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Abstract: We performed a meta-analysis of published data to investigate the diagnostic value of
artificial intelligence for pancreatic cancer. Systematic research was conducted in the following
databases: PubMed, Embase, and Web of Science to identify relevant studies up to October 2021. We
extracted or calculated the number of true positives, false positives true negatives, and false negatives
from the selected publications. In total, 10 studies, featuring 1871 patients, met our inclusion criteria.
The risk of bias in the included studies was assessed using the QUADAS-2 tool. R and RevMan 5.4.1
software were used for calculations and statistical analysis. The studies included in the meta-analysis
did not show an overall heterogeneity (I2 = 0%), and no significant differences were found from the
subgroup analysis. The pooled diagnostic sensitivity and specificity were 0.92 (95% CI, 0.89–0.95) and
0.9 (95% CI, 0.83–0.94), respectively. The area under the summary receiver operating characteristics
curve was 0.95, and the diagnostic odds ratio was 128.9 (95% CI, 71.2–233.8), indicating very good
diagnostic accuracy for the detection of pancreatic cancer. Based on these promising preliminary
results and further testing on a larger dataset, artificial intelligence-assisted endoscopic ultrasound
could become an important tool for the computer-aided diagnosis of pancreatic cancer.

Keywords: artificial intelligence; deep learning; computer-aided diagnosis; pancreatic cancer;
endoscopic ultrasound

1. Introduction

Pancreatic cancer (PC) is one of the most lethal cancers because of its relative treatment
resistance and rapid progression [1]. It is difficult to diagnose early-stage PC due to the
lack of specific symptoms and the absence of auxiliary examination modalities with high
sensitivity and specificity. More than half of the patients present with distant metastases
at the time of diagnosis with PC [2]. Currently, the therapeutic options for PC are limited,
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and surgery is the only effective treatment, but less than 20% of patients have resectable
tumors at diagnosis [2,3]. As a result, research into novel approaches continues, and it is
acknowledged that the use of emerging technologies to aid in earlier diagnosis is one of the
most promising areas for investigation. Recent advances in the field of artificial intelligence
applied to the augmentation of imaging modalities are encouraging, and we must recognize
the potential and fully utilize the opportunities for interdisciplinary research to improve
the prognosis of patients with PC.

Artificial intelligence (AI) is a mathematical predicting technique that automates data
learning and pattern recognition. Deep learning is an artificial intelligence algorithm
and advanced type of machine learning method that employs neural networks [4]. Deep
learning is capable of high-performance prediction. It is commonly used in AI algorithms
and has been used in medical diagnosis [5,6]. Deep learning and other machine learning
techniques are expected to have a significant impact on medical image diagnosis, but these
techniques are currently underdeveloped [7]. The application of AI to clinical diagnostics
was developed in the early 1980s, and computer-aided diagnosis (CAD) systems using
deep learning have recently been used to assist doctors in improving the efficacy of vari-
ous medical imaging data interpretation [8–10]. In the field of gastrointestinal (GI) tract
endoscopy, AI has a wide range of applications, including the detection of colon polyps
and the diagnosis or estimation of the invasion depth of GI tract cancers [11,12].

Artificial neural networks (ANNs) are primarily used in pancreatic cancer diagnosis
for the task of assigning patients to small group classes based on measured features. Briefly,
an ANN is a computerized model that simulates the information processing mechanisms
of the human brain. An ANN is defined by the connections, numbers, and distribution
within layers of neurons [13].

Traditional machine learning (ML) approaches such as support vector machine (SVM)
are better suited for analyzing relatively modest-sized data sets with many variables. This
makes it difficult to obtain appropriate samples of patients who have not yet developed
cancer, which still limits the applicability of omics-based deep learning algorithms for early
detection of pancreatic cancer [14].

Among the machine learning algorithms related to image feature extraction and
classification, convolutional neural networks (CNNs) have been widely proven to be
superior to traditional ML algorithms. These networks provide the flexibility to extract
discriminative features from medical images while preserving their spatial structure and
could be developed for region recognition and classification of images for pancreatic cancer
detection [7].

The stage at diagnosis can determine the prognosis and treatment of pancreatic cancer
patients [3]. Thus, it is imperative to find an accurate and reproducible way to detect
methods of early and better detection of PC. To address this issue, this meta-analysis was
intended to assess the applicability of artificial intelligence (AI) in the diagnosis of PC.

