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Abstract: We here propose an updated concept of stem cells (SCs), with an emphasis on neural stem cells (NSCs). The 

conventional view, which has touched principally on the essential property of lineage multipotency (e.g., the ability  

of NSCs to differentiate into all neural cells), should be broadened to include the emerging recognition of biofunctional 

multipotency of SCs to mediate systemic homeostasis, evidenced in NSCs in particular by the secretion of neurotrophic 

factors. Under this new conceptual context and taking the NSC as a leading example, one may begin to appreciate and 

seek the “logic” behind the wide range of molecular tactics the NSC appears to serve at successive developmental stages 

as it integrates into and prepares, modifies, and guides the surrounding CNS micro- and macro-environment towards  

the formation and self-maintenance of a functioning adult nervous system. We suggest that embracing this view of the 

“multipotency” of the SCs is pivotal for correctly, efficiently, and optimally exploiting stem cell biology for therapeutic 

applications, including reconstitution of a dysfunctional CNS. 
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BACKGROUND 

 Along with refinement of our understanding on the biology 

and translational potential of neural stem cells (NSCs)  

[1-6], there has been an increasingly appreciated paradigm 

shift regarding how the adult mammalian central nervous 

system (CNS) could be repaired for functional restoration. 

The long-standing dogma that the adult CNS was immutable 

to anatomical and functional repair was challenged by an 

unambiguous demonstration that cells derived from the CNS 

from a variety of structures and at different developmental 

stages, including adulthood, possess stem-like properties. 

NSCs are primordial and uncommitted cells that have been 

believed to give rise to the vast array of more specialized 

cells of the CNS. They are operationally defined by their 

abilities (1) to differentiate into cells of all neural lineages 

(i.e. neurons of multiple subtypes, oligodendroglia, and  

astroglia) in multiple regional and developmental contexts 

(i.e., to be multipotent); (2) to self-renew (i.e., to give rise also  

to new NSCs with similar potential); (3) to migrate and 

populate developing and/or degenerating CNS regions; and  
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(4) to have biofunctional multipotency to mediate systemic 

homeostasis through capacities such as production of trophic 

factors, formation of gap junctions, etc. [7,8]. Since monoclonal 

derivation of progeny is obligatory to the definition of NSC: 

that is, a single cell must possess all the aforementioned  

attributes, which suggests the ready availability of NSCs, 

many studies, including ours, in the past two decades,  

provided hope that the use of NSCs might circumvent some 

limitations of presently available graft material and gene trans- 

fer vehicles and make feasible a broader range of therapeutic 

strategies. This significant advance has led neurobiologists to 

speculate how such phenomena might be further harnessed 

for both therapeutic advantage and for better understanding 

of developmental neurobiology mechanisms. 

 Most studies, to date, are focused principally on exploring 

the biologically most apparent features of NSCs in  

comparison to existing gene therapy and cell transplantation 

strategies. For this purpose, NSCs, with their homogeneous 

and well-defined neural differentiation capacity, have been 

pursued primarily as a modality that could replace dead or 

degenerating neural cells in a wide variety of neurological 

diseases and trauma. For certain pathological models of the 

brain, NSCs and their progeny not only could integrate with 

host tissue at their site of implantation [9-11], but also could 

interact with distant brain tissue via migration in response to 
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chemical cues in the host [12-15]. The responsiveness of 

NSCs to microenvironmental cues in the surrounding CNS 

tissue provides them with a unique trait distinguishing them 

from fetal brain/spinal cord tissue and non-neural cells (e.g., 

fibroblasts or mesenchymal stromal stem cells [MSCs]), as 

well as from most viral vectors and protein infusion devices 

for gene delivery. For example, haematopoietic cells could 

not efficiently cross the blood–brain barrier and integrate 

throughout the CNS as effectively as NSCs. In addition, 

NSCs are able to “sense” the presence of degenerating neural 

tissue [13,14,16-18]. Conversely, effective replacement of 

dying or dysfunctional neurons by NSCs in the adult CNS, 

an ideal hypothesis the field initially entertained, has been 

proven to be a much more challenging endeavor, though in a 

few experimental models of neurodegeneration such NSC-

based cell substitution appeared to be feasible in replacing 

dead oligodendrocytes [9,19]. We therefore have discussed 

here the biological perspectives of epigenetic and genetic 

features of rodent (in particular, murine) and human neural 

stem cells regarding their capacity to produce neurotrophic 

factors (NTFs). Also included are views of investigators in 

the field on how to modulate and/or augment the homeostatic 

function of NSCs. Finally we summarize our current 

thoughts about the critical roles that NSCs may play in  

designs for improved regimens of NTF delivery regarding 

neural repair and pathology correction. 

