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ABSTRACT When determining human microbiota composition, shotgun sequencing is a
powerful tool that can generate high-resolution taxonomic and functional information at
once. However, the technique is limited by missing information about host-to-microbe ratios
observed in different body compartments. This limitation makes it difficult to plan shotgun
sequencing assays, especially in the context of high sample multiplexing and limited
sequencing output and is of particular importance for studies employing the recently
described shallow shotgun sequencing technique. In this study, we evaluated the use of a
quantitative PCR (qPCR)-based assay to predict host-to-microbe ratio prior to sequencing.
Combining a two-target assay involving the bacterial 16S rRNA gene and the human beta-
actin gene, we derived a model to predict human-to-microbe ratios from two sample types,
including stool samples and oropharyngeal swabs. We then validated it on two independ-
ently collected sample types, including rectal swabs and vaginal secretion samples. This
assay enabled accurate prediction in the validation set in a range of sample compositions
between 4% and 98% nonhuman reads and observed proportions varied between 218.8%
and 119.2% from the expected values. We hope that this easy-to-use assay will help
researchers to plan their shotgun sequencing experiments in a more efficient way.

IMPORTANCE When determining human microbiota composition, shotgun sequencing is
a powerful tool that can generate large amounts of data. However, in sample composi-
tions with low or variable microbial density, shallowing sequencing can negatively affect
microbial community metrics. Here, we show that variable sequencing depth decreases
measured alpha diversity at differing rates based on community composition. We then
derived a model that can determine sample composition prior to sequencing using
quantitative PCR (qPCR) data and validated the model using a separate sample set. We
have included a tool that uses this model to be available for researchers to use when
gauging shallow sequencing viability of samples.

KEYWORDS shotgun sequencing, shallow shotgun, microbiome, sample composition,
host DNA proportion, metagenomics

Shotgun sequencing allows interrogation of the metagenomic composition of eco-
logical niches and has been increasingly utilized to characterize human-associated

microbial communities. Shallow shotgun sequencing—sequencing to a per-sample read
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depth of 105 to 106 reads—provides taxonomic resolution greater than that of 16S ampli-
con sequencing and functional characterization of metagenomes, while being less ex-
pensive than whole-genome sequencing or deep sequencing (typically 107 to 109 reads/
sample) (1). However, there is a trade-off between cost and adequacy, which is especially
problematic for samples of variable ratios of host to microbial DNA, where microbial
reads may be displaced by human reads in a mixed sample (2). While this is generally
not a concern for samples with high bacterial load, such as stool samples, samples with
low or variable amounts of microbial DNA relative to that of human DNA are common in
other regions of the body, such as the lung, nasopharynx, stomach, and duodenum
(2–5). Bacterial density can range depending on sample site from 103 to 1011 CFU/ml,
and ranges within a sample site can vary by up to 4 orders of magnitude (5, 6). Microbial
taxonomic and functional analyses of metagenomic data require sufficient reads to draw
robust conclusions. The ability to predict the proportion of microbial reads prior to
sequencing would allow researchers to customize sequencing strategies for desired anal-
yses while optimizing the cost and time spent on metagenomic sequencing.

In this study, we used quantitative PCR to predict the ratio of human to microbial
reads obtained from sequencing using three targets: the 16S rRNA gene, 18S rRNA
gene, and human beta-actin (ACTB) to quantitate DNA of bacterial, fungal, and human
origin, respectively (7–9). We compared the ratios of bacterial to human DNA deter-
mined via quantitative PCR (qPCR) to the percent microbial/human DNA determined
via shallow shotgun sequencing in samples with variable bacterial DNA. We derived a
prediction model from oropharyngeal swabs and stool samples, and evaluated it in a
set of independently collected samples, including rectal swabs and vaginal secretion
samples. Finally, we generated an easy-to-use tool based on qPCR data to predict sam-
ple composition and sequencing depth required given a desired analytical outcome.

(This article was submitted to an online preprint archive [10].)