2. Materials and Methods
2.1. Search Strategy and Study Selection

The present study was conducted following the principles of the Preferred Reporting
Items for a Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies
(PRISMA-DTA) statement [15]. An a priori defined review protocol was registered for this
meta-analysis (PROSPERO—Centre for Reviews and Dissemination University of York,
York, UK), but a number was not assigned yet.

The systematic literature search was carried out by two investigators independently
(I.M.C., V.M.C.) in the following databases: PubMed, Embase, and Web of Science. We
searched for articles published up to October 2021 using the following keywords alone or in
combination: endoscopic ultrasound, endosonography, artificial intelligence, deep learning,
computer-aided diagnosis, machine learning, and pancreatic cancer. The data search was
limited to studies written in English, with no other restrictions. In order to identify other
potentially eligible publications, the references from the studies identified initially were
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reviewed manually. Study investigators were contacted by email in an attempt to obtain
missing data when required.

2.2. Inclusion and Exclusion Criteria

We carefully selected articles that accurately described the application of artificial
intelligence to EUS for the diagnosis of PC.

The studies included in this study were required to meet the following criteria:
(1) original studies using artificial intelligence to analyze EUS data for the diagnosis of pan-
creatic cancer; (2) the final diagnosis was established by the histopathologic examination
of the surgically resected specimen or EUS-FNA/FNB sample; (3) inclusion of sensitivity,
specificity, diagnostic accuracy, or sufficient information to construct contingency tables;
(4) the study clearly described the CAD algorithms and the process applied in PC diagnosis.

We excluded review articles, case reports, letter to editors, abstract-only texts, com-
ments, and studies where it was not possible to retrieve data clearly reporting the diagnostic
accuracy of AI-based models.

2.3. Data Extraction

Two authors (I.M.C., V.M.C.) extracted the study characteristics from each included
study. Disagreements were resolved through discussion and consensus or by consulting a
third member (C.V.L.) of the review team.

2.4. Quality Assessment of the Studies

Two reviewers (I.M.C., V.M.C.) appraised all the included studies by using a checklist
based on the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) guide-
lines [16].

2.5. Statistical Methods

RevMan 5.4.1 software (The Cochrane Collaboration, 2020, London, United Kingdom)
and mada R-package (R foundation, Vienna, Austria) were used to perform the diagnostic
meta-analysis. Pooled sensitivity and specificity were assessed by plotting a summary
receiver operating characteristic (SROC) curve to investigate the performance of AI in
the diagnosis of pancreatic cancer using a bivariate random-effects model and a Bayesian
approach. A high diagnostic efficacy was considered for a value higher than 0.75 for area
under ROC curve (AUC) and partial AUC (using only the region where false positive rates
of studies were actually observed, and then normalized to the whole space). The pooled
diagnostic odds ratio (DOR) and its corresponding 95% confidence intervals (CIs) were
also obtained to estimate the overall accuracy (a favorable test has DOR higher than 100).
Higgins I2 was calculated to demonstrate the level of heterogeneity (a value greater than
50% was a significant indicator of substantial heterogeneity). The χ2 test was used to verify
the null hypothesis that sensitivities and specificities were equal for all the included studies.
A p-value less than 0.05 was considered statistically significant.

3. Results
3.1. Electronic Search Results and Study Characteristics

The process for selecting studies included in this meta-analysis is described in the
flow diagram in Figure 1. A total of 83 potentially relevant records were identified initially
with the aforementioned search strategy; no further articles were identified from the review
of the reference lists. After screening the titles and abstracts and removing duplicates,
14 articles remained for full-text review. Four more articles were excluded after detailed
assessment. In total, 10 studies, including 1871 patients, met our inclusion criteria [17–26].
The main characteristics of the studies are presented in Table 1. Norton et al. [19] published
the first report of using CAD for pancreatic EUS in 2001. During the subsequent years,
there were several reports of traditional CAD, which included computer-based extraction
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and selection of appropriate features that were further analyzed using a machine learning
algorithm. Deep learning-based CAD was introduced in 2019 [18].
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Table 1. The main characteristics of the included studies in the meta-analysis.

