
RESEARCH ARTICLE

The Interaction between Vector Life History
and Short Vector Life in Vector-Borne Disease
Transmission and Control
Samuel P. C. Brand1,2*, Kat S. Rock1,2, Matt J. Keeling1,2,3

1 School of Life Sciences, University of Warwick, Coventry, United Kingdom, 2WIDER (Warwick Infectious
Disease Epidemiology Research) Centre, University of Warwick, Coventry, United Kingdom, 3Mathematics
Institute, University of Warwick, Coventry, United Kingdom

* S.Brand@warwick.ac.uk

Abstract
Epidemiological modelling has a vital role to play in policy planning and prediction for the

control of vectors, and hence the subsequent control of vector-borne diseases. To decide

between competing policies requires models that can generate accurate predictions, which

in turn requires accurate knowledge of vector natural histories. Here we highlight the impor-

tance of the distribution of times between life-history events, using short-lived midge spe-

cies as an example. In particular we focus on the distribution of the extrinsic incubation

period (EIP) which determines the time between infection and becoming infectious, and the

distribution of the length of the gonotrophic cycle which determines the time between suc-

cessful bites. We show how different assumptions for these periods can radically change

the basic reproductive ratio (R0) of an infection and additionally the impact of vector control

on the infection. These findings highlight the need for detailed entomological data, based on

laboratory experiments and field data, to correctly construct the next-generation of policy-

informing models.

Author Summary

The basic reproductive ratio (R0) is a crucial measure of transmission intensity, lying at
the interface between mathematical modelling and policy decision making. If control mea-
sures can induce a situation where R0 � 1 for a sustained period of time then the pathogen
must be eradicated. For diseases spread by short-lived insect vectors a modeller can not
calculate R0 without addressing questions of chance such as, “What percentage of vectors
will survive their extrinsic incubation period (EIP) to become infectious?”. Classical Ross-
Macdonald theory provides answers for the modeller by making certain concrete assump-
tions, such as a fixed length EIP and exponentially distributed times between vector blood-
meals. Using bluetongue virus spread by biting midges as an exemplar we demonstrate
that biologically plausible alterations to the classical assumptions can significantly change
the modeller’s prediction of R0 with both serious over-estimation and under-estimation
being possible. The important modelling/control question, “How does R0 respond to
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increased vector per-capita mortality?”, is also found to depend strongly on details of the
vector life-cycle expressed in the language of probability distributions.

Introduction
The language of probabilities and chance entered mathematical epidemiology, then dubbed
pathometry, almost from its foundations [1]. However, the common use, and huge success, of
deterministic models for disease dynamics (ODEs) have made certain probabilistic assump-
tions very popular in the literature; for example the implicit assumption that the time between
various epidemiologically important events is exponentially distributed, which follows from
assuming constant per capita rates of change. For vector-borne diseases (VBDs) the ODE-
based approach dominates, originating with Ross’modelling of malaria [2]. In the 1940s and
‘50s Macdonald and Garrett-Jones, amongst others, made substantial contributions to the
mathematical theory of VBDs [3, 4], including the fundamental appreciation that only a frac-
tion of inoculated vectors will survive the extrinsic incubation period (sometimes called spo-
rogony) of a disease to become actively infectious. The probability of surviving the extrinsic
incubation period (EIP) has been most conveniently expressed by assuming that the EIP dura-
tion is fixed [3, 4]. The epidemiologically important factors in a vector’s life history are its life
duration, how many times it bites in its life and how many of those bites are infectious. Varia-
tion between vector life histories can be modelled as probabilistic; the difference in outcomes
between vectors are modelled as being due to identically distributed chance factors rather than
intrinsic variation in vector fitness. This requires estimation of the underlying random distri-
butions governing vector life histories. The popularity in the modelling literature of implicitly
assuming that relevant distributions are either exponential or fixed length is often due to the
popularity of ODE models and mathematical convenience rather than biological motivation.

Ross-Macdonald theory has remained very popular amongst mathematical modellers of
VBDs. A century after Ross’ original mathematical analysis, reviews of the modelling literature
reveal that modern analysis still typically uses the majority of the core set of assumptions famil-
iar to Ross, Macdonald and Garrett-Jones [5]. This has led to speculation that the entire field
could have become ‘canalised’ implying that there exist equally fruitful avenues of research that
are being under-explored due to the popularity of the Ross-Macdonald approach [6]. However,
Ross-Macdonald theory is essentially an attempt to think clearly and quantitatively about the
vector life events that must occur in the host-to-vector-to-host transmission cycle of VBDs. In
particular their theory allows the integration of important entomological information [the vec-
tor biting rate (α), vector mortality rate (μ) and the vector population density relative to hosts
(M)] with epidemiological data [the vector competence for the given pathogen (V) and the
extrinsic incubation period, or inverse incubation rate, (σ−1)] into epidemic metrics for VBDs
that give a prediction for transmission intensity. A popular metric is the vectorial capacity (C),
first proposed by Garrett-Jones [4], which measures the expected number of future infected
hosts due to a single infectious host per day [7].

If we assume the host has mean infectious duration 1/γ, which includes host mortality and
possible excess mortality due to disease, and additionally assume that the host is certain to sur-
vive its incubation period, then combining vectorial capacity with the mean duration of host
infectiousness gives the classical reproductive ratio for the VBD as

Rc
0 ¼ C=g ¼ MVa2

gm

� �
exp ð�m=sÞ: ð1Þ
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We use the notation Rc
0 for the classical Macdonald reproductive ratio for a VBD. However, in

relationship to other common definitions of R0 (e.g. [8]) it could equally be described as R2
0 as

the square of the geometric mean of two infectious generations: vectors and hosts. Rc
0 is a thresh-

old quantity for the epidemic; that is if control efforts can induce a situation where Rc
0 � 1 for a

sustained period the VBDmust be eradicated [8]. On the other hand, recent analysis [9, 10] has
suggested that the reproductive ratio for the midge-borne viral disease bluetongue virus (BTV)
spreading between a single host population and a single midge species can be expressed as,

R0 ¼
MVa2

gm

� �
s

sþ m

� �
: ð2Þ

The discrepancy between the two formula is due to the interaction between the lifetime of the
vector, modelled as an exponential distribution, and the assumed distribution of the EIP. Rc

0 (eq
1) is derived from assuming a constant (fixed) duration EIP, whereas R0 (eq 2) is generated by
assuming an exponential distribution as epitomised by ODE models. Despite both models
assuming the same average EIP duration (1/σ) and vector life expectancy (1/μ), they predict dif-
ferent probabilities of an inoculated (female) vector surviving her EIP and therefore becoming
actively infectious. When the incubation rate is much faster than the mortality rate (σ� μ) the
two R0 predictions become identical because the vector is very likely to survive its EIP and prob-
abilistic details become irrelevant. This will not be true for vectors (such as midges and sand-
flies) that are short lived compared to their typical EIP duration.

