated oocyte. These groundbreaking studies 
raised an important new question, i.e., how are differentiated cells 
reprogrammed to the undifferentiated state? Researchers soon realized 
the value of answering this question, since nuclear reprogramming 
of somatic cells could pave the way for a wide variety of applica-
tions, such as regenerative medicine, the propagation of livestock 
with important traits, and the preservation of genetic materials 
from endangered animals. Later, reprogramming of somatic cells 
to the pluripotent state has been achieved by the production of 
induced pluripotent stem cells (iPSCs) [5, 6]. iPSCs have already 
been applied for the treatment of age-related macular degeneration 
[7, 8]. However, we still do not fully understand the mechanisms of 
nuclear reprogramming. In particular, the reprogramming processes 
of somatic nuclei in eggs and oocytes are not well known and clearly, 
need further investigation. Some valuable information can only be 
obtained by studying nuclear reprogramming in eggs and oocytes, 

which is mediated by maternal factors. NT to eggs or oocytes serves as 
the only established method to provide somatic cells with totipotency, 
which is the ability to develop into all of the cells for making up an 
organism. Rapid and efficient reprogramming can be achieved by NT, 
such that previously silenced genes are activated in a short period of 
time [9]. Natural reprogramming activity for sperm is used in NT-
mediated reprogramming. However, NT is technically demanding. It 
normally requires years of training and produces only a small number 
of embryos. Therefore, reprogramming systems that do not use NT, 
but still utilize egg/oocyte materials, have been developed. In this 
review, different reprogramming systems using egg/oocyte materials 
and their characteristics are discussed. Appropriate systems should 
always be selected to suit the specific research purpose.

Reprogramming towards Totipotency by NT to  
Eggs/oocytes at the Metaphase II Stage

Eggs/oocytes that are arrested at the metaphase II (MII) stage are 
normally used to produce cloned animals. The term “MII egg” is used 
for frogs, while “MII oocyte” is used for mammals. In both cases, 
enucleation or disruption of the maternal genome is performed prior to 
the transplantation of a single somatic nucleus. Transfer of a somatic 
nucleus to the oocyte cytoplasm can be achieved by microinjection 
or cell fusion. The reconstructed eggs/oocytes are then activated 
to start development, although pre-incubation of the reconstructed 
oocytes to facilitate nuclear reprogramming before activation is 
desirable in mice. After cell divisions, the reconstructed embryos 
initiate embryonic gene activation. Until the activation of embryonic 
genes, the developmental programs of embryos are predominantly 
controlled by maternally stored factors in eggs/oocytes. Thereafter, 
embryonically activated genes direct developmental cascades to 
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culminate in cloned animals.
NT to MII eggs/oocytes paves the way to produce cloned animals 

from somatic nuclei and is the only established method to study 
how a single somatic nucleus is reprogrammed to direct embryonic 
development to term. In other words, NT to MII eggs/oocytes is a 
unique method to study the process of acquiring totipotency. NT to 
eggs/oocytes ensures rapid and efficient reprogramming and can yield 
embryonic stem (ES) cells of high quality [10, 11]. Furthermore, 
when the somatic nucleus of one species is transferred to the oocyte 
cytoplasm of another related species, the reconstructed interspe-
cies embryos can initiate early developmental events and support 
development to live offspring in some cases [12, 13]. In theory, this 
interspecies NT can be utilized to propagate animals whose germ 
cells are difficult to obtain, although this technique needs further 
improvement.