No.
crt. Author Study Design Comparison No. of Patients

(Overall Data)
No. of Images
(Overall Data) Testing Data Final Diagnosis Analysis Target

Type of
Computer-Aided
Diagnosis (CAD)

Algorithm of AI

1 Kuwahara
2019 retrospective benign IPMN vs

malignant IPMN 50 3970 no separate
testing data

27 benign
IPMN/23

malignant IPMN
B-mode images deep learning-based

CAD CNN

2 Das 2008 retrospective
normal pancreas vs.
chronic pancreatitis

(CP) vs PDAC
56 319 50% of all data

2 normal
pancreas/12
CP/22 PDAC

Texture features
from B-mode

image
conventional CAD ANN

3 Marya
2020 retrospective

autoimmune
pancreatitis vs.

normal pancreas vs.
CP vs. PDAC

583 1,174,461 123 patients
146 AIP/292

PDAC/72
CP/73NP

B-mode images conventional CAD CNN

4 Norton
2001 retrospective CP vs PDAC 35 N/A N/A 14 CP/21 PDAC

Grey-scale pixels
from B-mode

image
conventional CAD

Basic Neuronal
Network/Machine

Learning

5 Ozkan
2015 retrospective PDAC vs. normal

pancreas 172 332
72 (42 PDAC,

30 normal
pancreas)

202 PDAC/130
normal pancreas

(images)

Digital features
from B-mode

image
conventional CAD ANN

6 Saftoiu
2015 Prospective CP vs. PDAC 167 15% of pts 112 PDAC/55 CP

TIC parameters
from

contrast-enhanced
EUS

conventional CAD ANN

7 Tonozuka
2021 Prospective normal pancreas vs.

CP vs. PDAC 139 1390

47 pts, 470
images (25

PDAC, 12 CP,
10 NP)

76 PDAC/34
CP/29 normal

pancreas
B-mode images deep learning-based

CAD CNN

8 Udristoiu
2021 Retrospective CP vs. PDAC vs.

NET 65 3360 672 images
from 65 pts

30 PDAC 20
CP/15 NET

Multi parametric
(B-mode, contrast,

elastography)

deep learning-based
CAD CNN

9 Zhang
2010 Retrospective CP vs. PDAC vs.

normal pancreas 216 50% of all data
153 PDAC/20

normal
pancreas/43 CP

Texture features
from B-mode

image
conventional CAD SVM

10 Zhu 2013 Retrospective CP vs. PDAC 388
50% of all data

(194; 131 PDAC,
63 CP)

262 PDAC/126 CP
Texture features

from B-mode
image

conventional CAD SVM
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3.2. Quality of Included Studies

As shown in Figure 2, we found an unclear risk of bias in patient selection for Kuwa-
hara 2019 [18], which was a retrospective study with no details on how the allocation list
was conceived, and Zhang 2010 [25], where it was unclear whether patients’ randomization
was performed. Das 2008 [17] was considered at high risk of bias for the index test because
the index test results were not interpreted without knowledge of the results of the reference
standard. Marya 2020 [20], Ozkan 2015 [21], Tonozuka 2021 [23], Udristoiu 2021 [24], and
Zhang 2010 [25] were unclear about whether a threshold of the index test was used. Ozkan
2015 [21] was unclear about whether the reference standard results were interpreted with-
out knowledge of the results of the index test and about whether there was an appropriate
interval between index and reference test.
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Das 2008 [17] and Marya 2020 [20] were considered having high risk of bias for flow
and timing because not all patients received the same reference standard.
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3.3. Diagnostic Accuracy

Pooled sensitivity and specificity, DOR with their 95% confidence intervals, and AUC
with partial AUC are summarized in Table 2, with data stratified into several subgroups.
All ten studies with 1871 patients were merged to derive pooled diagnostic test accuracy.
The overall diagnostic accuracy showed 0.92 (95% CI, 0.89–0.95) sensitivity and 0.9 (95% CI,
0.83–0.94) specificity.

Table 2. Pooled sensitivity, specificity, DOR, and AUC for AI.

