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Abstract

AU : Pleasecheckandconfirmthatallheadinglevelsarerepresentedcorrectly:Secondary structure plays an important role in determining the function of noncoding RNAs.

Hence, identifying RNA secondary structures is of great value to research. Computational pre-

diction is a mainstream approach for predicting RNA secondary structure. Unfortunately, even

though new methods have been proposed over the past 40 years, the performance of compu-

tational prediction methods has stagnated in the last decade. Recently, with the increasing

availability of RNA structure data, new methods based on machine learning (ML) technologies,

especially deep learning, have alleviated the issue. In this review, we provide a comprehensive

overview of RNA secondary structure prediction methods based on ML technologies and a

tabularized summary of the most important methods in this field. The current pending chal-

lenges in the field of RNA secondary structure prediction and future trends are also discussed.

Introduction

Since its discovery, for a long time, RNA was regarded solely as a message carrier between

DNA and protein. However, we are now beginning to understand its important roles, as

increasing numbers of noncoding RNAs (ncRNA) are being discovered [1]. According to the

latest report, less than 2% of the human genome comprises protein-coding regions [2]. The

majority of the remaining genome portions encode ncRNAs [3], which are involved in transla-

tion, catalysis, RNA stability, RNA modification, gene expression regulation, protein synthesis,

and protein degradation [4–9]. The enormous importance of ncRNAs in various human dis-

eases, such as cancer, diabetes, and atherosclerosis [6,10], is also being recognized.

ncRNA molecules often fold into higher-order structures, and functionally important

ncRNA structures are typically conserved during evolution. Similar to protein, the ncRNA

function is usually closely related to its structure. Currently, a wide variety of ncRNA

sequences are publicly available, and their numbers keep dramatically increasing [11]. By
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contrast, most of their structures remain unknown, which hinders the inference of their func-

tion. Hence, efficient determination of ncRNA structure is of great value to research.

Unlike the global folding of protein driven by hydrophobic forces, the RNA folding process

is hierarchical [12] (Fig 1). Specifically, the RNA secondary structure, composed of base pairs,

forms rapidly from linear RNA (primary structure), with a large energy loss, while the forma-

tion of a complex tertiary structure (or 3D structure) is usually much slower [13]. The RNA

secondary structure is very stable and abundant in the cell, which is important for ncRNA

function [14,15]. Even without the knowledge of the higher-order structure, RNA secondary

structure is sufficient to infer function and for other practical applications [15].

Computational predictions are mainstream approaches for identifying RNA secondary struc-

ture. A number of prediction methods have been developed since the 1970s. Most of these meth-

ods attempt to identify a structure with a minimum free energy (MFE), in agreement with the

hypothesis that an RNA molecule is likely to exist in an MFE state, just like protein [16]. Many

prominent software applications have been developed incorporating these methods [17–19].

However, in the last 10 years, the accuracy of prediction failed to significantly improve, and nei-

ther did the calculating speed. An alternative approach, the machine learning (ML)-based meth-

odology, was proposed to improve the predictions of RNA secondary structure. However, such

methods did not receive much attention because of the limited accuracy. That was mainly because

of the small size of the training datasets and the limitations of simple ML models. As a result of

the recent explosion of RNA sequence data and the improvement of ML techniques, especially

deep learning (DL) techniques, the latest ML-based methods supersede the current mainstream

methods in terms of accuracy and applicability. We believe that these ML-based methods will

inspire the next generation of prediction tools in the near future.

Fig 1. RNA primary (left), secondary (middle), and tertiary structures (right). The RNA folding process is hierarchical, i.e., the RNA secondary structure forms rapidly

from linear RNA (primary structure) with a large energy loss, while the formation of a complex tertiary structure is usually much slower.

https://doi.org/10.1371/journal.pcbi.1009291.g001
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In this paper, we provide a comprehensive overview of ML-based methods for RNA sec-

ondary structure prediction, with a thorough discussion of their advantages and disadvantages.

We also provide a tabularized summary (Table 1) of the most important models in the field,

and a perspective on the future promising directions, with a special emphasis on DL models.

Although several review papers have been published on the topic of RNA secondary structure

prediction [20–22], reviews with an emphasis on ML techniques are lacking. We believe that

this review will enable researchers to understand the key issues that remain to be solved and

facilitate further advances in predicting the RNA secondary structures based on ML.

RNA secondary structure: The basics

The RNA molecule is an ordered sequence of nucleotides that contain 1 of the 4 bases: adenine

(A), cytosine (C), guanine (G), and uracil (U), arranged in the 50 to 30 direction. Pairing (via

hydrogen bonds) of these 4 bases within an RNA molecule gives rise to the secondary struc-

ture. Typically, each base pairs with at most one other base. The canonical base pairs include

the Watson–Crick base pairs (A–U and G–C) and the wobble base pair (G–U). These base

pairs often result in the formation of a nested structure, in which multiple stacked base pairs

form a helix, and one or multiple unpaired base pairs form a loop.

It has to be noted that 3 kinds of special base pairs [23] commonly occur in the native RNA

secondary structures, i.e., noncanonical base pairs, base triples, and pseudoknots. Noncanoni-

cal base pairs are the base pairs other than A–U, G–C, and G–U, and they make up 40% of all

base pairs in structured RNAs [24]. Base triples are the cluster of 3 bases interacting, which

[25] can stabilize many RNA tertiary interactions [26]. Base triples also occur widely in RNA

structures. A pseudoknot [27] occurs when bases in different loops pair with each other, form-

ing a nonnested structure between 2 bases that are located apart from each other. Pseudoknots

represent a small fraction of base pairs in known RNA secondary structures but often play an

important role in RNA function [28].