The classic assumption that the lifetime of a vector is exponentially distributed is equivalent
to assuming that it has a constant hazard rate of death. In this we follow Macdonald [11] and
argue that due to predation, and other persistent environmental risks to the vector, exponen-
tially distributed lifetimes are a reasonable model for many vectors. Constant hazard is proba-
bly a more accurate modelling choice for smaller arthropods (with less complex life-histories)
such as biting midges or sandflies than compared to their larger cousins such as mosquitos and
tsetse flies. Certain populations of the biting midge species Culicoides sonorensis have been
found to have a lifetime distribution that closely matches exponential, even in a laboratory set-
ting where predation pressures and other environmental risks are absent [12]. In addition, field
estimates of mortality based on the proportion of parous vectors caught implicitly assume
exponential lifetimes (e.g. [13]). For larger arthropods there is stronger evidence of senescence
[14], however laboratory studies of this facet represent an upper estimate on the survivorship
of arthropods in the natural setting.

In contrast, we would question the appropriateness of the exponential distribution as a good
model for other biological durations significant to the epidemiology of VBDs. Vectors cannot
become immediately infectious after successful inoculation with a VBD due to the time
required for the pathogen to escape the mid-gut of the vector and spread to its salivary glands
from where it can be transmitted to susceptible hosts; it is this biological process that defines
the EIP for the vector. It does not seem plausible that this duration should be identical for each
vector, as implied by Eq (1) but nor does it seem plausible that the EIP should be modelled as
ceasing at a constant rate after inoculation, as implied by Eq (2). Moreover, vectors such as
female biting midges and mosquitos generally only need to successfully feed once in their
gonotrophic cycle in order to provide protein for their egg yolks as well as for sustenance. Even
if there is a local abundance of suitable hosts and breeding sites, implying that the vector
spends only a short period in seeking behaviour, the biting activity of the vector is still limited
by the duration of oogenesis (egg production) and oviposition (egg laying). Since oogenesis is a
complex multi-stage biological process, rather than a persistent ‘risk’, it is unlikely that the
duration between bites by a female midge is exponentially distributed.

Chance and Control for VBDs
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We introduce a flexible approach to modelling vector life histories as random events during
an individual vector’s life. The random waiting time between bites on hosts is drawn from a
general distribution, that does not have to be the standard exponential. The generalisation of
the vector biting process to non-exponentially distributed gonotrophic cycle duration defines a
renewal process, a standard theoretical model for processes of discrete events [15]. The EIP
duration is also allowed to be chosen from an arbitrary positive distribution; the probability of
a vector surviving its EIP duration can then be expressed analytically. Combining these two
insights we develop a numerical procedure for calculating a generalised reproductive ratio (Rg

0),

and also an analytic approximation (~Rg
0) based on the renewal process for biting rate of longer-

lived vectors. Given the uncertainty in the forms of these distributions, it is convenient to intro-
duce a dispersion scale, which interpolates between the fixed-duration, dispersion-zero, gono-
trophic cycle assumption Eq (1) and the exponentially-distributed, dispersion-one,
gonotrophic cycle assumption Eq (2). This approach does not capture all possible distribu-
tional choices, but does include the two most popular [eqs (1) and (2)]. We demonstrate that
for short-lived vectors these changes have a significant effect on both predicted intensity of
VBD transmission and the efficacy of control measures.

Culicoides genus biting midges spreading the multi-serotype orbivirus bluetongue virus
(BTV) provide an ideal case study for the theory developed, due to the plethora of entomological
and virological data available on the midge-BTV disease complex. BTV causes the economically
important bluetongue disease amongst ruminants, both wild animals and commercial livestock,
and is in particular associated with severe disease and increased mortality amongst sheep. BTV
circulates persistently in Africa, North America, Australia, the Middle east, China, the Indian
subcontinent and southern Europe wherever culicoidesmidge species are present. Moreover, the
virus has demonstrated epizootic invasion capability into northern Europe (north of 50°N) [16].
In 2006 BTV invaded northern European herds of commercial ruminant livestock for the first
time in record, and demonstrated the ability to overwinter before being controlled by mass vac-
cination campaigns of over 100 million animals in the subsequent years [17]. The generalised
predictions from this paper show that the effort required to achieve eradication by host vaccina-
tion or insecticidal spraying can be substantially greater or lower than those offered by classical
Ross-Macdonald theory, depending on the assumed underlying distributions. However, we
show that whenever Rg

0 agrees with R
c
0, the classical approach overestimates the efficacy of reduc-

ing vector life expectancy with adulticidal spraying. As experimental knowledge about midge
gonotrophic cycles and EIP increases and becomes more detailed [18, 19] there should be an
concurrent effort frommodellers of VBDs to integrate more of this detailed entomology into
predictions of disease risk. The theory presented in this paper allows the full distributional infor-
mation on the length of gonotrophic cycle and EIP to be integrated into a prediction of trans-
mission intensity: this represents a significant development from the classical formulation for R0
[eq (1)] where only information about averages can be used to estimated disease risk.

Methods
In this section we highlight two processes that combine to determine the reproductive ratio of
vector-borne diseases: surviving the EIP and the timing of vector bites. In particular we distin-
guish between biting from the vector population in general and infectious bites from long-lived
inoculated vectors.

Model overview
The adult lives of the vectors are modelled as a series of independent and identically distributed
(i.i.d) random waiting periods—the gonotrophic cycles—which we label Gn (n� 0). These
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define the time between each successful bite until death, and death is assumed to occur at con-
stant rate μ (Fig 1). This means that the lifetime biting process of the vector follows a renewal
process [15] stopped at the end of the vector’s life. The starting point of the gonotrophic cycles
for each vector is taken to be its emergence as an adult. If a vector is inoculated with the patho-
gen, then only bites after a random duration E (the EIP) are potentially infectious. The product
of the probabilities of transmission from infectious host to vector and from infectious vector to
host (the vector competence) is given as V. The classical assumption is that the Gn are exponen-
tially distributed (G* exp(α)) and E = 1/σ is constant. Here we drop these assumptions and
generate a generalised reproductive ratio (Rg

0) for a single midge species spreading a pathogen
amongst a single host species (Fig 1). Assuming that the average host infectious duration is 1/γ,
Rg
0 expressed in explicitly probabilistic terms:

Rg
0 ¼

V
g
� E½rate of vector population bites per host�

� E½# bites after EIP by inoculated vector�: ð3Þ

The factorisation in eq (3) is appropriate because the future biting of a vector after its inocula-
tion can be taken as independent of its past life-history. The probability of a vector surviving its

Fig 1. Reproductive ratio and vector life history examples. The generalised reproductive ratio, Rg
0 , is derived by computing the expected number of

vertebrate hosts infected through one complete generation of the parasite due to a single infected host. The average quantities underlying Rg
0 depend upon

assumptions on the chance life events of individual vectors. Three example realisations of vector lives are given for three extremal modelling assumptions
(Right). 1) The classical model. The vector waits for an exponentially distributed period between bites (circles), once inoculated with the pathogen the vector
has a fixed latency period (green line) until the end of its EIP after which it makes infectious bites. 2) The constant model. Both the EIP duration and the time
between bites are fixed. 3) The Markov model. Both the time between bites and the EIP duration are exponentially distributed. In each case the vector’s life
ends with a fixed per-capita mortality rate.