Number of
Studies

Pooled Sensitivity
(95% CI)

Pooled Specificity
(95% CI)

Pooled DOR
(95% CI)

AUC
Partial AUC (Restricted to

Observed FPRs and
Normalized)

AI 10
0.92 0.9 128.9

0.95 (0.93)(0.89–0.95) (0.83–0.94) (71.2–233.8)

CNN 4
0.91 0.87 86.2

0.94 (0.81)(0.88–0.94) (0.83–0.9) (39.7–187.2)

ANN 3
0.93 0.92 141.5

0.95 (0.91)(0.78–0.98) (0.86–0.95) (55.8–358.9)

SVM 2
0.93 0.98 547.9

0.93 (0.92)(0.89–0.96) (0.85–0.99) (64.3–4669.6)

Deep
Learning 3

0.95 0.9 161.2
0.97 (0.94)(0.89–0.98) (0.78–0.95) (36.9–702.3)

Conventional 7
0.92 0.91 138.3

0.95 (0.93)(0.87–0.95) (0.85–0.96) (64.9–294.1)

The most noticeable feature of the forest plot below (Figure 3) is the greater certainty
of most of the studies (indicated by the confidence interval width).
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tween the studies (χ2 = 16.49, df = 9, p < 0.0574). Different specificities were found between 
the studies (χ2 = 57.84, df = 9, p < 0.0001). A high diagnostic efficacy was found with the 
AUC of 0.95. The partial AUC was 0.93. No heterogeneity between studies was found 
(Tau2 = 0.41, I2 = 0%, Cochran’s Q = 8.714, p = 0.464). DOR (95% CI) was 128.99 (71.17–
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Figure 3. Forest plot with the diagnostic test accuracy (sensitivity, specificity, and 95% confidence
interval) of each study for artificial intelligence in the diagnosis of pancreatic cancer.

The SROC curve in Figure 4 is shown by the black solid curve through the estimated
mean (sensitivity, false positive rate): (0.92, 0.10). The same sensitivities were found
between the studies (χ2 = 16.49, df = 9, p < 0.0574). Different specificities were found
between the studies (χ2 = 57.84, df = 9, p < 0.0001). A high diagnostic efficacy was found
with the AUC of 0.95. The partial AUC was 0.93. No heterogeneity between studies was
found (Tau2 = 0.41, I2 = 0%, Cochran’s Q = 8.714, p = 0.464). DOR (95% CI) was 128.99
(71.17–233.81).
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3.4. Subgroup Analysis

The studies included in the meta-analysis did not show an overall heterogeneity
(I2 = 0%), and no significant differences were found from the subgroup analysis.

3.4.1. Subgroup Analysis Based on the Type of Computer-Aided Diagnosis

If we analyze based on the type of computer-aided diagnosis, deep learning had a
higher accuracy of diagnosis than conventional type in pancreatic cancer patients. Only
three studies were included in the subgroup of deep learning-based CAD to derive pooled
diagnostic test accuracy. A fixed-effects model was used as in Figure 5, where the SROC
curve estimated mean (sensitivity, false positive rate) was (0.95, 0.10). No 95% prediction
contour was drawn because of the small number of included studies. The pooled sensitivity
was 0.95 (95% CI, 0.89–0.98). No differences were found between the studies’ sensitivities
(χ2 = 1.332, p = 0.514). The pooled specificity was 0.90 (95% CI, 0.78–0.95). The same
specificities were found between the studies (χ2 = 2.71, p = 0.258). A high diagnostic
efficacy was found with the AUC of 0.97. The partial AUC (restricted to observed false
positive rates and normalized) was 0.94. No significant heterogeneity between studies was
found (Tau2 = 0.702, I2 = 0%, p = 0.398). DOR (95% CI) was 161.15 (36.98–702.27).

Diagnostics 2021, 11, x FOR PEER REVIEW 8 of 15 
 

 

 
Figure 4. The SROC curve for AI. Dotted blue curve: 95% confidence region. Dotted closed curve: 
95% prediction region for AI. 

3.4. Subgroup Analysis 
The studies included in the meta-analysis did not show an overall heterogeneity (I2 = 

0%), and no significant differences were found from the subgroup analysis. 

3.4.1. Subgroup Analysis Based on the Type of Computer-Aided Diagnosis 
If we analyze based on the type of computer-aided diagnosis, deep learning had a 

higher accuracy of diagnosis than conventional type in pancreatic cancer patients. Only 
three studies were included in the subgroup of deep learning-based CAD to derive pooled 
diagnostic test accuracy. A fixed-effects model was used as in Figure 5, where the SROC 
curve estimated mean (sensitivity, false positive rate) was (0.95, 0.10). No 95% prediction 
contour was drawn because of the small number of included studies. The pooled sensitiv-
ity was 0.95 (95% CI, 0.89–0.98). No differences were found between the studies’ sensitiv-
ities (χ2 = 1.332, p = 0.514). The pooled specificity was 0.90 (95% CI, 0.78–0.95). The same 
specificities were found between the studies (χ2 = 2.71, p = 0.258). A high diagnostic effi-
cacy was found with the AUC of 0.97. The partial AUC (restricted to observed false posi-
tive rates and normalized) was 0.94. No significant heterogeneity between studies was 
found (Tau2 = 0.702, I2 = 0%, p = 0.398). DOR (95% CI) was 161.15 (36.98–702.27). 