Typically, the secondary structure of an RNA molecule with a length n can be regarded as:

1) A set of base pairs {(i,j),1�i<j�n}, where (i,j) indicates a base pair formed between the i-th

and j-th nucleotide in the RNA sequence; or a set of compatible helixes [28].

2) A contact table (CT table), i.e., a square matrix, with elements in the i-th row and j-th column

representing the interaction between the i-th and j-th nucleotides in the RNA sequence.

3) A graph, where nodes represent nucleotides and edges represent base pairing relationships.

4) A labeled sequence with the length n, e.g., “dot-parenthesis” notation, with matching

parentheses for paired bases and dots for unpaired bases.

5) A parse tree derived from context-free grammars, of which the leaf nodes comprise the

RNA sequence [29].

The above definitions form the basis of both traditional and ML-based RNA secondary

structure prediction methods.

Traditional methods of detecting or predicting RNA secondary

structure

RNA structure determination is a fast-evolving topic. Many different methods have emerged

in the last 20 years. They can be divided into 2 categories, i.e., wet lab experimental approaches

and computational predicting approaches.
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Wet lab experiments

X-ray crystallography [30] and nuclear magnetic resonance (NMR) [31] are the most accurate

approaches for determining RNA structures, both of which can offer structural information at

Table 1. Summary of the ML-based RNA secondary structure prediction methods.

Category Title Date Author ML Technique Resource Reference

Score scheme based on ML

model

Free energy parameter-

refining approach based on

ML

Thermodynamic Parameters for an Expanded Nearest-Neighbor

Model for Formation of RNA Duplexes with Watson-Crick Base

Pairs

1998 Xia et al. Linear regression Table 1 in the paper (https://pubs.acs.

org/doi/10.1021/bi9809425#)

[56]

Efficient parameter estimation for RNA secondary structure

prediction

2007 Andronescu

et al.

Constraint generation http://www.rnasoft.ca/CG/ [73]

Computational approaches for RNA energy parameter estimation 2010 Andronescu

et al.

Loss-augmented max-margin constraint

generation model, Boltzmann-likelihood

model

http://www.cs.ubc.ca/labs/beta/

Projects/RNA-Params

[74]

Weighted approach based on

ML

Rich Parameterization Improves RNA Structure Prediction 2011 Zakov et al. Discriminative structured-prediction

learning framework combined, online

learning algorithm

http://www.cs.bgu.ac.il/?negevcb/

contextfold

[77]

A Max-Margin Training of RNA Secondary Structure Prediction

Integrated with the Thermodynamic Model

2018 Akiyama et al. SSVM https://github.com/keio-

bioinformatics/mxfold

[78]

RNA secondary structure prediction using deep

learning with thermodynamic integration

2021 Sato et al. Deep neural network http://www.dna.bio.keio.ac.jp/

mxfold2/AU : TheURLhttp : ==www:dna:bio:keio:ac:jp=mxfold2=predictseemsbroken:PleasecheckandprovidetheupdatedURL:

[79]

Probabilistic approach based

on ML

Stochastic context-free grammars for tRNA modeling 1994 Sakakibara

et al.

EM method - [29]

RNA secondary structure prediction using stochastic context-free

grammars and evolutionary history

1999 Knudsen and

Hein

EM method - [82]

Pfold: RNA secondary structure prediction using stochastic context-

free grammars

2003 Knudsen and

Hein

EM method AU : TheURLhttp : ==www:daimi:au:dk=ecompbio=pfoldseemsbroken:PleasecheckandprovidetheupdatedURL:[81]

CONTRAfold: RNA secondary structure prediction without physics-

based models

2006 Do et al. CLLM http://contra.stanford.edu/contrafold/ [86]

A semi-supervised learning approach for RNA secondary structure

prediction

2015 Yonemoto

et al.

Semi-supervised learning algorithm - [87]

Preprocessing and

postprocessing based on ML

model

Preprocessing based on ML

model

A tool preference choice method for RNA secondary structure

prediction by SVM with statistical tests

2013 Hor et al. SVM - [88]

Research on folding diversity in statistical learning methods for RNA

secondary structure prediction

2018 Zhu et al. Statistical context-free grammar model - [89]

Postprocessing based on ML

model

Using a neural network to identify secondary RNA structures

quantified by graphical invariants

2008 Haynes et al. MLP - [90]

A predictive model for secondary RNA structure using graph theory

and a neural network

2010 Koessler et al. MLP - [91]

Predicting process based on

ML model

End-to-end approach Parallel algorithms for finding a near-maximum independent set of a

circle graph

1990 Takefuji et al. System composed of several interactional

neurons

- [92]

An Hopfield Neural Network-Based Algorithm for RNA Secondary

Structure Prediction

2006 Liu et al. Hopfield networks - [93]

Secondary Structure Prediction of RNA using Machine Learning

Method

2011 Qasim et al. MLP - [96]

Neural Networks, Adaptive Optimization, and RNA Secondary

Structure Prediction

1993 Steeg MFT network - [94]

RNA secondary structure prediction by MFT neural networks 2003 Apolloni et al. MFT network with mean field

approximation to update network’s nodes

- [139]

RNA secondary structure prediction using an ensemble of two-

dimensional deep neural networks and transfer learning

2019 Singh et al. Compound deep neural networks, transfer

learning

https://sparks-lab.org/server/spot-

rna/

[97]

RNA secondary structure prediction by learning unrolled algorithms 2020 Chen et al. Compound deep neural networks https://github.com/ml4bio/e2efold [99]

Machine learning a model for RNA structure prediction 2020 Calonaci et al. CNN, MLP - [100]

Hybrid approach RNA secondary structure prediction from sequence alignments using

a network of k-nearest neighbor classifiers

2006 Bindewald

et al.