NEUROTROPHIC FACTORS AND NEURAL STEM 
CELLS 

 Because NSCs are dynamic developmental entities their 

therapeutic potential has been studied primarily via strategies 

devised to realize desirable neural phenotypic differentiations. 

Much less recognized and appreciated is the fact that these 

developmental cells, by innate biology, produce neurotrophic 

factors that influence the growth and well-being of their  

own and surrounding tissues via autocrine and paracrine 

mechanisms. Efforts to understand this more recently  

recognized perspective of stem cell biology were first  

triggered by the observation that undifferentiated donor 

NSCs could exert marked neuroprotection to the spinal cord 

following traumatic injury, engendering a speculation that 

NSCs and other stem cells may have inherent capability to 

synthesize trophic factors [20]. Considerable research  

endeavors have since taken place to seek beneficial impact of 

stem cells (e.g., NSCs, MSCs, and embryonic stem cells 

[ESCs]) that are mediated mainly through soluble trophic 

factors and other cytokines that enable the body to reestablish 

homeostasis after pathologic and traumatic insults,  

inflammation, and tissue infarction or degeneration [21-24]. 

In this article, based on data mainly derived from studies on 

traumatic spinal cord injury (SCI), we seek to establish  

conceptually the biological principles of trophic factor  

delivery by stem cells as a novel approach to new therapeutic 

strategies based on developmental mechanisms [7]. For this 

goal, we have expanded the conceptual scope of tropic  

factors to include the following categories of molecules. 

 By our definition, neurotrophic factors, here including 

classic neurotrophins, are groups of naturally occurring  

substances that support neural cell survival, proliferation, 

migration, differentiation, growth, and function [25]. They 

are usually proteins or simpler peptides, and are essential 

regulating and signaling molecules for cell development and 

function. Neurotrophic factors contribute to neurogenesis, 

and are critical in shaping neural network structure and 

physiological processes such as learning, memory formation, 

and sensorimotor function [26]. Some neurotrophic factors, 

conversely, can be directly involved in pathological processes 

[25], via effects on synaptic biology, dynamics of neuro-

transmitter release and synaptic efficacy, whereas others act 

through secondary messengers and various kinases [27].  

 Listed below are the six biological families of neuro- 

trophic factors that directly impact stem cell development, 

and are expressed by natural or bioengineered stem cells. 1. 

Classic neurotrophins that comprise nerve growth factor (NGF), 

brain-derived neurotrophic factor (BDNF), neurotrophin-3 

(NT-3), and neurotrophin-4 (NT-4); 2. The transforming 

growth factor (TGF)-beta family, represented by glial cell 

line-derived neurotrophic factor (GDNF) and the bone 

morphogenic proteins (BMPs); other members are neurturin, 

artemin, and persephin; 3. The cytokine growth factor fam-

ily, including ciliary neurotrophic factor (CNTF), leukemia 

inhibitory factor (LIF), and cardiotropin-1; 4. The epidermal 

growth factor (EGF) family, consisting of EGF, transforming 

growth factor-alpha (TGF-alpha), the neuregulins, and neural 

and thymus-derived activator for ErbB kinases (NTAK); 5. 

The insulin-like growth factors (IGFs), consisting of insulin-

like growth factor I (IGF-I) and IGF-II; and 6. The fibroblast 

growth factor (FGF) family, consisting of at least 24  

different proteins including acidic FGF (FGF 1) and basic 

FGF (FGF 2) [28,29].  

 For the purpose of this review, we focus our discussion 

only on the family of classic neurotrophins since all its 

members (i.e., NGF, BDNF, NT-3, and NT4/5) have been 

demonstrated to play critical roles in neuronal survival,  

differentiation, and/or function in neurotrauma settings [30]. 

The neurotrophins act by binding to receptor tyrosine kinases 

of the Trk families. NGF binds for tropomyosin-receptor-

kinase-A (TrkA), BDNF and NT-4/5 bind TrkB, and NT-3 

preferentially binds TrkC. Importantly, NT-3 up-regulates 

TrkC expression in NSCs and induces them to differentiate 

into neurons [31-33]. For example, Ad-TrkC can be  

constructed to express TrkC effectively in NSCs, enhancing 

NT-3-mediated neuronal differentiation, an approach that 

may offer additional strategies for treating neurotrauma [33]. 

Overexpression of TrkC in rat neural progenitor cells  

improves survival and reduces glial differentiation of donor 

cells in the intact spinal cord [34]. Neurotrophin-mediated 

Trk signaling plays an essential, cell-autonomous role in 

regulating the proliferation and differentiation of embryonic 

cortical precursors and thus controls cortical development at 

early stages [35]. Multiple alternatively spliced isoforms 

have been observed for TrkA, TrkB, and TrkC, especially in 

non-neuronal cells [31,36-38]. Some of these isoforms lack 

the cytoplasmic tyrosine kinase domain, but retain selective 

signaling and may inhibit neurite outgrowth [37,39-41]. 