doi:10.1371/journal.pcbi.1004837.g001
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EIP duration and the average biting rate over the vector population can be solved in terms of
the moment generating functions (MGFs) of the random life-cycle distributions for the vector.
The MGF for a random variable X is defined as,

�XðyÞ ¼ E½ exp f�yXg�: ð4Þ

From an entomological modelling perspective the MGF evaluated at θ> 0 is the probability of
a vector surviving a random period defined by X whilst undergoing constant mortality rate θ.
The two MGFs we will use in our analysis are ϕE, the MGF of the EIP duration, and ϕG, the
MGF of the gonotrophic cycle duration. Therefore the probability of a vector surviving its EIP,

PE ¼ �EðmÞ: ð5Þ

The classical assumption that the EIP is fixed at σ−1 for each inoculated vector in fact leads to
the smallest estimate of PE over any choice of distribution for the EIP with average duration
σ−1 [eq (15)]; that is the classical estimate is almost certainly an over-estimate for the propor-
tion of inoculated vectors that die before becoming actively infectious.

The average number of bites, or equivalently survived gonotrophic cycles, in the lifespan of
a vector is,

E½number of lifetime bites� ¼ �GðmÞ
1� �GðmÞ

: ð6Þ

A traditional modelling assumption is that each vector bites according to a Poisson process at
rate α(each gonotrophic cycle is exponentially distributed with a mean cycle duration of 1/α)
giving a population biting rate per host ofMα whereM is the vector-to-host population ratio.
A convenient feature of modelling vector bites as a Poisson process is that the chance of the
vector biting at any moment in time is completely independent of the vector age, a, since
emerging as an adult. This is not true in general; it is biologically plausible that having bitten
successfully a vector is less likely to bite shortly afterwards, even if the average time between
bites remains 1/α. This could be experimentally confirmed by observing that gonotrophic
cycles are under-dispersed compared to an exponential distribution. As a consequence vectors
of different ages will have different chances of biting: vector age dependence in the model
emerges from considering non-exponentially distributed gonotrophic cycles without any
assumption on vector senescence. We will demonstrate that for a general choice of gonotrophic
cycle distribution the equilibrium biting rate of the vector population upon hosts is the
expected total number of bites made in per vector lifetime divided by the vector life expectancy.
This has a concise mathematical expression:

E½rate of vector population bites per host� ¼ Mm
�GðmÞ

1� �GðmÞ
: ð7Þ

Eq (7) is consistent with the classical prediction of biting rating from the vector population in
that if the biting process is Poisson (waiting times G are exponentially distributed) then,

�GðmÞ ¼
a

aþ m
)Mm

�GðmÞ
1� �GðmÞ

¼ Ma: ð8Þ

Although eq (7) holds in general, eq (8) is specific to the Poisson assumption.
A second quantity that is key to calculating the basic reproductive ratio is the expected num-

ber of infectious vector bites. Infectious bites are those that occur after the latent EIP duration
—we denote this quantity BI (see eq (20) below). In order to make at least one infectious bite
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an inoculated vector must survive its EIP and any remaining gonotrophic period after its EIP
finishes. This implies three key considerations:

1. A significant proportion of inoculated vectors (1 − PE; eq (5)) will die before the end of their
EIP and contribute no infectious bites.

2. Inoculated vectors that survive their EIP might still die before they complete their remaining
gonotrophic period between the end of the EIP and the vector’s first infectious bite.

3. The remaining period will be typically shorter than a complete gonotrophic cycle. There-
fore, an infectious vector that survives its EIP will, on average, achieve more infectious bites
than a typical emerging adult vector.

Because a vector’s inoculating bite also initiates its EIP it is possibly to calculate BI exactly
using an integral formula [eq (20)]. We can also approximate BI explicitly, using the asymptotic
distribution of remaining time until next bite,

E½# bites after EIP by inoculated vector� ¼ BI � �EðmÞ
a
m
: ð9Þ

The approximation is exact if the gonotrophic cycle is exponentially distributed.
Putting Eqs (7) and (9) together gives the generalised reproductive ratio:

Rg
0 ¼

MV
g

m�GðmÞ
1� �GðmÞ

BI ; ð10Þ

and the approximate generalised reproductive ratio (~Rg
0):

~Rg
0 ¼

MVa
g

�EðmÞ�GðmÞ
1� �GðmÞ

: ð11Þ

Eq (11) explains the discrepancy in the introduction. If the EIP duration is fixed at E = 1/σ then
ϕE(μ) = exp{−μ/σ} which recovers the classical Rc

0 [eq (1)] whereas assuming an exponentially
distributed EIP (ϕE(μ) = σ/(σ + μ)) recovers the alternative R0 [eq (2)]. A key point is that the
generalised predictions for the reproductive number Rg

0 depends on the MGFs of the EIP and
gonotrophic cycle. MGFs depend upon the full distribution, therefore Rg

0 can be estimated
using all the information from an entomological study rather than just summary statistics such
as mean (or variance) of gonotrophic cycle duration. In Results we will concentrate on gamma
distributed durations which are determined by their mean and dispersion around the mean,
however there is no theoretical necessity to use these distributions in general.

Vector life duration and survival probabilities
Each vector has an age a, which defines the time since its first gonotrophic cycle was initiated
after the end of its juvenile period. After reaching adulthood the vector has a random exponen-
tially distributed lifetime L with mean E½L� ¼ 1=m described by the probability density function,

fLðaÞ ¼ m expf�mag: ð12Þ
Exponentially distributed lifetimes, which derive from a constant hazard, have the advantage of
a memoryless property. Having survived to some age a the vector’s expected remaining life is
still 1/μ; that is the age of vector doesn’t effect its hazard of dying. Since we acknowledge that the
age of the vector effects its biting rate we necessarily consider the age distribution of the vector
population. In principle the vector age distribution could be seasonally varying, however we
focus on the age distribution at population equilibrium. The age of a vector selected at random

Chance and Control for VBDs
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from its population at equilibrium is a random variable A. The equilibrium age probability den-
sity (fA(a)) can be calculated using themicrocosm principle for population processes [20] which
states that the proportion of a population in some state is proportional to the mean lifetime an
individual would spend in that state. In this case, the microcosm principle gives,

fAðaÞ ¼
PðL > aÞ
E½L� ¼ m expf�mag: ð13Þ

For exponentially distributed life-times, the equilibrium population density of vector age is
equal to the life duration density i.e. fL = fA, but this is not generally true.