Hierarchical network of k-nearest neighbor

model

- [49]

Developing parallel ant colonies filtered by deep learned constrains

for predicting RNA secondary structure with pseudo-knots

2020 Quan et al. Bi-LSTM - [103]

RNA Secondary Structure Prediction Based on Long Short-Term

Memory Model

2018 Wu et al. Bi-LSTM - [102]

Predicting RNA secondary structure via adaptive deep recurrent

neural networks with energy-based filter

2019 Lu et al. Bi-LSTM - [101]

A New Method of RNA Secondary Structure Prediction Based on

Convolutional Neural Network and Dynamic Programming

2019 Zhang et al. CNN - [104]

DMfold: A Novel Method to Predict RNA Secondary Structure with

Pseudoknots Based on Deep Learning and Improved Base Pair

Maximization Principle

2019 Wang et al. Bi-LSTM https://github.com/linyuwangPHD/

RNA-Secondary-Structure-Database.

[105]

Improving RNA secondary structure prediction via state inference

with deep recurrent neural networks

2020 Willmott et al. Bi-LSTM https://github.com/dwillmott/rna-

state-inf

[107]

“-”indicates “not available.”

CLLMAU : AnabbreviationlisthasbeencompiledforthoseusedinTable1:Pleaseverifythatallentriesarecorrect:, conditional log-linear model; CNN, convolutional neural network; EM, expectation-maximization; MFT, mean field theory; ML, machine learning; MLP,

multilayer perceptron; SSVM, structured support vector machine; SVM, support vector machine.

https://doi.org/10.1371/journal.pcbi.1009291.t001
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a single base pair resolution. However, both methods are characterized by high experimental

cost and low throughput, limiting their wide usage. In addition, RNA molecules are highly

unstable and difficult to crystallize. Although many methods have been developed to infer the

state of nucleotides (paired or unpaired) in an RNA molecule using enzymatic [32,33] or

chemical probes [34,35] coupled with next-generation sequencing [36,37], most of them can

only be used to capture the RNA secondary structure in vitro. The obtained structure may dif-

fer markedly from the in vivo conformation. In fact, to date, the structure of only a very small

percentage (<0.001%) of known ncRNAs has been determined experimentally [38]. Hence,

predicting the RNA secondary structure using computational methods is an important alter-

native to wet lab–based approaches.

Traditional computational methods

Comparative sequence analysis [39,40] is the most accurate computational method for deter-

mining the RNA secondary structure. This method is based on the assumption that the RNA

secondary structure is evolutionarily conserved to a greater extent than the RNA sequence.

This method usually finds the base pairs that covary to maintain Watson–Crick and wobble

base pairs (compensatory mutations) [41] of a given sequence using a set of homologous

sequences. Han and Kim [42] designed the first comparative sequence analysis algorithm

based on the phylogenetic comparative analysis. This algorithm predicts a common secondary

structure conserved in the given homologous sequence set with a high time complexity (O(n3),

n being the RNA sequence length). To reduce the running time, Tahi and colleagues [43]

implemented another algorithm DCfold with time complexity O(n2 log n). DCfold searches

for helices based on their lengths and mutation rates using a “divide and conquer” approach.

Comparative sequence analysis can also predict the structures with pseudoknots [44–46]; how-

ever, the accuracy is very limited. In addition, comparative sequence analysis can be combined

with score-based methods [47–50], e.g., RNAalifold [48], KnetFold [49], and ILM [47]. One

great limitation of this method is that it requires a large set of homologous sequences. How-

ever, only thousands of RNA families are currently known [51], which makes it impossible to

obtain homologous sequences for all RNAs. Therefore, most methods for RNA secondary

structure prediction are score based, where only a single RNA sequence is required as the

input.

Score-based methods are the most widely used methods and have dominated the field of

RNA secondary structure prediction in the last 4 decades. These methods assume that the

native RNA structure is a structure with a minimum/maximum total score, depending on the

hypothesis of RNA folding mechanism or its simplification. Hence, the problem of RNA sec-

ondary structure prediction is transformed into an optimization problem. Since the RNA sec-

ondary structure can be recursively broken down into smaller elements with independent

score contributions, the dynamic programming (DP) algorithm is often employed to identify

the optimal structure. Evaluation of the score for structure elements requires a score scheme of

many parameters. Nussinov and Jacobson [52] proposed the first, and also the simplest, DP

algorithm for finding the maximum-matching structure. The authors proposed to assign one

point to each matched base pair and assumed that the native structure is the structure with the

maximum score among all the possible conformations. Zuker and Stiegler [53] proposed a

more realistic scoring scheme based on free energy, the nearest neighbor model (NN model)

[54–57]. It is based on Tinoco’s hypothesis (see Section 4.1) [58]. The NN model can be used

for the calculation of energy changes of any structure of a given RNA molecule, and the DP

algorithm can be also employed to efficiently find the MFE structure. A number of slightly dif-

ferent variations of this method were also proposed [59–62]. For predicting the structure with
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noncanonical base pairs, some other score schemes were employed as scoring functions, such

as nucleotide cyclic motifs score system [63–65] or equilibrium partition function [66]. In

addition, several score-based methods were developed to predict RNA secondary structures

with pseudoknots [67–71], where the structure search scope or input RNA length is limited or

the types of pseudoknots are restricted to lower the time complexity in general.