However, brain-derived neurotrophic factor (BDNF) has 

proliferative effects on NSCs through the truncated TRK-B 

receptor [42]. Neurotrophins also bind to p75NTR. Activation 

of this receptor may cause cell death rather than survival, as 

p75NTR
-/-

 mice show reductions in neuronal cell death after 
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pilocarpine-induced seizures compared to wild-type [43,44]. 

Interestingly, the p75 neurotrophin receptor is also involved 

in proliferation of undifferentiated mouse ESCs, and  

becomes down-regulated upon ES cell differentiation [45]. 

NT-3 improves the neural differentiation of skin-derived 

precursors (SKPs) induced by retinoic acid (RA) through a 

p75NTR-dependent signaling pathway [46,47]. In the  

following sections, we will discuss how a novel concept of 

using prototype or engineered NSCs to deliver therapeutic 

neurotrophic factors was developed, based on data collected 

from SCI investigations, and how this concept has  

subsequently been used to guide administration of neuro- 

trophic factors to treat or investigate representative neuro-

logical disorders such as SCI, Alzheimer's disease (AD) and 

amyotrophic lateral sclerosis (ALS). 

ADMINISTRATION OF NEUROTROPHIC FACTORS 

FOR TREATING SCI 

 The pharmacological use of neurotrophic factors for SCI 

treatment has been tested primarily with two neurotrophins: 

BDNF and NT-3. Unlike peripheral nerve axons, which re-

generate well, the adult mammalian spinal cord appears to 

have an unsuccessful capacity for axonal regrowth [48,49]. 

Neurotrophic factors, when administered in appropriate 

physical and temporal gradients, have been shown to support 

axonal growth after peripheral nerve injury. In contrast,  

antagonizing these growth factors in the extracellular matrix 

impedes neurite outgrowth [50,51]. Due to these findings, 

plus the fact that molecules have been identified that can 

suppress axonal sprouting and regeneration in the CNS (e.g., 

the chondroitin sulfate proteoglycan [CSPG] molecules) 

[52,53], substantial experimental efforts have been given to 

enhance regeneration of the supraspinal descending axons 

through activating neurotrophic factor-mediated mechanisms 

that may overcome the growth inhibitory environment in the 

CNS [54-60]. Additional approaches include combinatorial 

tactics that comprise transplantation of progenitor cells into 

the lesion cavity with simultaneous administration of  

neurotrophic factors [61], or direct augmentation of key 

molecules of trophic factor-triggered signal transduction, 

such as raising intracellular cAMP levels pharmacologically 

[62,63]. Many of these studies report incremental improvement 

in axonal growth and/or motor behavior, projecting hope for 

advancing towards the ultimate goal of restoring function 

following clinical SCI.  

 As examples, several groups reported that BDNF can 

enhance growth of supraspinal motor axons into permissive 

growth milieus placed at sites of SCI. Both rubrospinal  

axons [64,65] and reticulospinal axons [66], descending  

networks that regulate spinal cord motor neural activities, 

regenerate in response to BDNF stimulation. Reversal  

of atrophy of neurons in the red nucleus, even one year  

after SCI, can occur after BDNF stimulation [67]. However, 

corticospinal tract (CST) axons did not respond to  

BDNF post-SCI, even though BDNF prevents the death of 

corticospinal neuronal cell bodies when directly applied to 

the cerebral cortex. This outcome has been attributed to the 

lack of BDNF receptor TrkB on CST fibers [68].  

 The ability of NT-3 treatment to promote regeneration of 

severed CST axons was also reported [69]. This triggered 

additional bioengineering initiatives to enhance the delivery 

efficiency of NT3. Subsequently, Grill and colleagues, 

adapting a gene therapy strategy, demonstrated that  

autologous fibroblasts genetically modified to secrete NT-3 

could be transplanted into the epicenter of experimental SCI 

to improve neural repair [70]. More recently, Tuszynski’s 

group at UCSD reported beneficial effects of artificially  

established NT-3 gradients using cell-based gene delivery, 

increasing axonal regeneration in experimental SCI [71]. 

Importantly, studies comparing the therapeutic effect on  

axonal growth of three different methods of replenishing 

neurotrophic factors (direct infusion, transplantation of  

unmodified cells, and transplantation of genetically  

engineered cells with enhanced secretory function) have  

reported favorable results with genetically modified cells [72]. 