After successful inoculation with the pathogen the vector will become infectious after a ran-
dom EIP duration E with density function fE. The memoryless property of the vector lifetime
distribution implies that the probability of surviving its EIP (PE) is given by the MGF of the
EIP duration evaluated at the vector mortality rate:

PE ¼ PðL > EÞ ¼
Z 1

0

Z 1

0

1ðx > yÞm exp f�mxgfEðyÞ dxdy

¼
Z 1

0

expf�mygfEðyÞ dy

¼ �EðmÞ:

ð14Þ

Where 1(.) is an indicator function, taking the value 1 if the statement is true or 0 otherwise.
Since exp{−μx} is a convex function in x then Jensen’s inequality gives that for any distribution
of E (c.f. inequality (2.23) in Klebaner [21]):

PE � exp f�mE½E�g ¼ exp f�m=sg: ð15Þ
Eq (15) shows that the probability of an inoculated vector surviving a fixed EIP is the lowest
possible estimate for any EIP distribution.

Vector biting process
Vector biting follows a natural repeating cycle: the vector finds a host to bite at the end of each
of its gonotrophic cycles and, once successfully fed, initiates a new gonotrophic cycle which
includes locating a suitable oviposition site, oviposition, oogenesis and then subsequent host
seeking. We model the gonotrophic cycle durations as a collection of independent and identi-
cally distributed (i.i.d) random variables labelled Gn, each with a common density function, fG.
The (random) number of bites the vector has managed by age a, denoted B(a), is the same as
the number of gonotrophic cycles completed,

BðaÞ ¼ max n :
Xn
k¼1

Gk � a

( )
: ð16Þ

Processes such as this that count the number of i.i.d. waiting periods completed up to a given
time are known as renewal processes, and their probabilistic properties have been extensively
analysed [15]. For vectors dying at constant rate μ, the chance of surviving each gonotrophic
cycle is independent of the number of cycles survived in the past. Eq (14) gives the probability
of a vector surviving its EIP, by exactly the same argument the vector survives each gono-
trophic cycle with probability ϕG(μ) up until its death therefore the lifetime number of bites by
a vector is distributed geometric, with mean ϕG(μ)(1 − ϕG(μ))

−1.
The Poisson process, which is associated with constant rates and hence ODE models, is an

important special case of a renewal process. The implicit assumption that the average biting
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rate per vector is some fixed rate α, independent of the age and time since last bite of the vector,
is equivalent to assuming that each gonotrophic cycle is exponentially distribution with average
duration E½G� ¼ 1=a. However, we do not need to restrict our attention to this special case.
Over a long life duration the elementary renewal theorem [15] gives that the expected bites per
unit time will converge on the inverse of the average duration α,

lim
a!1

E½BðaÞ�
a

¼ a: ð17Þ

Eq (17) potentially explains why it is uncommon in the mathematical epidemiology literature
to model epidemic contact processes as general renewal processes, as opposed to Poisson pro-
cesses, since if the life time of an individual is long compared to its inter-contact periods a Pois-
son process is a reasonable approximation. However, for short lived vectors this is not true; the
average biting rate per vector will crucially depend upon the age distribution amongst the
population.

We can now write the average biting rate, denoted α(a), for vectors at age a in terms of
probability densities:

aðaÞ ¼
X
n�1

f 	nG ðaÞ: ð18Þ

Where f 	nG is the density function for the sum of gonotrophic cycles
Pn

k¼1 Gk (see supporting
information S1 Text). The equilibrium population average biting rate per vector is therefore,

ME½aðAÞ� ¼ Mm
Z 1

0

expf�magaðaÞ da

¼ Mm
X
n�1

½�GðmÞ�n

¼ Mm
�GðmÞ

1� �GðmÞ
:

ð19Þ

Here we have used standard results on the MGF of sums of independent random variables and
geometric sums. The equilibrium biting rate E½aðAÞ� differs from the long term biting rate α
because of the non-exponentially distributed gonotrophic cycles and the typically short lives of
the vector, such that many vectors may die before they seek their first blood meal (Fig 2). Note
that Eq (19) implies that in the long life limit E½aðAÞ� ! a irrespective of the gonotrophic
cycle distribution, and hence results are independent of the assumed distribution.

Vectors that become inoculated via a bloodmeal from an infectious host have bitten at least
once, therefore the population equilibrium biting rate is not appropriate to model their subse-
quent biting process. The expected number of future bites by an inoculated vector after its EIP,
denoted BI, can be calculated directly as,

E½#bites after EIP by inoculated vector� ¼ BI ¼
Z 1

0

PðL > tÞPðE � tÞaðtÞ dt: ð20Þ

That is the expected infectious bites from an inoculated vector are due to the aggregate of the
biting rate at all times t after the inoculating bite, weighted by both the probability that the vec-
tor is still alive at that time and has completed its EIP (Fig 3). Eq (20) is numerically solvable
using that α(•) is the rate of change of the solution to the renewal equation with waiting time
distribution G (see supporting information S1 Text). Probabilistically, the exact value for BI is
difficult to compute because the probability of the vector surviving from the end of its EIP until
its next bite depends upon the distribution of E in a complex fashion. However, it is clear that
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only the small proportion of vectors that are by chance comparatively long-lived contribute to
BI when the EIP is typically longer than life expectancy. Therefore it can be argued that the
asymptotic biting rate α (eq 17) is appropriate for such vectors conditional on having survived
their EIP, i.e.

BI � PE

a
m
¼ �EðmÞ

a
m
: ð21Þ

Eq (21) is exact when the gonotrophic cycle durations are exponentially distributed. In the sup-
porting information we make the argument for Eq (21) as a general approximation to Eq (20)
more rigorous by considering the long-time distribution of remaining time after the EIP until
next bite. We also consider the special case of each gonotrophic cycle being of fixed, rather
than random, duration (S1 Text).

Results
We are now in a position to consider the numerical values associated with the quantities for-
mulated above, and consider how they are influenced by the assumed distributions for the
length of the gonotrophic cycle and the extinsic incubation period. In particular, we consider
the value of the generalised reproductive ratio (Rg

0) using parameters suitable for bluetongue
virus spreading between cattle via Culicoides genus biting midges. Due to the relative ease by
which it can be colonised in a laboratory C. sonorensis has become an ideal biological model
species for VBDs spread by midges. There exist laboratory and field studies on its mean gono-
trophic cycle duration [22, 24], mortality rate [12, 13] and a distributional fit for the EIP of
BTV within the midge host [19]. Each of these quantities are sensitive to temperature, so
throughout we use the values associated with vector activity at 20°C as illustrative of the theory
developed above. See table 1 for a summary of values and functions.