Thus, the value of NT to MII eggs/oocytes has been recognized. 
However, the efficiency of animal cloning is low due to the frequent 
errors in nuclear reprogramming. Generally cloning efficiency 
is less than a few percent. Therefore, many attempts have been 
made to identify the barriers to nuclear reprogramming that cause 
low developmental rates in NT embryos. Several key factors that 
prevent efficient reprogramming have been identified. Firstly, the 
X chromosome-linked non-coding RNA, Xist, can be abnormally 
expressed from one of the X chromosomes that needs to be silenced 
for normal development [14]. Abnormal Xist expression triggers the 
misregulation of many genes, which in turn results in developmental 
failure of NT embryos [14]. This can be corrected by knocking out 
or knocking down Xist and such Xist-repressed NT embryos develop 
to term with high efficiency (approximately 15%) [14, 15]. Secondly, 
defects in placenta formation have been shown in NT embryos [16, 
17]. To circumvent this situation, complementation by trophoblast cells 
derived from tetraploid fertilized embryos is one reasonable approach 
[18]. Thirdly, RNA-seq analyses have identified the genes that are 
often misregulated in NT embryos, as compared to IVF embryos 
[19–21]. Matoba et al. found reprogramming-resistant regions that are 
marked by histone H3 lysine 9 trimethylation (H3K9me3) [19]. The 
reduction of H3K9me3 by overexpressing enzymes that can remove 
the H3K9 mark, greatly improves the development of NT embryos 
in several mammalian species, including mice, cows, monkeys, and 
humans [20, 22–25]. We have also shown that the treatment of mouse 
NT embryos with epigenetic modifiers (trichostatin A and vitamin 
C) corrects abnormally high H3K9me3 levels and greatly enhances 
the development of NT embryos (from nearly 0% to 15%) [26]. A 
recent study reported defects in the expression of imprinting genes 
that are marked by histone H3 lysine 27 trimethylation (H3K27me3) 
in mouse NT embryos [27]. Apart from these reprogramming errors, 
aberrant DNA re-methylation and silencing of the key imprinting gene 
have recently been shown to impact cloning efficiencies [28, 29]. 
Since the application of genome-wide approaches to NT embryos, 
recurrent reprogramming errors in NT embryos have been found. It 
is likely that the current efficiency of animal cloning will be further 
improved in the near future by correcting these reprogramming 
errors, possibly through simultaneous correction of two or more of 
the above-mentioned errors [27].

In summary, NT to eggs/oocytes not only provides a route to 
produce cloned animals, but also provides an opportunity to in-

vestigate the reasons why somatic nuclei are resistant to nuclear 
reprogramming (Fig. 1). A major issue has been how reprogramming 
mechanisms can be analyzed using NT to MII eggs/oocytes, due to 
the limited number of NT embryos produced. However, the recent 
progresses on genome-wide approaches using a small number of 
cells, such as single cell RNA-seq and small-scale ChIP-seq, have 
overcome these obstacles. Moreover, cloning success rate is gradually 
improving due to the tremendous efforts of scientists, such that we 
have so far achieved a cloning efficiency of approximately 20% 
in mice [27]. Other new and improved methods are still needed 
to further correct reprogramming errors in NT embryos, possibly 
by utilizing locus-targeted correction of epigenetic misregulation. 
Other difficulties with using NT to MII eggs/oocytes are that (1) 
reprogramming by this method is inevitably accompanied by cell 
division and DNA replication, such that care is needed when dissect-
ing reprogramming mechanisms (discussed below); (2) NT needs 
skillful micro-manipulation techniques, which normally require 
years of training to perfect; and (3) in mice, reprogramming towards 
totipotency can only be achieved in certain strains.

Transcriptional Reprogramming by NT to  
Xenopus laevis Oocytes at the Germinal Vesicle Stage

A Xenopus laevis oocyte at the germinal vesicle (GV) stage contains 
a giant nucleus called the GV, and active transcription is ongoing 
in the GV before the oocyte becomes responsive to progesterone, 
which triggers its maturation to the transcriptionally silent MII stage. 
Gurdon’s group has shown that hundreds of permeabilized mammalian 
cells can be transplanted into a single GV [30]. Interestingly, the 
transplanted nuclei begin to express previously silenced genes, 
including pluripotency genes and oocyte-specific genes [31, 32]. To 
induce this transcriptional reprogramming, cell membranes need to 
be permeabilized in order to allow reprogramming factors to access 
the transplanted nuclei. One of the biggest advantages of using 
this technique to analyze reprogramming is that cell division and 
DNA replication are not required before detecting transcriptional 
reprograming. Therefore, experimental interventions that affect 
gene expression are directly related to transcriptional reprogram-
ming in this method. Thus, NT to the Xenopus GV facilitates our 
mechanistic understanding of transcriptional reprogramming. Indeed, 
many maternal factors that are involved in reprogramming have 
been identified using this technique [31–35]. One good example of 
making the best use of this system is the discovery of actin in the 
nucleus, referred to as nuclear actin, as a reprogramming factor [36]. 
It would have been very difficult to analyze functions of actin in 
reprogramming by other systems, since actin is multifunctional and 
plays key roles in both the cytoplasm and the nucleus [37]. After NT 
to the Xenopus GV, the transplanted GV can be isolated and it still 
maintains reprogramming activity (referred to as the oil GV system), 
since transcriptional reprogramming is achieved by only the nuclear 
components. We have shown that transcriptional reprogramming of 
Pou5f1 (Oct4) is impaired after disrupting nuclear actin polymerization 
in the isolated GV, which excludes the involvement of cytoplasmic 
actin. Moreover, in this NT system, we do not have to take into 
account the fact that polymerized nuclear actin is also involved in 
cell cycle progression [38].
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On the other hand, cloned animals cannot be obtained by this 
NT method. In addition, this type of NT has only been established 
in Xenopus laevis oocytes and it is unclear whether a similar NT 
system using GV oocytes can be devised in other species. There is 
also a concern as to whether reprogramming events observed in this 
system can be reproduced in other NT systems, such as in intraspecies 
NT to MII eggs/oocytes. Thus far, many reprogramming factors 
identified in the Xenopus oocyte NT system have also been shown 
to serve as reprogramming factors in other systems [33, 39–42]. To 
summarize, when performing NT to GV oocytes, it is important to 
understand that this is a specialized system for studying transcriptional 
reprogramming and its associated nuclear remodeling events, but it 
should still result in useful information (Fig. 1), as described above.