 
Figure 5. The SROC curve for deep learning-based computer-aided diagnosis. 

Seven studies were included in the subgroup of conventional CAD to derive pooled 
diagnostic test accuracy. A fixed-effects model was used as in Figure 6, where the SROC 
curve estimated mean (sensitivity, false positive rate) was (0.92, 0.09). The pooled 

Figure 5. The SROC curve for deep learning-based computer-aided diagnosis.

Seven studies were included in the subgroup of conventional CAD to derive pooled
diagnostic test accuracy. A fixed-effects model was used as in Figure 6, where the SROC
curve estimated mean (sensitivity, false positive rate) was (0.92, 0.09). The pooled sensitivity
was 0.92 (95% CI, 0.87–0.95). Some differences were found between the studies’ sensitivities
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(χ2 = 14.04, p = 0.029). The pooled specificity was 0.91 (95% CI, 0.79–0.96). Different
specificities were found between the included studies (χ2 = 55.812, p < 0.0001). A high
diagnostic efficacy was found with the AUC of 0.95. The partial AUC (restricted to observed
false positive rates and normalized) was 0.93. No significant heterogeneity between studies
was found (Tau2 = 0.566, I2 = 1.98%, p = 0.41). DOR (95% CI) was 138.25 (64.98–294.14).
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3.4.2. Subgroup Analysis Based on the Algorithm of Artificial Intelligence

Comparing after the algorithm of AI, the best accuracy was obtained for ANN type.
Three studies reporting data on 395 patients were included in the analysis, as in Figure 7.
The SROC curve estimated mean (sensitivity, false positive rate): (0.93, 0.08). No 95%
prediction contour was drawn because of the small number of included studies. Since no
heterogeneity was identified in our meta-analysis (Tau2 = 0.141, I2 = 0%), a fixed-effects
model was applied for the pooled analysis. The pooled sensitivity was 0.93 (95% CI,
0.78–0.98), with different values between the sensitivities of the three studies (χ2 = 12.42,
p-value = 0.002). The pooled specificity was 0.92 (95% CI, 0.86–0.95), the specificities of the
three studies not being significantly different (χ2 = 0.846, p-value = 0.655). A high AUC was
estimated: 0.95, almost the same as the partial AUC (0.91).
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Four studies reporting data on 872 patients were included in the analysis, as in Figure 8.
The SROC curve estimated mean (sensitivity, false positive rate): (0.91, 0.13). Since no
heterogeneity was identified in our meta-analysis (Tau2 = 0.214, I2 = 16.04%), a fixed-effects
model was applied for the pooled analysis. The pooled sensitivity was 0.91 (95% CI,
0.88–0.94), with the same values between the sensitivities of the four studies (χ2 = 3.47,
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p-value = 0.325). The pooled specificity was 0.87 (95% CI, 0.83–0.90), the specificities of the
four studies not being significantly different (χ2 = 2.66, p-value = 0.447). A high AUC was
estimated: 0.94, almost the same as the partial AUC (0.81).
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Two studies reporting data on 604 patients were included in the analysis, as in Figure 9.
The SROC curve estimated mean (sensitivity, false positive rate): (0.93, 0.02). No 95%
confidence contour or prediction contour was drawn because of the small number of
included studies. Since no heterogeneity was identified in our meta-analysis (Tau2 = 1.783,
I2 = 0%), a fixed-effects model was applied for the pooled analysis. The pooled sensitivity
was 0.93 (95% CI, 0.89–0.96). The pooled specificity was 0.98 (95% CI, 0.85–0.99), the
specificities of the two studies being significantly different (χ2 = 4.486, p-value = 0.034). A
high AUC was estimated: 0.93, almost the same as the partial AUC (0.92).
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4. Discussion