In general estimating the reproductive ratio for vector-borne diseases directly from entomo-
logical parameters has been problematical, and such estimates often differ strongly from

Fig 2. The effect of dispersion on the important epidemiological quantities in VBDs. The equilibrium average biting rate per midge (left), the probability
of an inoculated midge surviving its EIP (right) for Culicoides genus midges. The mortality rate is μ = 0.22 per day (Culicoides genus midge mortality rate at
20°C [13]), the asymptotic biting rate α = 0.18 per day (Culicoides genus midge inverse mean gonotrophic cycle duration at 20°C [22]), mean EIP σ−1 = 8.4
days (the posterior median for Culicoides genus midge mean EIP duration [19]). The red dots indicate the results derived from the classical Ross-Macdonald
assumptions, other colour dots represent EIP dispersion estimates in the literature: BTV-1 spread by C. bolitinosmidges [19] and Trypanosoma brucei brucei
spread by tsetse flies [23]. Each quantity is found to be increasing with increasing dispersion.

doi:10.1371/journal.pcbi.1004837.g002
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estimates derived from analysing equilibrium inoculation rates (c.f. [25]). In particular, the vec-
tor to host ratioM is in practise very difficult to estimate. To avoid these issues we present our
results in terms of a relative reproductive ratio (Rrel), which is the ratio between the generalised
reproductive number, Rg

0, and the classical reproductive number, Rc
0, given by Eq (1), as this

Fig 3. Relative reproductive ratio and expected biting from infected vectors. The generalised
reproductive ratio for bluetongue virus relative to its classical estimate ðRg

0=Rc
0Þ for a range of dispersions (dG,

dE) (top left) and the relative error of the analytic approximation ð~Rg
0=R

g
0 ) (top right) calculated using the same

parameters as in Fig 2 (i.e. for midge life histories assuming a constant 20°C temperature). The lower
parameter sets (middle/bottom, left and right) give illustrations of the expected life histories of inoculated
midges at indicated dispersion parameters. The grey filled curve gives the expected biting rate of midges at
each time after the inoculating bite conditional on their survival; the total grey area up to that time is the
expected number of bites by the surviving midge. The expected number of actively infectious bites per
inoculated midge (BI) is calculated by integrating over the biting rate re-weighted at each time by the survival
probability PðL > tÞ (blue curve; right hand axis) and the incubation probability PðE � tÞ (upper bars; green
indicating a low probability and red indicating a high probability). The biting rate predicted by modelling bites
as a Poisson process (dG = 1) is shown (red curve). Low dispersion in gonotrophic cycles (parameter sets A,
C) predicts that inoculated midge biting is expected to peak around multiples of the average gonotrophic
cycle length (α−1 = 5.5 days) whereas higher dispersion (parameter sets B,D) predicts rapid convergence to
the Poisson process biting rate. Low dispersion in EIP predicts a sharp transition at which virtually all
inoculated midges will become infectious (parameter sets C,D). In general, higher dispersion favours
transmission however the details can be important. The approximation ~Rg

0 is accurate for all values of dE only
when dG > 0.5, otherwise ~Rg

0 can be either an underestimate or overestimate of Rg
0 .

doi:10.1371/journal.pcbi.1004837.g003
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relative quantity depends only on μ and the distributions of G and E,

Rrel ¼
Rg
0

Rc
0

¼ m2�GðmÞBI

ð1� �GðmÞÞa2 exp ð�m=sÞ : ð22Þ

We note that the classical Rc
0 is an estimate derived by assuming constant biting rates per

midge and fixed EIP durations, for example [26]. An additional benefit of considering Rrel is
that additional factors such as the contribution due to heterogeneous biting (c.f. [27]) are can-
celled out. Determining the distribution of a random period is notoriously difficult so it is con-
venient to re-express the generalised reproductive ratio in terms of moments of G and E, and
in particular focus on dispersion as a simple measure.

Dispersion and R0 for VBDs spread by midges
Using a gamma distribution to interpolate between exponentially distributed (when the
gamma shape parameter is 1) and constant periods (when the gamma shape parameter
diverges to infinity with fixed gamma mean) is a common modelling choice due to its compar-
ative simplicity and flexibility with a pedigree in epidemic modelling [28]. The dispersion of a
gamma distributed random variable X, dX, is defined as,

dX ¼ VARðXÞ
E½X�2 : ð23Þ

The dispersion of the random period X interpolates between fixed (dX = 0) and exponential (dX
= 1), it is also possible for a duration to be over-dispersed (dX > 1) but we restrict attention to
under-dispersal in this work. The dispersion is also usefully incorporated into the MGF of a
gamma distributed random variable X:

�XðmÞ ¼ ð1þ mE½X�dXÞ�1=dX : ð24Þ
Modelling E and G as gamma distributed with dispersions, dE and dG respectively allows us to

Table 1. Parameters and functions for generalised VBDmodel.

Description Symbol Estimate or
range

Comments

MGF of random variable X ϕX(θ) - �XðyÞ ¼ E½expf�yXg�
Mean biting rate at age/time since

inoculating bite a
α(a) - a is used for age since emergence (biting from susceptible vectors), t is used for time

since inoculating bite (biting from infectious vectors)

Asymptotic biting rate α 0.18 per day Culicoides genus biting midges at 20°C temperature [22, 24]

Vector per capita mortality rate μ 0.22 per day Culicoides genus biting midges at 20°C temperature [13]

Incubation rate of pathogen σ 0.12 per day Culicoides genus biting midges at 20°C temperature [19]

Age of vector chosen at random
from population

A 0–1 Density function
fA(a) = μ exp{−μa}

Random life span of a vector L 0–1 Density function
fL(l) = μ exp{−μl}

Random duration of gonotrophic
cycle

G 0–1 Density function fG, G is gamma distributed with mean 1/α and dispersion dG.

Random duration of EIP E 0–1 Density function fE, E is gamma distributed with mean 1/σ and dispersion dE.

Dispersion of gonotrophic cycle dG 0–1 dG ¼ VARðGÞ=E½G�2
Dispersion of EIP dE 0–1 dE ¼ VARðEÞ=E½E�2

doi:10.1371/journal.pcbi.1004837.t001
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calculate the population average biting rate per host and probability of surviving its EIP as

ME½aðAÞ� ¼ Mm 1þ mdG
a

� �1=dG

� 1

 !�1

; ð25Þ

and

PE ¼ 1þ mdE
s

� ��1=dE

ð26Þ

respectively. The mortality rate, mean gonotrophic cycle duration and mean EIP duration for
BTV are all strongly temperature dependent for C. sonorensis with the reproductive ratio being
maximal at around 20–25°C [9]. At 20°C, using realistic parameters, only a minority of midges
are expected to survive the average EIP duration of BTV; the chance long-lived tail of the
midge population are the sole contributors to the outbreak. However, the actual survival proba-
bility for the EIP varies from the 15.6% survival (dE = 0; the classical assumption that all EIP
durations are identical) to 35.0% survival (when dE = 1). The population averaged biting rate
per midge is similarly sensitive, and varies from 0.18 bites per midge per day (dG = 1; the classi-
cal assumption that the gonotrophic cycle is exponentially distributed) to 0.09 bites per midge
per day (dG = 0) (Fig 2).

Turning our attention to the relative reproductive ratio (Rrel), and using the numerically
exact form of BI (eq (20) and Fig 3), we find that this increases with increasing dispersion of
either distribution. As such, the reproductive ratio is maximised by both distributions being
exponential (Rrel = 2.24) and is lowest when both are fixed (Rrel = 0.50) (Fig 3). The classical Rc

0

for BTV can therefore be either a significant overestimate or a significant underestimate com-
pared to the true prediction that accounts for dispersion.