Partial Reprogramming in Extracts  
from Eggs and Oocytes

It is desirable to prepare a large number of reprogrammed cells 
for biochemical and molecular analyses in order to understand the 
mechanisms of nuclear reprogramming. However, NT to eggs/
oocytes can produce only a limited number of reprogrammed cells 
(at most, hundreds of NT embryos in one experiment). Therefore, we 
and others have attempted to develop egg/oocyte extract-mediated 
reprogramming systems, in which millions of partially reprogrammed 
cells can be prepared. Cells incubated in extracts are regarded as 
partially reprogrammed cells, since extracts are currently able to induce 
only certain aspects of reprogramming, such as DNA replication and 
chromatin decondensation, as described below. Kikyo et al. were 

Fig. 1.	 Overview of various nuclear reprogramming systems using egg/oocyte materials. Four different reprogramming systems using egg or oocyte 
materials are summarized. Brief explanations of each system, including their advantages over other systems and challenges that need to be 
considered, are described. Please refer to relevant sections of the text for more details.



MIYAMOTO206

the first to use Xenopus egg extracts to induce nuclear remodeling 
in permeabilized Xenopus somatic cells [43]. The incorporation of 
egg-derived proteins into somatic nuclei and a concurrent loss of 
somatic nuclear proteins were observed during incubation in egg 
extracts [43]. Reprogramming of DNA replication patterns has 
also been studied in Xenopus egg extracts [44]. In other types of 
experiments, Xenopus egg extract-treated cells have been subjected 
to cell culture by resealing plasma membranes of extract-treated 
mammalian cells. These cultured extract-treated cells begin to express 
previously silenced genes, such as Oct4 [45–47]. We have also shown 
that at least partial reprogramming events, such as exchange of 
chromatin-associated proteins and changes in histone modifications, 
can be observed in permeabilized mammalian somatic cells that 
are incubated in extracts derived from mammalian oocytes [48, 
49]. Donor cells can also be incubated in egg/oocyte extracts as a 
pre-treatment before NT to MII oocytes, to improve the efficiency 
of animal cloning [50–53].

Apart from the fact that a large number of reprogrammed cells 
are prepared by this route, the advantage of using extracts is that 
maternal factors can be easily removed by immunodepletion (Fig. 
1). This is advantageous, since the knockdown of maternally stored 
factors in live eggs and oocytes is challenging. Fractionation of 
extracts is also a valuable approach to identify the maternal factors 
responsible for the observed reprogramming events. Moreover, 
extract treatment does not require egg/oocyte micro-manipulation 
skills. On the other hand, it is unclear to what extent the repro-
gramming events that must happen in vivo in eggs and oocytes are 
recapitulated in extracts in vitro. One clear difference between in 
vivo reprogramming and in vitro extract-mediated reprogramming 
is that embryonic transcription is not induced during the incubation 
of permeabilized cells in Xenopus or mammalian extracts. If one can 
achieve a transcriptionally competent extract, the detailed molecular 
mechanisms of transcriptional reprogramming could be revealed since 
in vitro analyses enable quantitative measurement of the maternal 
factors needed to induce transcription in a spatiotemporally controlled 
manner. The development of extracts that can achieve transcriptional 
reprogramming may not be far off, since significant progress has 
been made using axolotl oocyte extracts [54, 55].