However, the folding mechanism hypotheses of score-based methods do not always hold,

e.g., the RNA molecule often folds into locally stable structural domains. Furthermore, almost

all score-based methods use virtually the same DP algorithm to find the best-scoring struc-

tures. However, the running time of the DP algorithm is usually O(n3) (where n is the RNA

sequence length), neglecting the special base pairs and weak interactions. Hence, the computa-

tional cost is not acceptable, especially when analyzing an RNA molecule longer than 1,000

nucleotides. Moreover, predicting the special base pairs in RNA structures is still a difficult

task. Since an RNA structure with special bases pairs is not a nested structure in general, score-

based methods have to employ sophisticated algorithms to capture these special base pairs at

the cost of higher time complexity. However, the performance of these methods needs to be

further improved.

In fact, it is extremely difficult to fully understand the RNA folding mechanism. ML meth-

ods, in contrast, are data driven and requiring no knowledge of such mechanism. These meth-

ods can learn the underlying folding patterns from large amount of training data. In the last

few decades, ML methods have been used for many aspects of RNA secondary structure pre-

diction methods to improve the prediction performance (see Section 4). However, they did

not replace the mainstream score-based methods with respect to accuracy and generalization.

This situation has been changing in the last 2 years because of the development of ML tech-

niques, especially DL.

ML-based methods

The ML-based methods for RNA secondary structure prediction can generally be divided into

3 categories (S1 Fig) according to the subprocess that ML participates in, i.e., score scheme

based on ML, preprocessing and postprocessing based on ML, and prediction process based

on ML. All the ML-based methods in these 3 categories trained their models in a supervised

way [72]. These models learn functions that map inputs (features) to outputs by adjusting

model parameters based on the known input–output pairs. Many of them employ free energy

parameters, encoded RNA sequences, sequence patterns, or evolutionary information as key

features, and their outputs can be classification labels (such as paired or unpaired) or continu-

ous values (such as free energy). When a new input is fed to the trained model, the model can

classify a corresponding label or predict a corresponding value [72].

Score scheme based on ML

Early ML-based methods usually train an ML model that can generate a new score scheme

(Fig 2) and replace the score scheme used in the traditional methods. According to the mean-

ing of the score, ML-based score schemes can be further divided into 3 categories (S1 Fig), i.e.,

the free energy parameter-refining approach, weighted approach, and probabilistic approach.

Although ML-based methods are used for parameter estimation in the score schemes to

improve the prediction accuracy, the structure prediction is still formulated as an optimization

problem, where the estimated parameters are used for the evaluation of the scores of possible

conformations.

Free energy parameter refining based on ML. Considering the score schemes, the free

energy–focused approach is the most popular approach. Ever since Tinoco and colleagues [58]
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put forward their hypothesis for free energy calculation (that the free energy of a secondary

structure is the sum of the free energy values of its elements), many studies have been devoting

their efforts to the problem of assigning free energy values to the elements of RNA molecules.

Turner’s NN model [57] is the most popular approach and provides a considerably accurate

approximation of the RNA free energy. However, the multiple thermodynamic parameters of

the NN model have to be based on a large number of optimal melting experiments. These

experiments are time and labor consuming [17,19], however, and not all free energy changes

in structural elements can be measured because of the associated technical difficulties.

Some ML techniques were adopted to refine the parameters in the energy model. These

techniques can employ subtle models to estimate the scores for a richer and more accurate fea-

ture representation using known thermodynamic data or RNA secondary structure data. Xia

and colleagues [56] first trained a linear regression model using known thermodynamic data

to infer some of the thermodynamic parameters and expanded the NN model into a more

accurate model, i.e., the INN-HB model. This model provides an improved fit for the known

experimental data. A disadvantage of this approach, however, is that the parameters for some

Fig 2. Framework for RNA secondary structure prediction methods with ML-based score schemes. Wet lab data, RNA

sequence data, or RNA structure data can be employed to train an ML model to obtain a score scheme. Using this score

scheme, an RNA secondary structure can be predicted using a traditional score-based approach from a single RNA sequence.

https://doi.org/10.1371/journal.pcbi.1009291.g002
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structural elements are fixed before other parameters are calculated, which limits the range of

possibilities considered for the overall parameter set. To overcome this problem, Andronescu

and colleagues [73] proposed a constraint generation approach to estimate free energy param-

eters. This method uses different types of constraints to ensure that the energies of reference

structures are low relative to the alternatives for the same sequence. Trained on large sets of

structural and thermodynamic data, this method achieves 7% higher F-measure than the stan-

dard Turner parameters. Subsequently, the authors further modified the method and proposed

a loss-augmented max-margin constraint generation model and Boltzmann-likelihood model

using a larger dataset [74]. The constraints imposed on parameters ensure that the more inac-

curate the structure, the greater the margin between its free energy and that of the reference

structure in the training set.

Of note, the parameters determined by the above free energy parameter-refining

approaches are thermodynamic and can be used directly in the algorithms embedded by the

same energy model, such as miRNA target prediction [75] and RNA folding kinetics simula-

tion [76].