The approximate ~Rg
0 is exact when the midges are expected to bite according to a Poisson

process (dG = 1). Whenever the gonotrophic cycle duration has high dispersal (dG > 0.5) the
approximate reproductive ratio is a good estimate across the entire EIP dispersion range (Fig

3). However ~Rg
0 can be both an underestimate or an overestimate of Rg

0 when dG< 0.5 depend-
ing on an complex interplay between the distributions of E and G. In particular, when the EIP
duration is nearly exponential (dE �1) and the gonotrophic cycle is under-dispersed (dG <

0.5), with the worst relative error being ~Rg
0=R

g
0 ¼ 1:21 when (dE = 1, dG = 0). This can be under-

stood through the failure of the assumption that only chance long-lived midges with biting
rates well approximated by the asymptotic rate α survive their EIP.

Controlling VBDs spread by midges
The most important feature of the reproductive ratio as a measure of transmission intensity is
that it yields a threshold quantity for disease persistence, and hence provides a quantitative
insight into control. If an agency tasked with disease control can cause the reproductive ratio to
fall below unity for an extended period of time then eradication can be achieved locally. One
method for reducing the reproductive ratio is by vaccinating the host population; in the case of
BTV there was a mass vaccination of northern European cattle during 2008 which was ulti-
mately effective at eliminating BTV incidence in northern Europe. However, a vaccine for a
novel or unexpected strain might not be immediately available, as occurred in northern Europe
in 2006 which was invaded by BTV-8 serotype rather than the BTV-2 or BTV-4 serotypes which
circulate in southern Europe [17], in which case other control measures need to be considered.

Reducing the midge population by using insecticides would seem to be an obvious solution,
if this could be done whilst respecting standards of user and environmental safety. Wide-
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spread application of insecticide around a farm has not been recorded as successfully causing
significant local midge population reduction [29], but it has been suggested that targeting
spraying of an insecticide with long residual life in proximity to cattle might be more successful
[30]. To model the effect of such insecticide spraying proximate to cattle we assume that the
midge mortality is increased by an excess mortality μe but the overall midge to host ratio (M)
remains unchanged, due to the inability to target the entire midge population. If we make the
classical assumptions (dE = 0, dG = 1), then the critical excess mortality (m	

c ) required to achieve
eradication can be determined as the solution to:

MVa2

gðmþ m	
c Þ

� �
exp ð�ðmþ m	

c Þ=sÞ ¼ 1: ð27Þ

This is derived from eq (1), by including the excess mortality and insisting that the resultant
reproductive ratio is one.

For disease control using vaccination there is a simple relationship between the critical vac-
cination coverage of hosts and the reproductive ratio; such that the critical vaccination cover-
age amongst hosts implied by a classical estimate Rc

0 is 1� 1=Rc
0. For eradication via increasing

midge mortality the relationship between the critical excess mortality and the reproductive
ratio estimate Rc

0 derived using the classical assumptions (e.g. [26]) solves,

m
mþ m	

c

exp f�m	
c=sg ¼ 1

Rc
0

: ð28Þ

Note that m	
c depends on the reproductive ratio estimate Rc

0, the midge mortality rate μ and the
incubation rate σ in contrast to the critical vaccination coverage of hosts which depends only
on Rc

0. A natural consideration is the effect that generalising the distribution of the EIP and the
gonotrophic cycle durations has upon the predicted critical excess mortality or critical vaccina-
tion coverage needed for eradication.

We begin by considering excess mortality and assume that we have access to a classical esti-
mate of the pre-control reproductive ratio Rc

0. In the generalised setting, the midge population
biting rate depends on the precise nature of the excess mortality so we consider two separate
scenarios:

• Scenario 1: The insecticidal spray increases the mortality rate of midges that have successfully
fed on cattle, which are assumed to remain nearby these hosts, and it also reduces biting
from the susceptible midge population by increasing their per capita mortality. This implies
that the critical excess mortality (m	e) is the solution to:

ðmþ m	
eÞ�Gðmþ m	

eÞ
að1� �Gðmþ m	

eÞÞ
� mBIðmþ m	

eÞ
a exp ð�m=sÞÞ ¼

1

Rc
0

: ð29Þ

• Scenario 2: The insecticidal spray increases the mortality rate of midges that have successfully
fed on cattle, which remain nearby these hosts, but it does not reduce biting from the suscep-
tible midge population which have yet to be affected by the insecticide. This implies that the
critical excess mortality (m	e) solves the following equation:

m�GðmÞ
að1� �GðmÞÞ

� mBIðmþ m	
eÞ

a exp ð�m=sÞÞ ¼
1

Rc
0

: ð30Þ
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Where BIðmþ m	
eÞ is the expected number of bites after its EIP by a midge undergoing excess

mortality m	
e . It should be noted that Eqs (29) and (30) are defined in terms of an estimate of the

reproductive ratio based on classical assumptions, which can be related to a generalised reproduc-
tive ratio via Eq (22). For either control scenario calculating an approximate critical excess mortal-
ity (~m	

e ) by using the approximate expression for BI Eq (21) is significantly easier numerically. The
quality of the analytic approximation to the critical excess mortality has similar dependency on

the dispersion parameters as the approximate reproductive ratio ~Rg
0: the approximation is broadly

good when dE< 0.5 or when the gonotrophic cycle is more dispersed than the EIP (S1 Fig).
The classical formulation of the reproductive ratio Eq (1) suggests that increasing the mortal-

ity rate of vectors could be an effective control strategy since Rc
0 decreases faster than exponen-

tially with increasing μ. In the generalised setting this is not necessarily true; the sensitivity of Rg
0

to μ can be sub-exponential, implying that increasing vector mortality is less effective at reducing
the proportion of inoculated vectors expected to survive their EIP than the classical prediction
would predict. On the other hand, in the generalised setting the mean vector population biting
rate can decrease with increasing μ; an effect that reduces transmission and which is absent from
the classical Ross-Macdonald model. In fact, the generalised critical value, m	

e , can be either
greater or less than the value implied by the classical assumptions (m	

c ) derived from solving Eq
(28), with the relative critical excess mortality (m	

rel ¼ m	
e=m

	
c ) increasing for both increasing dG

and dE (Fig 4). Unsurprisingly, the parameter region where control using spraying is expected to
be harder than the classical prediction (i.e. m	

rel > 1Þ is larger for scenario 2, which is more pessi-
mistic about the efficacy of insecticidal spraying than scenario 1 (Fig 4). Because the critical vacci-
nation coverage can be expressed as depending only on the reproductive ratio, the curve Rrel = 1
separates the region where it is more difficult from the region where it is less difficult to eradicate
using host vaccination than the classical prediction. However, the Rrel = 1 curve is not identical to
the curve defined by m	

rel ¼ 1 (Fig 4). This has an important consequence, even if Rg
0 ¼ Rc

0 (i.e. the
critical host vaccination coverage is the same even when accounting for the distributions) then
the critical amount of excess mortality that insecticide based control must achieve in order to
eradicate may be different depending on the distributions. In fact, for culicoides biting midges the
amount of necessary insecticide control predicted using classical assumptions is an underestimate
everywhere along the Rrel = 1 level curve for scenario 1, and the underestimation is even more
dramatic for scenario 2. In fact, whenever the generalised reproductive ratio and the classical
reproductive ratio coincide, the classical model is always overly optimistic about the how little
excess mortality will be required to achieve eradication. This is true for both varying (dG, dE) for
a BTV epidemic with the classical estimate Rc