These data support the notion that using cells to administer 

neurotrophic factors may offer clinically favorable  

pharmacodynamic properties due to the interactive capability 

of “these functional basic units of life” [71,72]. Therefore, 

donor cells such as NSCs, in particular, have become highly 

promising candidates for delivering NTFs due to their innate 

biology, which regulates molecule secretion in response to 

environmental changes in the nervous system [7]. 

 This viewpoint is further strengthened by observation of 

a therapeutic impact of endogenous NSCs on experimental 

SCI under the enhanced physical activity paradigm of reha-

bilitation that induced functional recovery. In some cases, 

there was a positive correlation between degrees of functional 

improvement and the number of nestin-expressing NSCs 

present in the post-lesion spinal cord [73-76], suggesting that 

NSC proliferation enhanced by exercise may help augment 

NTF production (see below for more details). Additional 

support comes from the facts that severe side effects of  

neurotrophic factors could be caused by conventional drug 

delivery regimens that lack biological feedback regulations, 

and by barriers imposed by the peptidergic structure of  

these trophic factors, which impair their penetration into the 

brain or spinal cord parenchyma, and therefore make their 

pharmaco-therapeutic properties difficult to evaluate [77].  

A NOVEL CONCEPT OF USING PROTOTYPE OR 

ENGINEERED NSCS TO DELIVER NEUROTROPHIC 
FACTORS: INSIGHTS FROM STUDIES OF  

ENDOGENOUS NSCS AND ACTIVITY-DEPENDENT  

RECOVERY FOLLOWING SCI 

 Endogenous NSCs in the spinal cord and their response 

to trauma: Mitotic activity has been known to persist in the 

adult mammalian spinal cord [78]. Weiss and colleagues 

found that the lumbosacral spinal cord normally produces the 

greatest number of multipotent cells, and the cervical cord 

the least [79]. Under most conditions, adult NSCs have  

astroglial characteristics and express glia fibrillary-associated 

protein (GFAP) [78], but retain the ability to undergo neuro-

genesis [80,81], and can give rise to functional neurons  

and glia in vitro and in vivo [82]. It has been shown that  

neurotrauma significantly increases the proliferative capacity 

of spinal cord NSCs. Ependymal zone cells that express low 

levels of nestin were found to be upregulated, increasing 

mitotic activity and generating glia, shortly after an injury  

to the dorsal funiculus of the spinal cord. If implanted in  

a pro-neurogenesis environment [74,75,83], they are also 
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capable of migrating and undergoing neurogenesis [81,83, 

84,85].  

 Ependymal and parenchymal neural progenitors were 

also reported to be activated in response to spinal cord trans-

action [86,87]. When isolated in vitro, they generate  

astrocytes and oligodendrocytes but few neurons. A fraction 

of ependymal zone cells possessing stem cell properties or 

oligodendrocyte progenitor cells in the parenchyma proliferate 

following compression and contusion injuries [84,88], and 

appeared to participate in repopulation of the injured areas, 

suggesting their potential participation in lesion repair 

[89,90]. This response of NSCs to the injury occurs rather 

rapidly; for instance, nestin was seen in ependymal cells as 

early as 1 day after minimal sharp instrument injury to the 

lateral columns [91]. This injury, however, did not supply a 

sufficient stimulus for ependymal zone cells to migrate to the 

lesion site. A relatively larger injury to the dorsal funiculus, 

by contrast, led to ependymal zone NSC migration from the 

central canal to the lesion site [82]. 

 Since brain NSCs have been reported to respond to  

external stimuli such as enhanced physical activity and  

exercises, by increasing their proliferation, differentiation 

and survival [92], an extension of that rationale is to ascertain 

whether physical activity and exercise could serve as an  

independent stimulus for endogenous NSC proliferation also 

in the adult spinal cord. We earlier hypothesized that a major 
function of proliferating NSCs in the adult mammalian CNS 
is the production of trophic factors and other homeostasis-
maintaining molecules that are essential for endogenous 

healing and plasticity processes in the spinal cord [93].  

Our published data suggest that physical activity may be 

beneficial partially by increasing proliferation of endogenous 

NSCs that produce neurotrophic factors such as GDNF and 

BDNF, which in turn mediate neuroplasticity and improve 

sensorimotor functions [74]. Conversely, the contribution of 

neurotrophic factors to exercise-induced functional recovery 

per se has been investigated extensively. Voluntary exercise 

induces an up-regulation of BDNF and NT3 mRNA and  

protein levels in the spinal cord [94]. Increased levels of 

BDNF-associated mRNA and protein levels near the injury 

site have also been reported following treadmill training or 

running [94]. Additionally, direct stimulation of hindlimb 

stepping was noted after intrathecal administration of BDNF 

[95]. Other factors related to BDNF activity, such as  

synapsin 1, NT-3 and cyclic AMP (cAMP) response element 

binding protein (CREB), are also elevated in response to 

post-injury exercise [96]. 