RESULTS AND DISCUSSION

To assess the impact of shallow sequencing depth on different bacterial DNA propor-
tions, we rarefied shotgun sequencing data from 4 sample types—stool, oropharyngeal, rec-
tal, and vaginal—to depths of 1,000 to 1 million reads/sample. We then determined the
alpha diversity of each rarefaction using three metrics: richness, Shannon index, and Berger-
Parker index. Alpha diversity decreased in a sample type-specific manner as sequencing
depth decreased (Fig. 1). Notably, while vaginal samples had the lowest alpha diversity in all
three metrics of the four sample types, alpha diversity decreased at the lowest rate as
sequencing depth decreased (Fig. 1). Conversely, while rectal swab samples had similar
Shannon index and Berger-Parker index values at 106 microbial reads to oropharyngeal and
stool samples, alpha diversity in rectal samples diminished at a greater rate as sequencing
depth decreased (Fig. 1B and C). Since this effect is sample-type specific, it is critical to pre-
dict sample composition a priori to ensure sufficient reads for the desired analysis for the
given sample type. In addition, we observed that both microbial DNA content and total
DNA density can greatly vary even within the same sample type, and as such, sample com-
position should be determined on a sample-by-sample basis (see also Fig. S1 in the supple-
mental material).

qPCR is a widespread and robust technique available in many molecular biology
laboratories. Its availability as well as inexpensive associated costs, especially compared
to that for experiments involving high-throughput sequencing techniques, makes it an
ideal candidate to use to predict sample composition prior to sequencing. In this study,
we assessed the potential of qPCR to predict sample-specific ratios of human to
microbe DNA using different amplification targets. Using a multivariate approach, 5
models were derived mapping the rRNA gene, 18S rRNA gene, and human beta-actin
(ACTB) qPCR-derived cycle thresholds (Ct) to observe the percentage of microbial reads
for a sample set consisting of oropharyngeal swabs and stool samples. Microbial reads
were defined as any read which did not align/match with a human genome reference.
The following models were tested: (A) a linear fit to the percent microbial reads using
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16S rRNA gene and ACTB Ct values, (B) a linear fit to the percent microbial reads using
16S rRNA gene, 18S rRNA gene, and ACTB Ct values, (C) a linear fit to logit-transformed
percent microbial reads using 16S rRNA gene and ACTB Ct values, (D) a linear fit to
logit-transformed percent microbial reads using 16S rRNA gene, 18S rRNA gene, and
ACTB Ct values, and (E) a nonlinear regression model based on the logistic growth
equation using 16S rRNA gene and ACTB Ct values (Fig. 2A and S2). We compared the

FIG 1 Alpha diversity indices are shown across a range of simulated sequencing depths from 103 to
106 reads per sample. Each sample was subsampled 10 times for a range of sequencing depths. Each
resulting rarefaction was profiled using MetaPhlAn 2.0. Richness, Shannon index, and Berger-Parker
indexes were calculated for each rarefaction. The mean value of each index was calculated per
sample per depth. Displayed are the median values and interquartile ranges of these means by
sample origin. (A) Sample-specific rarefaction curves of species richness. (B) Shannon index calculated
across a range of rarefactions, by sample type. (C) Sample dominance, measured with the Berger-
Parker index, across a range of sequencing depths, stratified by sample type.
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goodness of fit for each model and observed R2 values of 0.880, 0.880, 0.920, 0.920,
and 0.990 for models A to E, respectively (Fig. 2A and S2). Observed residuals had a
minimum to maximum range of 67.56, 68.50, 58.93, 59.07, and 42.61 for models A to E,
respectively (see Fig. S3A; Table S1A). Based on these findings, model E turned out to
be the best fitting model to predict sample composition using qPCR, with the equation per-
cent microbial reads = 2.7201549/([99.50267 � e20.7218 � {ACTB 2 16S}] 1 0.02733). In addition,
18S rRNA Ct value was not found to be an informative predictor and was hence removed
from the model. In Fig. 2B, we show the goodness of fit and residuals observed with model
E across the range of qPCR differences (28.16% to 134.45%). We observed homogeneous
fit and variance, indicating that the model performs well for all observed host-to-microbe
DNA ratios. However, we also observed that due to the asymptotes inherent to the sigmoi-
dal model along with limitations of the derivation data set, the model loses accuracy for
samples with observed microbial reads less than 4% or greater than 98%. This bias is likely
introduced at different steps of the process. For instance, sequencing error and resulting
false-negative and -positive hits when mapping reads to the human database are likely to
account for this bias. Another potential source of bias could be introduced by the carryover
of contaminants between sequencing runs, hence resulting in a composition change which
is not picked up by the qPCR conducted a priori.