Weighted approaches based on ML. While ML-based free energy parameter approaches

successfully improved the accuracy of the RNA secondary structure prediction, the energy

model is still far from ideal. Actually, the above methods for the estimation of ML-based

parameters can only substitute for some wet lab experiments geared toward obtaining the

energy parameters. However, it is entirely possible to obtain an improved score scheme inde-

pendent of free energy based on ML techniques. Several weighted approaches were proposed

that consider the parameters of RNA structure elements as weights instead of free energy

changes. By removing the thermodynamic meaning, the weighted approach can utilize ML

models to determine thousands of weights for more comprehensive RNA structure elements

instead of obtaining a few energy parameters from a large number of wet lab experiments.

By combining a discriminative structured-prediction learning framework with an online

learning algorithm, Zakov and colleagues [77] greatly increased the number of weights to

approximately 70,000 by examining more types of structural elements with more numerous

sequential contexts, using thousands of training datasets. Based on these weights, the Context-

Fold tool was proposed, marking a significant improvement in the prediction accuracy [77].

Akiyama and colleagues [78] integrated the thermodynamic approach with a structured sup-

port vector machine (SSVM) to obtain a large number of weights for detailed structure ele-

ments, of which l1 regularization was used to relieve overfitting. Then, MXfold was built by

combining ML-based weights with experimentally determined thermodynamic parameters,

achieving better performance than a model based on thermodynamic parameters or ML-based

weights alone. Most recently, MXfold2 [79] was proposed by Sato and colleagues They trained

a fairly deep neural network using the max-margin framework with thermodynamic regulari-

zation, which made the folding scores predicted by MXfold2 and the free energy calculated by

the thermodynamic parameters were as close as possible. This method showed a robust predic-

tion on both sequence-wise and family-wise cross-validation. These studies suggest that ML-

based weights can complement the gaps in the thermodynamic parameter approach.

An advantage of the weighted approach is that it decouples structure prediction from

energy estimation, which is potentially beneficial for both tasks. However, learned weights are

not explainable, partly because of the black-box attribute of ML algorithms. Hence, the

obtained scores cannot be used to compute the partition function, base pair binding probabili-

ties, or centroid structures, etc.

Probabilistic approaches based on ML. Stochastic context-free grammars (SCFGs) are

an important alternative for predicting RNA structures [29,80–84]. SCFGs specify formal

grammar rules and induce a joint probability distribution over possible RNA structures for a
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given sequence. In particular, an SCFG model specifies a probability parameter for each pro-

duction rule in the grammar and thus assigns a probability to each sequence it derives. The

probability parameters are learned from datasets of RNA sequences annotated using known

secondary structures, without the need for external laboratory experiments [83].

Sakakibara and colleagues [29] first applied SCFGs to tRNA secondary structure prediction.

The probability parameters in their SCFG model were learned using an expectation–maximi-

zation (EM) method. Knudsen and Hein [82] improved the SCFG model by combining the

evolutionary information, and, subsequently, the robust and practical tool Pfold [81] was

developed. Sato and colleagues [85] proposed a nonparametric Bayesian extension of SCFGs

with the hierarchical Dirichlet process to find an optimal RNA grammar from the training

dataset. Using another ML model, the conditional log-linear model (CLLM), Do and col-

leagues [86] identified probability parameters that are most likely to discriminate correct struc-

tures from incorrect ones. CLLM is a flexible probabilistic ML model that generalizes upon

SCFGs; the parameters are easily estimated, and arbitrary features can be incorporated in the

model. CONTRAfold has achieved the highest single-sequence prediction accuracy to date,

compared with the currently available probabilistic models. However, CLLM is very slow,

which prevents its application to large training sets, and the estimated parameters have no

intrinsic biological meaning. Finally, to take full advantage of the substantial numbers of RNA

sequences with unknown structures, Yonemoto and colleagues [87] proposed a semi-super-

vised learning algorithm to obtain probability parameters in a probabilistic model that com-

bines SCFG and a conditional random field.

However, the probabilistic approach cannot replace MFE methods for secondary structure

prediction, as the accuracy of the currently best SCFG has yet to match those of the best free

energy–based models. In addition, SCFG cannot describe all RNA structures, e.g., a structure

containing special base pairs.

Preprocessing and postprocessing based on ML

ML can be also used in pretreatment, for selecting an appropriate prediction method or a group

of appropriate parameters (Figs 3 and S1). A tool based on a support vector machine (SVM) was

Fig 3. Framework for RNA secondary structure prediction methods with ML-based preprocessing or postprocessing. In RNA secondary structure prediction, ML

models (trained by sequence data, in green) can be also used in pretreatment for selecting an appropriate prediction method or a group of appropriate parameters; ML

models (trained by structure data, in brown) also can provide a means of determining the most likely structures among the outcomes.

https://doi.org/10.1371/journal.pcbi.1009291.g003
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proposed by Hor and colleagues [88] for selecting the prediction method, based on the notion

that different RNA sequences have different features and different prediction methods work best

with specific RNA species. In another study, Zhu and colleagues [89] assumed that different RNA

sequences follow different folding rules. The authors consequently proposed an SCFG model to

identify the most probable folding rules before RNA secondary structure prediction.

Since different prediction methods return several different structures, the ML model can

provide a means of determining the most likely structures among the outcomes (Figs 3 and

S1). Combined with the graph theory, Haynes and colleagues [90] used trees to represent RNA

graphical structures (edges as helices, and verticals as loops or bulges). They then trained a

multilayer perceptron (MLP) model to distinguish whether a structure is RNA-like or not,

using graphical invariants as input features. Assuming that a larger secondary structure is

formed upon bonding of 2 smaller secondary RNA structures, Koessler and colleagues [91]

also used an MLP model to predict the RNA-like probability of a structure using a special fea-

ture vector extracted from the merged trees.