 Although injury alone may induce an increase in the levels 

of these neurotrophic agents [97], these astrocyte-based  

increases were transient (< 2 days after SCI), and thus,  

unlikely to facilitate later phase neuroplasticity or functional 

recovery. In contrast, animals that were exercised in the post-

injury period demonstrated prolonged elevation of these  

factors, which may offer a new therapeutic window for other 

interventions. There is currently no agreed-upon conclusion 

regarding the origin of exercise-enhanced BDNF expression 

despite numerous studies that implemented NSCs, astrocytes, 

neurons and blood-born cells as neurotrophin providers  

under varied situations [98]. Finally, the spinal cord's inherent 

regenerative potentials can also be directly stimulated by 

post-injury physical activity. Exercise has been shown to 

double the number of proliferative cells in the CNS [74,99] 

and to have additional benefits, such as enhanced long-term 

potentiation of post-synaptic efficiency [100]. 

 Overall, experimental outcomes suggest that synapse 

formation and maintenance can be activity-dependent (e.g., 

exercise-driven), largely operated by neurotrophins [101]. 

Such neurotrophic drives may not only promote birth of new 

neurons, but also facilitate oligodendrogenesis [102]. We 

therefore speculate that the amplitude of NSC-based release 

of neurotrophic factors could be further modified by physical 

activity-related rehabilitation modalities and specific  

pharmacological treatments augmenting NSC participation 

and their trophic factor production that, by mimicking  

developmental processes, augment reciprocal therapeutic 

relationships with surrounding cells and cue molecules [7].  

MECHANISMS THAT ENABLE THERAPEUTIC  

DELIVERY OF NEUROTROPHIC FACTORS FROM 

PROTOTYPE OR GENETICALLY ENGINEERED 

NSCS FOR SPINAL CORD REPAIR 

 It has been well recognized that NSCs have an innate 

ability to detect pathologic targets for trophic actions. We 

and other investigators previously described a critical feature 

of prototype NSCs that is distinct from non-NSC carriers of 

neurotrophin transgenes – the ability to detect pathological 

loci and adopt appropriate developmental initiatives toward 

customized trophic support or cell replacement [103,104]. 

These abilities were first suggested by experimental data  

that was derived from a clone of murine NSCs after their 

implantation into an adult rat spinal cord after segmental 

hemisection (i.e., open wound lesion), where the NSCs  

contibuted markedly to functional restoration [20]. Moreover, 

when NSCs of the same lineage were transplanted into  

adult mouse neocortex in which pyramidal neurons of a  

circumscribed region were induced experimentally to undergo 

apoptosis, they differentiated differently than when grafted 

into uninjured neocortex: they preferentially differentiated 

into pyramidal neurons, whereas these same NSCs yielded 

mostly glia in normally developed neocortex [103]. These 

data indicate that donor NSCs can respond to biological cues 

in normal and abnormal microenvironments, suggesting that 

NSCs spontaneously have mechanisms compensating for 

genetic [17,105] or acquired deficiencies [14]. Though the 

exact mechanisms regulating the capacity of NSCs to exert 

developmental functions in an adult microenvironment are 

still unknown, it is clear that when confronted with injury or 

other pathologic conditions, NSCs recapitulate certain of 

their developmental mechanisms [24,93,103]. 

 It is currently believed that the signals modifying  

exogenous and endogenous NSC production of trophic factors 

affect a complex group of mitogens and chemokines, trophic 

and tropic agents, plus adhesion and extracellular matrix 

molecules (i.e., common developmental signaling molecules), 

as well as chemotactic and angiogenic factors, activated  

microglia, inflammatory cells, invading macrophages and 

damaged neurons and glia (i.e., general inflammation-

mediating components). Optimization of therapy for tissue 
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protection and repair in the post-mitotic environment of the 

adult CNS may require overcoming an insufficient supply  

of NSCs and endogenous neurotrophic factors. Hence,  

donor NSCs become attractive to consider as therapeutic 

supplements. However, exogenous prototype NSCs without 

engineered enhancements are vulnerable to same insults 

from secondary injury molecules as endogenous cells 

[20,106]. Therefore, we and our colleagues at the Langer 

Lab at MIT recently devised a novel chemical engineering 

approach to protect donor NSCs by applying antioxidant 

drug-releasing polymer film to alter the implantation milieu 

against neuroinflammation mediated by reactive nitrogen 

species (RNS). Our technology has been fruitful not only  

in enhancing the survival of exogenous NSCs but also in 

maintaining their capacity to produce neurotrophic factors 

such as GDNF and BDNF [107].  