Overexpression of Maternal Factors to Produce iPSCs

It has been postulated that maternal factors may enhance repro-
gramming via the iPSC route. Maekawa et al. screened transcription 
factors that can enhance iPSC production and identified the maternal 
transcription factor, Glis1 [56]. Furthermore, other germ cell-enriched 
factors, such as histone variants Th2a/Th2b, histone chaperone Asf1a, 
nucleoplasmin, H1foo, Obox1, Tcl1, and Tcl1b1, have been shown 
to accelerate iPSC-mediated reprogramming [57–61]. This approach 
is an effective way to directly test the function of candidate genes 
for the purpose of efficiently obtaining iPSCs (Fig. 1). Therefore, 
this system can be used as a rapid test to validate reprogramming 
factors. However, we also need to be cautious about interpreting 
results when candidate factors do not affect the efficiency of iPSC 
production; this does not necessarily mean that the tested factors are 
unrelated to reprogramming in eggs/oocytes, since mechanisms of 
reprogramming in eggs and oocytes are likely to be different from 

those in iPSCs [31]. Reprogramming in eggs and oocytes utilizes 
normal developmental programs, while iPSCs are generated by the 
overexpression of Yamanaka factors. If we pursue the reprogramming 
mechanisms of the tested factors in eggs and oocytes, experimental 
validation in other reprogramming systems is needed.

New Reprogramming Systems

The ability of MII oocytes to reprogram somatic nuclei has 
undoubtedly been shown. It is also intriguing to know when the 
reprogramming ability of oocytes is lost in the course of embryonic 
development. Mitalipov’s group has succeeded in reprogramming 
cells that are transferred into embryos at the 2-cell stage, as long as 
the cell cycle is properly synchronized between the donor cell and 
the recipient oocyte [62]. It is widely regarded that mouse 2-cell 
embryos still possess totipotency, which may explain their ability to 
reprogram the transferred somatic nuclei. However, totipotency of 
embryos is gradually lost in the course of preimplantation develop-
ment, which is evident from NT experiments using blastomeres at 
various developmental stages [63]. It would also be interesting to 
know whether the reprogramming ability of embryos is also impaired 
or the lack of appropriate reprogramming systems hampers success-
ful reprogramming in embryos at more developed stages. Further 
investigations are needed to answer these questions.

Cloned animals have also been reported in other than mammals 
and frogs. For example, methods for cloning zebrafish [64] and 
flies [65] have been developed, and sturgeon embryos have been 
produced by interspecies NT [66]. These results imply that the 
concept of nuclear reprogramming by maternal factors may be 
generally applicable across species. However, it is still not known to 
what extent eggs and oocytes of one species can reprogram somatic 
nuclei of another species. Considering that some nuclear remodeling 
and gene activation can be induced, even in interspecies NT, there 
are many common reprogramming factors and mechanisms shared 
among different species. However, the development of interspecies 
NT embryos has been largely unsuccessful [12]. More detailed 
analyses are needed to unravel the causes of developmental failures 
of interspecies NT embryos. If these issues can be resolved, the next 
major breakthrough may be the development of efficient interspecies 
NT techniques, which would potentially pave the way for preserving 
endangered species and even reviving extinct animals.

Conclusions

As described in this review, different reprogramming systems 
have distinct properties. Depending on the purpose of the study, it is 
important to choose the appropriate reprogramming system. Nuclear 
reprogramming in NT embryos is a complex process, which is 
inevitably accompanied by unstoppable and irreversible development. 
It is sometimes useful to utilize a system that can discriminate each 
biological process, such as cell cycle progression, chromosome 
segregation, and transcription. For this purpose, reprogramming 
systems, such as NT to Xenopus oocytes and extract treatment, are 
valuable. It is also important to apply currently available state-of-the-
art technologies to dissect the mechanisms of nuclear reprogramming 
[34, 67, 68]. With recent progress in this field, many novel insights 
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into reprogramming processes in eggs and oocytes will be further 
revealed in the near future.
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