Predicting process based on ML

ML techniques are also directly used to predict RNA secondary structure in an end-to-end

fashion or combined with other algorithms as constraints, base state detector, or structure

selector. The general framework is shown in Figs 4 and S1.

End-to-end approach. To the best of our knowledge, the ML technique was first intro-

duced into the RNA secondary structure predicting process by Takefuji and colleagues [92].

The authors built on Nussinov and Jacobson’s hypothesis (see Section 3.2) [52] and attempted

to obtain a near-maximum independent set (MIS) from an adjacent graph (where the vertices

represent base pairs, and the edges connect the incompatible vertices) using a system com-

posed of m interactional neurons (m is the number of edges). Liu and colleagues [93] enhanced

Takefuji’s work by considering the energy contribution of possible base pairs, and a Hopfield

neural network (HNN) was employed to obtain MIS. However, HNN is easily trapped in local

minima, limiting the accuracy of this method. To avoid this problem, Steeg and Evan [94]

Fig 4. Framework for the RNA secondary structure prediction methods with ML-based prediction process. ML models (trained by wet lab, RNA sequence, or RNA

structure data) are directly used to predict RNA secondary structures in an end-to-end way or followed by a filter or optimizer to obtain the optimal RNA secondary

structure.

https://doi.org/10.1371/journal.pcbi.1009291.g004
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made use of the mean field theory (MFT) networks to identify the optimal structure, which

was coupled with a sophisticated objective function with additional biological constraints. The

inputs into the MFT networks are the 4 types of bases in an RNA sequence encoded in a one-

hot fashion, and the output is in a format similar to CT table. Subsequently, Apolloni and col-

leagues [95] further developed Steeg’s method, especially with respect to the computation

speed, so that it could be applied to slightly longer RNA sequences. In addition, this model

uses mean field approximation to update the node in both the learning phase and the instant

resolution phase. In another study, Qasim and colleagues [96] modified Takefuji’s work by

building a novel MLP model to obtain MIS. This model contains h neurons in the hidden

layer, whose activation function is based on the Kolgomorov’s theorem (h is the number of

possible base pairs in an RNA sequence).

However, because of the relatively poor performance of the above ML models and a small

amount of the available data, ML-based RNA secondary structure prediction models can only

process tRNAs, with relatively low accuracy. Currently, the use of DL techniques is rising rap-

idly, and they are dramatically changing these circumstances. Singh and colleagues [97] pro-

posed the first end-to-end DL model, SPOT-RNA, to predict RNA secondary structure.

SPOT-RNA treats the RNA secondary structure as a CT table and employs an ensemble of

ultradeep hybrid networks of ResNets and 2D-BLSTMs for the prediction. Of these, the former

captures the contextual information from the whole sequence, and the latter is effective for the

propagation of long-range sequence dependencies in RNA structure. Transfer learning is used

to train SPOT-RNA to effectively utilize limited sample numbers. SPOT-RNA showed supe-

rior performance with several RNA benchmark datasets, greatly outperforming the best score-

based methods and SCFG-based methods. Recently, the SPOT-RNA2 model [98] was pro-

posed by the same research group. This model employed evolution-derived sequence profiles

and mutational coupling as inputs and outperformed SPOT-RNA for all types of base pairs

using the same transfer learning approach. E2Efold is another DL model for RNA secondary

structure prediction, proposed by Chen and colleagues [99]. It integrates 2 coupled parts, i.e., a

transformer-based deep model that encodes sequence information, and a multilayer network

based on an unrolled algorithm that gradually enforces the constraints and restricts the output

space.

In addition to the encoded RNA sequences being used as the input, other information can

also be incorporated into the DL model. Calonaci and colleagues [100] trained an ensemble

model based on a combination of SHAPE data, co-evolutionary data (DCA), and RNA

sequence data. Their model consists of a convolutional neural network (CNN) subnetwork

and an MLP subnetwork to predict penalties based on SHAPE and DCA data, respectively,

with an RNAfold [17] module to generate structures using RNA sequences and penalties.

Hybrid approach. Alternatively, ML can be combined with other methods for a hybrid

approach for RNA secondary structure prediction. Consequently, the ML model is usually

considered as a scoring machine, mapping a score to each (pair of) base(s) in an RNA

sequence, whose output is then passed to an independent filter to identify a reasonable

structure.

Bindewald and Shapiro [49] combined an ML model and a filter to predict the consensus

structure for a group of aligned RNAs. The authors chose a hierarchical network of k-nearest

neighbor model to predict the possibility score for each pair of alignment columns and defined

the filter by a set of rules derived from native RNA structures. Considering structure predic-

tion as a sequence-labeling question, Lu and colleagues [101] and Wu and colleagues [102]

employed a more powerful DL model, Bi-LSTM, to predict the state of each base in an RNA

sequence, using a similar rule-based filter to deal with conflicting pairing. Differently from the

above studies, Bi-LSTM was used as a structure filter in DpacoRNA [103], and a parallel ant
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colony optimization method was used to predict the most probable structures. Another type of

an ML-based hybrid approach combines ML models and optimization methods. Liu’s group

[104] used a CNN model to predict the status distribution of each base in an RNA sequence,

and a DP algorithm was employed to find the maximum probability structure. The same

group [105] also used the Bi-LSTM model instead and another optimization algorithm, similar

to that used in [106]. Instead of developing a new optimizer, Willmott and colleagues [107] uti-

lized an existing SHAPE-directed method (SDM) [108] as the optimizer, which can predict

optimal structure from SHAPE data, and trained a Bi-LSTM model to generate SHAPE-like

data (i.e., determine the state of each nucleotide) of an RNA sequence as the inputs of SDM.