FIG 2 Statistical models to predict sample composition using qPCR prior to high-throughput sequencing. (A) Sigmoidal model
derived from oropharyngeal swabs and stool samples depicting the relationship between the difference of human (ACTB) and
bacterial (16S) qPCR values (Ct) with the percentage of microbial reads (R2 = 0.990). Nonlinear regression line (solid) is based on the
following logistic growth equation: percent microbial reads = 2.7201549/([99.50267 � e20.7218 � {ACTB 2 16S}] 1 0.02733). One-tailed 95%
prediction interval is depicted with a dotted line. (B) Model residuals. (C) Fitting of validation sample set on prediction model. The
orange dots represent values derived from a validation sample set composed of vaginal secretion and rectal swab samples and
correlate well (R2 = 0.930) with the prediction model (solid black line). (D) Difference between expected and observed composition
across the range of microbial content.
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Using the equation derived from model E, we evaluated our approach on two different
independently collected sample types, including vaginal secretions and rectal swabs. In
Fig. 2C, we show the relation between observed microbial read percentages and the differ-
ence in Cts between 16S and ACTB qPCR, derived from our validation data set, alongside a
curve of expected values derived from model E. We observed the difference between pre-
dicted and observed microbial reads percentages to range from 218.80% to 119.22% with
a mean of 10.944% (Fig. S3B). In Fig. 2D, we show that this difference is consistent across
the range of observed percent microbial reads. Compared to the other models, model E
best described the validation data set, with a median difference of 0.25% and a standard
deviation of 9.10% (Table S1B; Fig. S2). For comparison, model E described the initial sample
set of oropharyngeal/stool samples with a median difference of 0.14% and a standard devia-
tion of 4.35% (Table S1A). Since the model performed similarly between the two data sets,
we concluded that the model was able to describe a relationship between 16S and b-actin
qPCR results and the composition of shotgun sequencing metagenomic data in a sample-
type-independent manner for microbial proportions comprising between 4% and 98%. We
then developed a tool based on our model and the rarefaction curves on different samples
types which predicts percent of microbial reads based on qPCR data and suggests a target
number of reads based on sample type and desired analysis (see Table S4).

However, models C and D shared very similar range and standard deviation values
with model E, while arguably being more accessible, being multivariate linear models
of logit-transformed values (Table S1B). These models were shifted such that the mean
residual value was zero (see Fig. S4A). The distribution of the absolute value of the
residuals suggests that shifting models C and D improved precision but were still not
as precise as model E (Fig. S4B). Therefore, models C and D may be options for
researchers that consider the trade-off of precision for accessibility worthwhile.

The limitations of our study are as follows. The samples used in our study were low in fun-
gal content. Therefore, our model may not accurately predict microbial content in sample sets
where the majority of samples are rich in fungal content. In addition, in silico analysis shows
that our bacterial 16S primer set provides broad coverage of phyla most common in human
samples: Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes (11). However, there is no
coverage of the phyla Spirochaetes and Chlamydiae (11). As such, we may be underreporting
bacterial density in sites where these phyla are more common (12).