0 ¼ 2 and when fixing dE = 0.130 (the median poste-
rior estimated dispersion for the EIP of C.bolitinos infected with BTV-1 serotype [19]) allowing
ðRc

0; dGÞ to vary (Fig 4). However, it should be noted that there is an appreciable region of param-
eter space where eradication is easier to achieve than expected using classical modelling assump-
tions. If dG is sufficiently small then in most cases we predict that it could be easier to eradicate
via increasing adult vector mortality than predicted by classical modelling. Whether the findings
of this paper are optimistic or pessimistic with regard to insecticidal spray efficacy will ultimately
be resolved by more detailed data on biting vector gonotrophic cycle dispersion.

Discussion

Modelling mortality associated with vector biting and the first gonotrophic
cycle
In the model presented here we assume that vector mortality is due to a constant background
hazard rate μ and the vectors’ first gonotrophic cycle after emergence as an adult is similar to
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subsequent cycles. An alternative is to explicitly include heightened mortality risk associated
with vector activities such as host-seeking or oviposition as has been done in modelling papers
of mosquito-borne diseases (e.g. [31]). Introducing additional risk of vector mortality immedi-
ately before and after biting modifies the time-dependent biting rate α(•) by incorporating the
chance that biting leads to vector death. α(•) is the solution to a modified renewal equation and
therefore introducing this extra model component represents no extra difficulty compared to
only having background mortality (see S1 Text).

Many midge species are autogenous: their females emerge as adults ready to produce and
oviposit an initial egg batch without a bloodmeal [32]. From an midge ecology perspective this
allows the midge population to persist even when hosts are frequently absent. Therefore, from
an epidemiological perspective the waiting time until the first bite from a female autogenous

Fig 4. Critical control effort relative to classical predictions. The relative excess mortality that would be required to control BTV using insecticides
compared to its classical value m	

rel ¼ m	
e=m

	
c given Rc

0 ¼ 2 (top left). The red dot indicates the classical Ross-Macdonald prediction. The environmental
temperature is assumed to be a constant 20°C giving the same parameters as in Fig 2. The critical excess mortality required to achieve eradication using
insecticides as predicted by classical assumptions can be either an underestimate or an overestimate. Tracing the level curves from the classical value for
critical vaccination coverage (Rrel ¼ Rg

0=Rc
0 ¼ 1; red curves) and critical excess mortality (m	

rel ¼ 1; blue curves) separates the (dG, dE) plane into regions where
control is more or less difficult compared to the classical value for both cattle vaccination and insecticide spraying. Two scenarios for the efficacy of spraying
are considered: where the excess mortality reduces the population biting rate as well as reducing the life expectancy of inoculated vectors (solid blue curves)
or if it solely decreases the life expectancy of inoculated vectors (dashed blue curves). For fixed Rc

0 ¼ 2 (top right) and fixed dE = 0.130 (based on C. bolitinos
inoculated with BTV-1 serotype [19]; bottom) the level curve for Rrel = 1 is distinct from the level curve μrel = 1.

doi:10.1371/journal.pcbi.1004837.g004
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midge on a host occurs at the end of the second gonotrophic cycle. This possibility can be
included in our model since we base our analysis on renewal theory: renewal processes with an
initial waiting period that is different from subsequent waiting periods (known as delayed
renewal processes [15]) are theoretically standard (S1 Text).

We did not explore these biologically motivated modelling extensions further due to our
focus on bluetongue diseases spread by Culicoides genus biting midges; current best estimates
of midge mortality in the wild are based on estimates of the proportion of parous midges in the
population [13]. This gives an estimate of the mortality rate based on the probability of surviv-
ing a gonotrophic cycle which cannot be disentangled into separate hazards. Moreover, no
autogenous midge species has been implicated in the transmission of any arbovirus, including
bluetongue [32].

Concluding remarks
The classical Ross-Macdonald theory of VBDs created a critically important scientific frame-
work with a measure of generational transmission intensity (R0) at its heart. However the spe-
cific practical insights derived from the Macdonald reproductive ratio (for example the implied
efficacy of increasing the mortality rate of adult insect vectors in reducing transmission) are
undermined by the growing realisation amongst epidemiologists of mosquito-borne diseases
that different methods for estimating R0 produce strongly differing results (cf. Smith et al for a
discussion on the problems associated with validation of the mathematical theory of mosquito-
borne pathogens [6]). The problems with theoretic cross-validation appear to have not been
explicitly stated in the literature of midge-borne pathogens but the issues are essentially similar.
In summary, it has become generally accepted in the modelling community that, whilst all
models are simplifications of reality, the classical simplifications of Ross-Macdonald theory
may produce misleading results (cf. recent reviews [5, 6]). The development of mathematical
models of VBDs that deviate from Ross-Macdonald theory has generally focused on heteroge-
neity in transmission, whether due to heterogenous distribution of vectors across space, for
example the recent northern European outbreak of BTV has inspired a number of explicitly
spatial models (for example [33–35]), or because of the observation that (typically) a dispro-
portionately greater number of bites will be distributed across a small number of vertebrates
(as discussed in [26]). It seems that questions about the role of chance in generating variation
in life histories between vectors, even if they are otherwise identical from a modelling perspec-
tive, has been largely overlooked despite being in principle empirically observable in the labora-
tory setting.

In this work, we have demonstrated that relaxing the classical assumptions on the random
distributions underlying the calculation of a reproductive ratio for a VBD can have a significant
impact on the prediction, even without additional modelling of heterogeneous biting or spatial
vector distribution. The impact of the precise distribution of life history events is accentuated
for short-lived vectors; thus the economically important vector-disease complex of BTV spread
by, the typically short-lived, culicoides genus biting midges is an ideal case study for our theory.
Our main results are presented in terms of moment generating functions of fairly arbitrary
period distributions, so that any reasonable distribution can be used for modelling aspects of
the vector life histories. However, our illustrative examples are calculated for the gamma distri-
bution, a natural choice since it interpolates between the constant duration and the exponen-
tially distributed duration. Gamma distributions have been used extensively to model the
durations of latency (EIP) and viraemia, most commonly as a discrete sum of exponential dis-
tributions (a special case of the gamma distribution called the Erlang distribution), in both the
vector-borne disease literature [9] and the directly transmitted disease literature [28]. However,
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the timing of epidemiological relevant contacts, (e.g. successful bites) are overwhelmingly mod-
elled as a Poisson process throughout the mathematical modelling literature. We show that the
generalisation of the contact model from a Poisson process to a renewal process, in conjunction
with the typically short lives of the vector and a general EIP duration, has significant effects on
the basic predictions of an otherwise standard VBD model.