Compared with the end-to-end approach, the performance of the hybrid approach is rela-

tively poor, perhaps because of a bias between the training objective of the ML part and the

overall system objective. Most methods in the hybrid approach are trained and tested using

small-scale datasets. Hence, generalization of their abilities requires further verification.

Discussions

It is well known that transcript abundance helps to identify transcripts of interest under differ-

ent conditions, while the RNA structure helps to explain how these transcripts function. An

excellent RNA structure prediction method is not only important for inferring RNA function,

but also relates to many downstream studies, including ncRNA detection [109–111], folding

dynamics simulations [112], hybridization stability assessment [113], and oligonucleotide

[114,115] or drug design [116–120]. It is worth noting that RNA secondary structure predic-

tion is also a useful tool for studying viruses, such as the SARS-CoV-2 virus responsible for the

current pandemic [121,122].

The advantages of ML-based methods

Compared with comparative sequence analysis and traditional score-based methods, ML-

based methods have some advantages. First, ML-based methods do not necessarily rely on the

biological mechanism, which is usually difficult to thoroughly understand. Instead, they can

utilize the information contained in various types of data, and, therefore, performance limita-

tion caused by the mechanism hypothesis can be circumvented. ML-based methods can also

be easily coupled with known biological mechanisms. Further, in terms of prediction perfor-

mance, where a large amount of data is available, models with no or little knowledge of biologi-

cal mechanisms usually perform better than mechanism-dependent ones. This also suggests

that the assumed mechanism of RNA folding may be incomplete or not accurate. Second, in

contrast to traditional score-based methods, the end-to-end DL methods do not need to con-

sider the difficulties caused by base matching rules. Traditional score-based methods employ

sophisticated algorithms to satisfy base matching rules at the cost of high time complexity.

However, without the constraint of these rules, end-to-end models [97] can train and predict

all the base pairs in RNA structures, regardless of whether the base pairs associate with second-

ary or tertiary interactions. Third, compared with traditional methods, the ML-based methods

can be considerably flexible. The inputs of ML-based models can be either one-dimensional or

multidimensional, extracted features or encoded bases, and homogeneous data or heteroge-

neous data, and the outputs can be CT tables, labeled sequences, nucleotide states, or free

energy values. In addition, the construction of the ML models is diverse, from simple Hopfield

networks to complex ensemble deep neural networks. Fourth, once the model training is com-

pleted, the ML-based end-to-end prediction methods run very fast. Unlike DP algorithm, the

time complexity of ML models is independent of the input scale, which is advantageous when

dealing with long RNAs.
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Datasets and their impacts on ML-based methods

Today, many public RNA structure databases and other related datasets are available online,

which provide abundant data for model training. Generally, these databases can be classified

into 2 types, i.e., comprehensive databases and dedicated databases. A comprehensive database

often consists of RNA structures with different conformations and in different RNA species,

for example, RNA Strand (4,666 RNAs available) [123], RCSB Protein Data Bank (PDB, 4,962

RNAs available) [124], and bpRNA-1m (102,348 RNAs available) [125]. Some of these data-

bases (e.g., PDB) collect tertiary structures obtained by wet lab experiments, while others

obtained data using comparative sequence analysis method (less accurate than those obtained

by wet lab experiments, e.g., pbRNA-1m). Dedicated databases generally involve only a single

RNA species (tRNA [126], rRNA [127], or tmRNA databases [128]) or a single type of RNA

structure (such as loop [129], pseudoknot [130], or noncanonical base pair [131]) generally.

Based on these dedicated databases, some public benchmark datasets were established, such as

ArchiveII [132] and RNAStralign [133]. These datasets are generally composed of tens of thou-

sands of RNAs in different RNA species (rRNA, tRNA, SRP, tmRNA, etc.). In addition, other

databases used in ML-based methods are Rfam [51] and NNDB [57], which provide RNA fam-

ily information and thermodynamic parameters, respectively.

Data are extremely important for building ML-based RNA secondary prediction models,

especially DL-based models with a large number of parameters. OneAU : PleaseconfirmthattheedittothesentenceOneofthereasonsthattherecentDL � basedmethods:::iscorrect; andamendifnecessary:of the reasons that the

recent DL-based methods [79,97,99] outperform the traditional ML-based models is the

improvement of the quality and quantity of the training sets. It is worth noting that the perfor-

mance of DL-based methods may be overestimated due to the data similarity between the

training and test set. Most of studies only ensured that the RNAs in test sets of these methods

were not so similar (80% similarity [134] as a cutoff typically) to those in the training sets, but

RNAs from the same families were not explicitly excluded from the testing set. The sequences

and structures in the same RNA family are similar, resulting that the model performance

obtained on testing sets is better than reality [79,97].

Another issue that may affect the model performance is the imbalanced RNA families in train-

ing sets, e.g., thousands of 16S rRNAs but only a small number of telomerases occur in one data-

set. When the length of the input RNA is comparable, trained models tend to perform better on

the RNA species that are more prevalence in the training set [99]. How to deal with unbalanced

data is an active topic in the ML community. Study [99] adopted an up-sampling strategy to bal-

ance the RNAs in different families, and their model performance was further improved.

Generally, the enhancement of predictive ability is associated with the relatively large scale

of the ML model, which requires large amounts of data for parameter training. Although a

large number of RNA structure data in various formats is available, these are insufficient in

terms of training large-scale DL models, especially with respect to the availability of high-accu-

racy data. Hence, questions on how to effectively utilize the limited data and cope with overfit-

ting of a large-scale DL model are also important issues that remain to be resolved.