With great attention to the development of AI, there is an increasing interest regarding
its application in detecting and diagnosing cancer. In this systematic review and meta-
analysis, we found that AI algorithms applied to EUS imaging may be used for the diagnosis
of PC with very good diagnostic accuracy, in terms of sensitivity and specificity. There
are several modalities used for the diagnostic imaging of PC, including contrast-enhanced
abdominal computed tomography (CT), magnetic resonance imaging (MRI), endoscopic
ultrasound (EUS), transabdominal ultrasound (US), and positron emission tomography-
CT. Tumor detection rates were reported to be higher using EUS than US or CT [27].
Furthermore, the diagnostic performance of EUS depends on the experience and technical
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abilities of the EUS-operator. Sometimes, even if the practitioner is an expert, inadequate
detection or misdiagnosis of tumors have been reported [28].

There is a strong interest in the research community to use data science methods,
such as AI, to assist professionals in the field of medicine in detecting visual abnormalities
while minimizing both false positives and false negatives. Combining the knowledge
in the field and the capability of AI introduces a new world of exploration into both
screening and diagnosis of PC. Literature on the use of AI in the diagnosis of PC shows
no significant variation in diagnostic accuracy [29]. In the present study, the variation
in diagnostic accuracy was not wide, and we obtained a pooled sensitivity of 92% and a
pooled specificity of 90%.

Heterogeneity, which is common in diagnostic meta-analyses, is the result of variations
among the different included studies [30]. These variations mainly include differences in the
study population, study design, interventions, and interpretations of results. In our case, the
heterogeneity between studies was not significant, regarding the study design, they were
eight retrospectives [17–21,24–26] and two prospective studies [22,23]. A heterogeneous
element was the target used for image analysis—some of the studies used B-mode image
analysis [18,20,23], from texture features [17,25,26], digital features [21], or Grey-scale
pixels [18] analysis, while others made their image recognition with time-intensity curves
parameters from contrast-enhanced EUS [20] or were multiparametric (B-mode, contrast,
elastography) [25].

Regarding the computer-aided diagnosis (CAD), we found in our meta-analysis two
models of CAD: conventional and deep learning. Conventional CAD is often regarded
as the “shallow-layer learning method”, which is where large amounts of data are used
by computer systems to learn how to carry out specific tasks such as speech recogni-
tion [31]. Traditional machine learning relies on pattern recognition or statistical methods
and requires structured and historic data with prior knowledge of outcomes [32]. In the
conventional CAD subgroup, seven studies were included [17,19–22,25,26].

On the other hand, only three studies were included in the subgroup of deep learning-
based CAD [18,23,24]. As we expected, deep learning had a higher accuracy of diagnosis
than conventional type in PC patients, and an impressive diagnostic efficacy was found
with the AUC of 0.97. One of the most promising areas of innovation in medical imaging
in the past decade has been the application of deep learning. Deep learning has the
potential to impact the entire medical imaging workflow from image acquisition and image
registration to interpretation [33,34]. Deep learning models are typically trained with the
assumption that both the training and testing sets are collected from the same distribution
of patients; thus, if models are developed in one relatively homogenous population, it may
not generalize to the diverse patient populations or clinical environments in the real world.
Moreover, this form of bias does not only take shape in terms of patient demographics but
can even surface itself in details, such as which machine the medical image was captured
on [32]. To sum up, there were homogeneous data in the three deep learning-based CAD
studies, but the use of data was only from three institutions, and it may not generalize to
the diverse population patients in the world.

There were four types of AI algorithms used to generate the automatic, real-time
diagnosis of PC: artificial neural network (ANN), with three studies [17,21,22]; convolu-
tional neural network (CNN), with four studies [18,20,23,24]; and support vector machine
(SVM), with two studies [25,26]; and there was only one basic machine learning model,
unclassified [19]. Different as they are, algorithms have advantages of their own.

An ANN is defined by the neuron connections, numbers, and distribution in layers.
Each neuron of the middle layer has a transfer function associated, and the signal flows from
the input neurons to the output neurons of the final layer. ANN is one of the most preferred
artificial intelligence techniques that aims to create a system similar to the operations of the
human brain by imitating it. A multi-layered, feed-forward perceptron was used in the
system that classified cancerous and noncancerous pancreas.
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CNN is a type of artificial neural network used in image recognition and processing
that is specifically designed to process pixel data; CNNs are powerful image processors
that use deep learning to perform both generative and descriptive tasks and that can obtain
global and local image information directly from the convolution kernels [35].