The more general modelling of the vector’s biting process as a renewal process, and the EIP
duration as non-constant, predicts that the classical reproductive ratio can be either a signifi-
cant overestimate or underestimate compared to the generalised prediction. Moreover, the gen-
eralised modelling approach cannot be disentangled from considerations of the age
distribution of the vector population. However, by assuming that the population is at equilib-
rium and making theoretically well-motivated approximations (as well as assuming constant
mortality rates) we are still able to present the dependence of R0 on the entomological situation
in an explicit manner. For the motivating case of midges spreading BTV, the reproductive ratio
is increasing with increasing variation in either the latency (EIP) duration or the time between
bites (gonotrophic cycle). This can be understood by considering two consequences of the
short life-span of the ‘typical’midge: firstly, a significant proportion of midges can die whilst
their expected biting rate is low (due to relaxing the Poisson biting process assumption) and
secondly, that the ‘typical’midge inoculated with BTV will not survive her EIP (which can
depend sensitively on the EIP distribution). Only the ‘tail’ of the inoculated midge population
actively contribute to BTV incidence amongst hosts, and therefore random variation between
vector life history events becomes a crucial factor. In particular, the potential importance of the
precise details about the distribution of the gonotrophic cycle duration seems to be under-rec-
ognised in both the theoretical and entomological literature. These findings echo results from
at least one other model which generalises the vector biting process [36] and suggests that
greater effort must be devoted to understanding and quantifying the detailed vector biology
both at the individual and population levels in order to accurately parametrise these kinds of
models.

The popularity of R0 as a metric of transmission intensity is in a large part due to its uncom-
plicated relationship with disease eradication: if R0 can be reduced below unity for a sufficient
period of time then the disease must be eradicated. The generalised prediction of R0 presented
in this work therefore leads to a reassessment of the efficacy of standard control measures such
as the mass vaccination of hosts or the insecticidal spraying against adult vectors. The predicted
critical vaccination coverage amongst hosts can still be expressed as only depending on the esti-
mate of the reproductive ratio in the standard fashion, however the critical excess mortality
amongst vectors that must be achieved depends on both the estimate of the reproductive ratio
and other entomological/epidemiological factors such as basic vector mortality rate and the
incubation rate for the pathogen even when making the classical Ross-Macdonald assumptions
about the VBD. Predicting the critical excess mortality in the more general setting is further
complicated by the necessity to consider the effect that excess mortality has on the age distribu-
tion of the vector population. Trials of the ability of insecticidal spraying aimed at adult midges
to reduce the local midge population have been pessimistic, leading to speculation that much
more must be known about the resting places of adult midges in order to design better spraying
protocols [29]. We would add to this discussion further speculation upon which part of the
midge population is affected by the additional environmental hazard of a persistent insecticide.
Does insecticidal spraying reduce biting from the susceptible mass of the vector population due
to shifting their age profile (our scenario 1), or not (our scenario 2)? In either scenario we find
that even when the reproductive value predicted by the generalised model agrees with its classi-
cal counterpart then the classical model still under-estimates how much excess mortality must
be achieved in order to eradicate. None of the arguments above should be read as implying that
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insecticidal spraying should not be used as a control measure against a vector-borne disease in
any circumstance. It might well be the case that a vaccine for hosts might be unavailable or pro-
hibitively expensive whereas a suitable, and safe, insecticide might be readily available and
cheap.

An intriguing possibility is to target the older vectors that make up the tail of the age profile
using late life acting insecticides (LLAIs). This has been suggested for controlling malaria so
that evolutionary pressure on the mosquito population to develop insecticidal resistance is
sharply diminished [37]. Modelling the EIP as random rather than fixed always favours vector
survival of EIP [eq 15]. This implies that more ‘young’ inoculated vectors will be actively infec-
tious than expected by a model with a fixed EIP; a pessimistic finding with respect to the effi-
cacy of LLAIs whether the LLAI is effective after a delay since exposure or simply preferentially
affects older vectors. An advantage of the modelling approach taken in this work is that the
action of the LLAI can be explicitly age-dependent or dependent upon real time since exposure.
In Read et al [37] the action of the LLAI on the vector is modelled as occurring after a number
of vector gonotrophic cycles. However, the age of a vector after a number of gonotrophic cycles
is uncertain due to variation in the cycle duration. Therefore, experimental data on age-depen-
dent (or time delayed) LLAI efficacy might be difficult to interpret in the context of a model
which focuses only on the number gonotrophic cycles a vector survives. Our modelling
approach doesn’t suffer from this problem and experimental data on LLAIs could be integrated
into our model directly. This would certainly be an interesting direction for future research.

Mathematical models are now commonly used to underpin policy decisions concerning dis-
ease control in both developed and low- and middle-income countries. We have used BTV
which affects livestock spread by Culicoides genus midges as a motivating example. However,
the methodology could equally apply to Leishmania in humans spread by sandflies, which have
similar entomological characteristics to midges. Similarly, while mosquitoes do not necessarily
match all assumptions within our model, mosquito-borne diseases could be accommodated
with only a slight increase in model complexity. Our work has highlighted the sensitivity of
model predictions to entomological and epidemiological details. This points to further avenues
of applied experimental or observational research: 1) the acquisition of more detailed knowl-
edge concerning the life cycles of potential vectors, in particular going beyond the measure-
ment of simple averages to include variability; 2) studies of the life expectancy and age profiles
of vector populations in the wild; 3) a more comprehensive investigations of the response of
vector populations to insecticide-based control measures. Developing highly informative pol-
icy-relevant prediction for the future control of vector-borne diseases is likely to therefore
require a combination of state-of-the-art models, with meticulous quantitative studies of the
insect vector.

Supporting Information
S1 Text. Mathematical details on the biting renewal process and the expected number of
potentially infectious bites by a vector after its inoculating bite. This gives further results on
renewal processes as well as further discussion on the approximate form for the expected num-
ber of infectious bites per inoculated vector (BI). Also included is a numerical scheme for com-
puting BI directly for both when the inter-bite durations are random and fixed.
(PDF)

S1 Fig. Relative error of the generalised critical excess mortality to its analytic approxima-
tion. The classical reproductive ratio estimate given is Rc

0 ¼ 2. For a large portion of parameter
space the critical excess mortality relative to its analytic approximation is reasonably accurate

(m	
e=~m

	
e � 1). As with the approximation ~Rg

0 , when the EIP distribution is nearly exponential
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and more dispersed than the gonotrophic cycle the analytic approximation is less successful due
to the failure of the assumption that the expected biting rate of vectors which survive their EIP
is well represented by their limiting rate α. Also, there is a small region around dE = 0, dG = 0

where m	
e ¼ 0 and ~m	

e 
 Oð10�3Þ.
(EPS)
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