APPLICATION OF NTFS OR NSCS TO TREAT  
NEURODEGENERATIVE DISEASES  

 As a consideration of translational initiatives beyond SCI, 

the following sections will briefly discuss the possibility of 

using NTFs and NSCs in treatment of neurodegenerative 

diseases, citing studies on Alzheimer’s Disease (AD) and 

amyotrophic lateral sclerosis (ALS) as representative  

examples. 

 The potential use of NGF, a member of the neurotrophin 

family, for AD therapy has been reviewed in detail [29]. NGF 

emerged as a candidate therapeutic molecule for neuronal 

degeneration soon after its discovery [111], due to its role as a 

vital survival factor for sensory and sympathetic neurons during 

development [112]. NGF also prevents both lesion-induced 

and spontaneous atrophy of basal forebrain cholinergic  

neurons, as well as ameliorating memory deficits in aged 

rats; both are hallmark therapeutic targets for AD [113-115]. 

In AD animal models NGF treatment reduced neuronal 

death, and simultaneously stimulated cholinergic neurons, 

despite exposure to a cohort of deleterious mechanisms that 

cause neuronal degeneration, including excitotoxicity, aging, 

and amyloid overproduction [116-122]. NGF treatment  

improved cognition in a variety of models of rodent memory 

dysfunction, and its neuroprotective actions have been  

also confirmed in non-human primate models [123-128]. 

Mechanistically, NGF activates Erk/MAP kinase to influence 

a number of growth and function-related intracellular  

pathways via TrkA receptors, and activates pro-survival gene 

expression and inhibits apoptosis via the Akt pathways 

[127]. The studies to date validate the essential trophic  

impact of NGF on adult cholinergic neurons, and corroborate 

that NGF is needed (and produced) throughout life in the 

neocortex and hippocampus [128,129].  

 Therefore, if the expressions of p75 and TrkA receptors 

remain sufficient for NGF responsiveness, NGF delivery 

near degenerating cholinergic neurons appears to be an ap-

pealing clinical strategy [130-133]. However, effectively 

delivering NGF to the brain in humans remains a challenge, 

primarily because the NGF protein is too large to cross the 

blood brain barrier (BBB). Intra-ventricular infusion can 

bypass the BBB in animal models, but then, NGF spreads 

non-selectively in the CNS, resulting in unwanted side  

effects such as weight loss [134], sympathetic axon sprouting 

[135] and neuropathic pain related to Schwann cell invasion 

[136,137], despite effectiveness in the rescue of degenerating 

cholinergic neurons. The adverse effects were also observed 

in human trials [138]. Similar effects occurred in trials of 

patients with Parkinson’s disease when GDNF or BDNF 

were infused intraventricularly [139,140]. These side effects 

observed in clinical trials highlight the necessity to establish 

new approaches that can overcome certain ineffective  

aspects of direct NTF delivery that lacks feedback regulatory 

mechanisms. 

 ALS is a fatal neurodegenerative disease with a signature 

pathology of progressive motor neuron death in both the 

spinal cord and brain, which culminates in rapid loss of  

muscle function and eventual respiratory failure [141,142]. 

The only clinically available therapy to date is riluzole  

(Rilutek), which marginally extends survival by limiting 

excitotoxicity [143] and increasing neurotrophin release 

from astrocytes [144]. The majority of ALS cases are  

sporadic, whereas only 10% are familial (FALS) [145], 

among which 15-20% can be traced to point mutations in 

cytosolic Cu
2+

/Zn
2+

 superoxide dismutase 1 (SOD1) [146].  

 The rapid neuronal degeneration in ALS deems neuronal 

replacement and neuroprotection as valuable clinical  

approaches to treatment. Therefore, different types of progenitor 

or stem cells with capacity to produce NTFs have been tested 

in rodent models of ALS [147-151]; these include hNT  

neurons derived from the human teratocarcinoma cell line, 

mouse Sertoli cells [147,149], human umbilical cord blood 

cells [147,151], human [151], or mouse [148] bone marrow 

transplants, [152] and mouse or human NSCs [153,154].  