Current pending challenges

Enormous progress has been made toward predicting RNA secondary structure by using ML-

based methods. These methods are state of the art when considering most indices of prediction

performance. However, some issues still require resolving.

First, the accuracy of prediction should be improved further. Sato and colleagues [79] used

the RNAs in the newly discovered RNA families to form an independent test set (not used in

all the tested methods), and based on this dataset, a rigorous test was performed among 6 most

accurate RNA secondary structure prediction methods. The test results showed that, among
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these methods, the highest positive predictive value (PPV) is 0.636 (achieved by TORNADO)

[84], the highest sensitivity is 0.720 (achieved by RNAfold) [17], and the highest F value is

0.632 (achieved by MXfold2) [79]. Using another independent dataset collected from PDB,

Singh and colleagues [98] performed a comprehensive comparison among 27 kinds of well-

known RNA secondary structure prediction methods. Their results showed when homologous

sequences were available, the highest F value and sensitivity achieved were 0.774 and 0.727,

respectively (both by SPOT-RNA2). These results objectively show that there is still much

room for improvement in RNA secondary structure prediction. Moreover, many traditional

methods neglect special base pairs to avoid a large number of false positives or to limit compu-

tational complexity [71,135]. While some methods can predict RNA secondary structures con-

taining pseudoknots [46] or noncanonical base pairs [63], none of them can predict both.

Although the recently proposed ML-based methods can predict all kinds of special base pairs,

the special base pair prediction accuracy is still limited.

The RNA sequence length limitation is another intractable issue, which becomes quite

problematic with the recently discovered long (1,000 to 10,000 nt) ncRNA [136]. Although

ML-based methods do not suffer from high time complexity as most score-based methods do,

they are unable to effectively capture such long-range interactions within an RNA sequence.

On the other hand, training an ML model with such a large-scale input consumes a huge

amount of computational resources and is often unrealistic.

For ML-based RNA secondary structure prediction models, overfitting is a very important

issue [84], especially for DL-based models with a large number of parameters. The overfitted

models perform well on the test RNAs similar to that in the training data but generalize poorly

on dissimilar ones. It seems that they only memorize the secondary structure of RNAs in the

training data, rather than actually learn the folding mechanism from them. A result in paper

[79] showed that E2Efold [99] outperformed many traditional methods on the dataset Archi-

veII but performed poorly on the RNAs from newly discovered RNA families. This suggested

that E2Efold might suffer from a heavy overfitting. Similarly, another paper [137] reported

that the F score of ContextFold also lowered by 24% when testing on a set of structurally dis-

similar RNAs to the training set. Although most DL-based methods take many precautions to

alleviate overfitting by many techniques (such as using regularization [100], enlarging dataset

[97], adding constraints [99], or combining Turner’s nearest neighbor free energy parameters),

the concerns about overfitting remain.

At last, the folding mechanisms need further exploration. Traditional RNA secondary

structure prediction is based on different RNA folding mechanism hypotheses (S1 Table),

while data-driven ML-based methods can learn such mechanism implicitly from known data

based on different RNA sequences or sequence features. However, to the best of our knowl-

edge, few folding mechanisms have been revealed from the established ML-based models,

although great advances have been made in terms of prediction accuracy. Part of the reason is

that the interpretability [138] of DL models is still a challenge today.

Future trends of development

Currently, RNA secondary structure prediction is successfully shifting toward ML-based

approaches, away from traditional score-based methods, and DL will surely continue to

improve the prediction performance. The subtle structure of the DL model is a prerequisite to

this end. Since the DL model is being rapidly developed in the natural language processing

and image processing fields, using mature DL blocks from these fields, or combining them in

such fields constitutes a feasible way to generate an excellent DL model for RNA secondary

structure prediction.
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Further, using a DL model to predict the free energy parameter is an inevitable trend for

more accurate energy estimations, when additional wet lab experimental data become avail-

able. However, these parameters may not improve RNA secondary prediction accuracy

because they have to be combined with traditional score-based methods. On the other hand,

combing an ML-based method and an optimization method is a promising approach for

improving prediction performance.

Conclusions

RNA structure is one of the central pieces of information for understanding biological pro-

cesses, and determining RNA secondary structure will continue to be a hot topic in the com-

putation and biology fields. In this review, we focused on ML-based methods, which involve

many aspects of RNA secondary structure prediction. ML techniques have greatly improved

the performance of prediction methods, including accuracy, applicability, and running speed.

However, to thoroughly resolve the RNA secondary structure prediction problem, a more sub-

tle ML model is still needed. At the moment, ML-based methods cannot be used as substitutes

for wet lab experiments for obtaining high-resolution structures. Nonetheless, the advent of

DL technologies and high-performance hardware will foster a new generation of RNA second-

ary prediction tools with an improved accuracy and running speed.

Supporting information

S1 Fig. Classification of ML-based RNA secondary structure prediction methods. Accord-

ing to the subprocess that ML participates in, the ML-based RNA secondary structure pre-

diction methods were classified into 3 categories, i.e., score scheme based on ML

(containing 3 subcategories: free energy–refining approach, weighted approach, and prob-

abilistic approach), preprocessing and postprocessing based on ML (containing 2 subcate-

gories: preprocessing and postprocessing), and prediction process based on ML

(containing 2 subcategories: end-to-end approach and hybrid approach).

(TIF)

S1 Table. Comparison of RNA secondary structure prediction methods.
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