Moreover, as our results are based on protocols using specific reagents and technol-
ogies for both sequencing and qPCR, our tool may not accurately predict sequencing
results when protocols, reagents, and/or technologies differ. However, given that we
have established a robust link among 16S qPCR, b-actin qPCR, and sample content by
sequencing, our approach can be easily adapted to fit different experimental settings.

Our approach does not replace the need to prespecify sequencing requirements for
a given application. The use of qPCR is intended to complement small exploratory
experiments that establish required depths when scaling up metagenomic sequencing
to larger projects, and in this way, we feel it adds significant potential use value.

Conclusion. We have shown that a shallow shotgun sequencing depth can reduce
measured alpha diversity in all measured sample types, with more diverse commun-
ities being more strongly negatively affected. We found that qPCR can function as a
predictive tool for sample composition that was strongly correlated with shotgun
sequencing data. We were able to create a model that can describe and predict vari-
able sample types. We hope that our tool and methodology may help fellow research-
ers screen for sequenceable samples or allow for better optimization of sequencing.

MATERIALS ANDMETHODS
Sample acquisition and preparation. Oropharyngeal swabs and stool samples were collected from

a cohort of patients with human papillomavirus-positive (HPV1) locoregionally advanced oropharyngeal
squamous cell carcinoma (LA-OPSCC) treated with chemoradiotherapy (CRT) (13). Oropharyngeal swabs
over the tumor site and stool samples were collected up to 3weeks prior to the start of radiotherapy
and again at completion of CRT (up to 3weeks following last day of radiotherapy) (13). Oropharyngeal
swabs over the tumor site and stool samples were collected using the ZymoBIOMICS DNA/RNA mini
prep kits (Zymo Research, Irvine, CA). DNA was extracted using ZymoBIOMICS DNA micro kit (13).
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Vaginal secretions were collected from a cohort of patients 10 to 18days after the last day of bleeding
from their previous menstrual period (11). Instead SoftCups (Evofem, San Diego, CA) were self-inserted to col-
lect undiluted cervicovaginal secretions for 1 min (14). The SoftCup was placed into a 50-ml conical tube and
transported on ice to the lab within 2h (14). DNA was extracted using the DNeasy PowerSoil kit (Qiagen) (14).

Rectal swabs (FLOQSwab; Copan) were collected from a cohort of HIV-positive, antiretroviral therapy
(ART)-treated men who have sex with men in Toronto, Canada (15). Rectal swabs were inserted and
rotated 360° inside the anal canal (15). All rectal swabs were stored at280°C in 300ml of ultrapure-grade
phosphate-buffered saline (VWR, Radnor, USA) prior to DNA extraction (15). DNA was extracted using
the DNeasy PowerSoil kit (Qiagen) per the manufacturer’s instructions with one exception: 30ml of solu-
tion C1 was used to treat both the supernatant and the swab for the first step before removing the
swab and adding another 30ml of C1 to complete the process (15).

All studies were approved by the institutional research ethics board. All patients provided written,
signed, informed consent to participate. In total, 46 oropharyngeal swabs, 46 stool samples, 7 vaginal
samples, and 13 rectal swabs were included in this study. Two oropharyngeal swabs and 1 stool sample
were not taken into consideration in model derivation due to insufficient amounts of sample for qPCR.
Oropharyngeal and stool samples were grouped into a sample set used to derive models, while vaginal
and rectal samples comprised the sample set used to validate.

qPCR. Samples were probed separately for the 16S rRNA gene, the 18S rRNA gene, and the human
b-actin gene. All reactions were conducted in duplicates, and RNase-free water was used as a negative
control. Each well contained 2 ml of sample DNA, 5 ml of TaqMan universal PCR mix (Applied Biosystems,
Foster City, CA), 0.3 mM forward primer, 0.3 mM reverse primer, and 0.2 mM primer probe with required
distilled water for a total volume of 10 ml per well. PCR was performed on a QuantStudio 6 Flex (Thermo
Fisher Scientific, Waltham, MA) platform. Cycling was conducted as follows: 10 min at 95°C followed by
45 cycles of 95°C for 15 s and 60°C for 1 min.