 Data in published studies suggests, at first glance, that the 

lineage or site of origin of NSCs may be responsible for 

some of the drastic differences in therapeutic efficacy. For 

instance, transplantation of human NSCs isolated from fetal 

forebrain (i.e., HFB2050) [14] into multiple loci of the spinal 

cord resulted in marked increase of life span in SOD1 

(G93A) mice [154], whereas neural progenitor cells (NPCs) 

derived from human cortex and spinal cord produced lesser 

results [155]. However, further analysis suggests that the 

NTF profiles of donor cells might have played a key role 

determining the therapeutic effect in rodent ALS models 

[154,156]. Prototype human NSCs (HFB2050) secrete a 

spectrum of NTFs, including BDNF and GDNF [14], whereas 

genetically engineered NPCs may produce high levels of one 

specific NTF only, which may not be adequate to counteract 

ALS pathophysiology that is triggered by multiple pathogenic 

pathways [141]. Likewise, direct expression of GDNF delivered 

by lentiviral vector transfection to the lumbar spinal cord 

showed no beneficial effects on motor neuron survival [157], 

nor did robust GDNF production in the spinal cord by  

genetically modified NPCs prevent muscle atrophy in SOD1 

rats [158]. These results underscore the need to define the range 

of signaling mechanisms governing the interaction between 

stem cells and the surrounding microenvironment to reach 

homeostasis by regulative mechanisms such as NTFs, other 

secreted molecules, and direct cell-to-cell communication 

(e.g., via gap junctions). Better understanding of these  

processes will ultimately enable us to design combinatorial 

approaches with stem cell-mediated NTF therapy to tackle 

complex systemic pathologies such as ALS. 
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 To the best of our knowledge, the only controlled ALS 

clinical trial with stem cells reported so far was performed in 

Italy [159], though there had been a few uncontrolled clinical 

studies with other growth factors, including peripheral injec-

tion, intraventricular infusion, or intrathecal injection of 

CNTF and BDNF [160,161]. In the phase 1 trial the effects 

of autologous bone marrow derived mesenchymal stem cells 

(MSCs) were transplanted safely in the thoracic spinal cord 

of 10 ALS patients [159], and no adverse effects were seen 

in the 24-month post-transplantation observation period. 

However, no significant changes in disease progression were 

observed. Based on recent findings in experimental animals, 

glial pathology in ALS should targeted in future trials [162]. 

For example, ALS model mice with conditionally deleted 

astrocytes expressing mutant hSOD1 showed delayed  

disease progression [163]. By introduction of stem cells with 

diversified capacities to express NTFs, such as GDNF, 

BDNF, IGF-I or VEGF, as well as forming direct cell-to-cell 

communications (e.g., via gap junctions) [8], motor neuron 

survival and function may be improved through modificaion 

of the tissue microenvironment [109,154].  

FUTURE DIRECTIONS  

Engineering NSCs as Transgene Carriers or Biopumps 

 It has been well established that NSCs constitutively  

produce a broad range of appropriately functioning peptidergic 

neurotrophic and neurite outgrowth-promoting factors [104]. 

To augment such capabilities further, NSCs have been  

engineered to express various transgenes, including NT-4/5, 

GDNF, BDNF, NGF, L1, sonic hedgehog, wnt-1, wnt-3a, as 

well as an assortment of biosynthetic and metabolic  

enzymes. Customized implantation of genetically engineered 

NSCs has been used to enhance neuronal differentiation, 

neurite outgrowth and connectivity within diseased tissue 

loci [108,109]. Also, NSCs have been manipulated to  

express the specific TrkC receptor of a neuron-inducing  

neurotrophin, NT-3 [33,77]. The engineered NSCs respond 

to NT-3 in an autocrine or paracrine fashion [33], which  

appears to trigger a significantly higher percentage of  

differentiating neurons in the TrkC-expressing NSCs group 

exposed to NT-3 than in the rAd-LacZ control cell group 

similarly exposed to NT-3 [33].  

 However, attempting to intervene in the natural expression 

of the various neurotrophic factors in their various proportions 

through genetic manipulation actually appeared to cause 

profile changes in trophic factor expression by the  

engineered cells [110]. For example, enhancing expression 

of NT-3 in a given clone of NSCs actually extinguished the 

clone’s expression of GDNF, replacing the promotion of 

motor axon ingrowth with an enhanced ingrowth of sensory 

axons [110]. Caution is called for when testing a therapeutic 

strategy based on transgene-mediated NTF overexpression  

in NSCs, for unintended effects may result from such  

(unanticipated) “disturbance” in post-engineering biological 

programs of the donor stem cells. The aforementioned facts, 

overall, suggest the feasibility of using bona fide NSCs or 

genetically engineered NSCs to serve as biopumps for a 

broad selection of biofactors when one is aiming to repair 

damaged or dysfunctional neural tissues. 