In our meta-analysis, the best accuracy to detect pancreatic cancer was obtained
by ANN model algorithms. Three studies reporting data on 395 patients used this AI
model with a pooled sensitivity of 0.93 (95% CI, 0.78–0.98). The diagnostic efficacy for this
subgroup was the same as the overall efficacy, with an AUC of 0.95. On the other hand,
the CNN-based studies presented a similarly high AUC of 0.94, almost the same as the
partial AUC (0.81) and the SVM-based studies with an estimated AUC of 0.93. Interestingly,
CNNs were not the best in the detection of PC, and they were included in the deep learning
models, which as previously stated had a higher diagnostic accuracy than the conventional
type in PC patients.

Although the outcome of our research seems to bring light to the application of AI
in detecting PC from EUS imaging, several common limitations and defects should be
noted. First, only ten original research articles met the selection criteria, as there were not
many studies about the diagnostic value of artificial intelligence-assisted EUS models in
pancreas cancer patients. We were also unable to retrieve sufficient data for some studies.
The relatively small number of studies analyzed, and their heterogeneity and mainly
retrospective nature entail a significant risk of selection bias.

Second, various indicators of diagnostic performance were used in the studies. The
value of TP, TN, FP, and FN at a specified threshold should at least be provided, but most
studies did not give a threshold or explain the reason for choosing this threshold.

For the long-term survival of PC patients, it is essential to detect small tumors. The
sensitivity of detection of pancreatic tumors 3 cm in diameter was reported to be 93%
for EUS, which was higher than that of contrast-enhanced CT (53%) and MRI (67%) [36].
Sakamoto et al. [37] reported that EUS can detect pancreatic cancers of 2 cm or less with
a sensitivity of 94.4%. In our analysis, only two studies provided information about the
dimensions of pancreatic masses [18,22], with a median range of lesion diameter of 31 mm
for PC in Saftoiu et al. and a minimal malignant cyst size of 1 mm in Kuwahara et al. We
cannot assess the sensitivity of detections of small tumors in our meta-analysis.

Furthermore, another heterogeneous element was the comparison between pathologies
of the pancreas and histopathological types of PC. Three studies compared pancreatic ductal
adenocarcinoma (PDAC) with chronic pancreatitis (CP) [19,22,26], with similar sensitivities
but different specificities. PDAC was also compared with normal pancreas, pancreatic
neuroendocrine tumors (NETs) [24], and autoimmune pancreatitis [20]. Only one study
compared other types of pancreatic cancer: intraductal papillary mucinous neoplasm
IPMN [18]. To sum up, digital features of EUS images are different between different
pathologies and malignancies of the pancreas, so assessing the sensitivity of detection for
various types of pancreatic masses can be challenging to determine.

Last but not least, in the 10 included studies there was not even one external validation,
which means testing the model with an out-of-sample dataset from one or more other cen-
ters. Most studies split the dataset from one center into a training set and tested randomly
or according to different parameters [17,22,25,26]. The performance was evaluated by
the test set, which should be called internal validation. Since the goal of validation is to
investigate the performance within patients from a different population, it is necessary to
obtain a new dataset from a distinct source. As a result, the model’s generalizability could
not be assured in the absence of external validation, causing the results to be overestimated.

AI can constantly provide reliable performance in a short amount of time, with the
potential to compensate for a human’s limited capability and by preventing human errors in
clinical practice. Therefore, our analyzed EUS-CAD systems can work not only in assisting
the training of beginners of EUS instead of an instructor but also in supporting experts.
However, to evaluate the real diagnostic performance of AI-based CAD, future studies will
require additional patients from multiple sites.
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5. Conclusions

Artificial intelligence-assisted endoscopic ultrasound is a promising, reliable modality
for the diagnosis of pancreatic cancer in patients with pancreatic mass lesions, with high
accuracy. Deep learning models used as a clinical decision supporting system could signifi-
cantly improve diagnostic accuracy in the detection of pancreatic masses. In this review and
meta-analysis, we also put forward some existing problems of design and reporting that
the algorithm developers should consider. Based on these promising preliminary results
and further testing on a larger dataset, artificial intelligence-assisted endoscopic ultrasound
could become an important tool for the computer-aided diagnosis of pancreatic cancer.
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