To determine bacterial DNA content, we used primers and probes specific for the bacterial 16S rRNA
gene designed by Nadkarni et al. (7) (see Table S1 in the supplemental material). Their primer set was
able to detect 34 different species from various genera while avoiding cross-detection of DNA from king-
doms Eucarya and Archaea (7).

To determine fungal DNA content, we used the FungiQuant primer set designed by Liu et al. (8), due to its
high coverage and specificity for fungal 18S rRNA gene sequences (Table S1). Liu et al. found that in silico, the
primer had a perfect match for 91.4% of genera of 18 subphyla and could be used to accurately measure fun-
gal 18S content up to ratios of 25:679,464 fungal-to-human 18S rRNA gene copy number (8).

To determine human DNA content, we used a set of b-actin gene-specific primers and probes
designed by Hasan et al. (9) (Table S1).

Library preparation and sequencing. Libraries were prepared using Nextera Flex (Illumina, San Diego,
CA) kits with the Nextera XT indices (Illumina). Barcoded sample libraries were pooled to a concentration of
17.6ng/ml measured with a high-sensitivity DNA assay on a Qubit (Thermo Fisher Scientific, Waltham, MA) plat-
form. A mid-output reagent kit (Illumina) was used to sequence on the MiniSeq, while an SP reagent kit
(Illumina) was used on the NovaSeq platform, both in 2 by 150-bp mode.

Read filtering and taxonomic profiling. We filtered human reads from nonhuman reads using
KneadData based on a human genome index for Bowtie 2 (16, 17). We considered sequence reads that
did not match the database as microbial reads in our analyses. Taxonomic annotation was conducted
using MetaPhlAn 2.0 and the ChocoPhlAn database (18). Rarefactions were performed using seqtk-1.3 to sub-
sample the microbial reads of individual samples (19). Each sample was subsampled at depths of 1 million,
500,000, 250,000, 100,000, 50,000, 10,000, and 1,000 reads 10 times using 10 distinct seeds. Subsample compo-
sitions were identified using MetaPhlAn 2.0, and taxonomic profiles were generated (18). Richness, Shannon
index, and Berger-Parker dominance index were calculated using Past 4 for each rarefaction (20). The mean
value of each index was calculated per sample for the range of sequencing depths. The median value of each
index per sample site was then calculated for the range of sequencing depths (Fig. 1).

Model derivation. We used XLSTAT version 2019.4.2 (Addinsoft Inc., New York, NY) to derive multi-
variate linear regressions using either 16S and ACTB qPCR cycle and microbial read percentages (models
A and C) or 16S, 18S, and ACTB qPCR cycle thresholds and microbial read percentages (models B and D).
Multivariate linear regressions (models C and D) were also performed following a logit transformation of micro-
bial read percentages. Finally, for model E, we derived the nonlinear regression model using the logistic growth
equation in GraphPad Prism version 8.3.0 for Windows (GraphPad Software, San Diego, CA).

Data availability. Raw sequencing data have been uploaded to the Short Read Archive (SRA) under
accession number PRJNA718445 as a series of fastq files. Six patients from the stool/oropharyngeal
cohort declined to have their data made publicly available. Exact status of sequencing data availability
and raw qPCR cycle thresholds can be found in Table S3. To reproduce our results, raw sequencing data
must be filtered for human reads using KneadData or similar software to determine percent microbial
reads per sample by comparing the number of reads pre- and postfiltering.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, TIF file, 0.2 MB.
FIG S2, TIF file, 0.4 MB.
FIG S3, TIF file, 0.3 MB.
FIG S4, TIF file, 0.3 MB.
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TABLE S1, PDF file, 0.1 MB.
TABLE S2, PDF file, 0.1 MB.
TABLE S3, PDF file, 0.1 MB.
TABLE S4, XLSX file, 0.1 MB.
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