Induced Pluripotent Stem Cells (iPS Cells) 

 The past few years have seen the swift development in 

pluripotent stem cell technology led by the initiating report 

from the Yamanaka laboratory [165], in which a group of 

stemness- or mitosis-related transcription factor genes (Oct4, 

Sox2, Klf4 and c-Myc) were introduced to transform somatic 

cells dramatically into stem cell-like primitive entities with 

pluripotency and differentiation flexibility that are, to certain 

degrees, similar to ESCs. However, there are serious  

concerns regarding the safety of such iPSCs, especially the 

tumorigenic consequence, which currently prevents practical 

clinical use of iPS cells. Significant intrinsic variability in 

the derived iPSCs, abnormal expression of imprinted genes 

due to the random integration of transcription factors, persis-

tent donor gene expression, and difficulty in obtaining a  

sufficiently rapid cell multiplication rate in vitro to build up 

a cell population sufficient for use in human patients further 

limit the clinical use of these cells [165-167]. Therefore, 

additional molecular strategies using alterative gene  

targets [168,169], fewer targets [170-173], or viral vector-

free transfection technologies have been developed [175-

178], to circumvent the safety deficits of iPS cells before 

their therapeutic potential can be systematically examined. 

However, recent reports showed that patient-specific iPSCs 

can be generated for investigative studies on drug screening 

or for experimental therapy trials [179-181]. In addition, 

direct trans-differentiation of adult cell types has been  

presented as a further therapeutic option for reversing  

disease progression or transforming neighboring healthy 

cells to take over functions lost by diseased or dying cells 

[182]. Despite these advances, there appear to be no reports to 

date on NTF production by iPS cells, a pivotal parameter of 

stem cell biology [7], albeit there is recent important progress 

in the use of synthetic modified mRNA to increase efficiency 

of cell reprogramming and directed differentiation, as well  

as analyses of the impact of epigenetic memory on the  

molecular and functional properties of iPS cells [183-186]. 

A SUMMARY NOTE 

 Academia and the public have, in general, accepted the 

concept that stem cells provide an enormous opportunity to 

advance the understanding of developmental biology, and 

especially to develop novel clinical therapies. However, we 

still need refined knowledge on how NSCs can be crafted to 

deliver the range of NTFs that would meet the micro- 

environmental requirements to establish homeostasis that 

would offset an ongoing disease process. This ability of  

stem cells, buoyed by their innate developmental biological 

properties, may teach us how to mitigate the adverse side 

effects resulting from direct administration of NTFs one at a 

time. Complex diseases such as ALS, AD and Parkinson’s 

disease are especially likely to require complex solutions. 

NSCs, as described in this review, can interface and work 

synergistically with gene and growth factor therapy, gap 

junction-mediated homeostasis, anti-apoptotic and neuro- 

protective strategies, stimulation of neurogenesis, anti-

inflammatory and anti-scarring approaches, material science 

and tissue engineering, and at least in the case of SCI, with 

physical activity and exercise. Therefore, we propose an  

updated concept of NTF application. The traditional approach 
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based on the pharmacological principles of trophic factor 

delivery (i.e., the dose and duration of administering a  

particular NTF), needs be revised to incorporate the newly 

appreciated importance of feedback-controlled production of 

trophic factors by the NSCs to mediate systemic homeostasis. 

Under this new conceptual context, we can begin to understand 

the wide spectrum of molecular tactics the NSCs deploy  

to regulate their trophic factor secretion at each normal  

developmental stage as they integrate into and prepare, mod-

ify, and guide the surrounding CNS environment towards the 

formation and homeostatic maintenance of a physiologically 

functioning adult nervous system. We believe that effectively 

adopting this conceptual view of “functional multipotency” 

of stem cells is essential for correct, efficient, and optimal use 

of trophic factors toward therapeutic goals (Fig. 1) [7,151].  
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Fig. (1). Schematic summary of stem cell-based therapeutic 

strategies. a, Stem cells possess intrinsic trophic factor producing 

abilities, and are able to respond to environmental cues to customize 

the profile of trophic factor production to stage homeostasis, which, 

as a capacity, can be further augmented by genetically engineering 

the cells with extra copies of transgenes of desirable molecules. b, 

Donor stem cells, prototype or genetically modified, may provide 

therapeutic benefits through at least three distinct mechanisms that 

could cast synergistic impacts: (1) replacement of the dysfunctional 

or dead host cells; (2) homeostatic regulation through delivery of 

trophic factors in targeted manners that are biologically regulated 

(e.g., in response to particular environmental cues, etc.) as well as 

establishment of gap junctions (b: upper inset), etc.; and (3)  

recruitment of and nourishment for host endogenous stem cells. The 

aforementioned therapeutic mechanism No. 2, apparently, carries a 

wide spectrum of regulatory tactics that can be further explored to 

refine the trophic factor and/or other cytokine secretion at each 

developmental stage or neural disorder status as NSCs integrate into 

and prepare, modify, and guide the surrounding CNS environment 
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