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Abstract: The lymphatic system is pivotal for immunosurveillance and the maintenance of tissue
homeostasis. Lymphangiogenesis, the formation of new lymphatic vessels from pre-existing vessels,
has both physiological and pathological roles. Recent advances in the molecular mechanisms regulat-
ing lymphangiogenesis have opened a new area of research on reparative lymphangiogenesis for
the treatment of various pathological disorders comprising neurological disorders, cardiac repair,
autoimmune disease, obesity, atherosclerosis, etc. Reactive oxygen species (ROS) produced by the
various cell types serve as signaling molecules in several cellular mechanisms and regulate various
aspects of growth-factor-mediated responses, including lymphangiogenesis. The ROS, including
superoxide anion, hydrogen peroxide, and nitric oxide, play both beneficial and detrimental roles
depending upon their levels and cellular microenvironment. Low ROS levels are essential for lym-
phangiogenesis. On the contrary, oxidative stress due to enhanced ROS generation and/or reduced
levels of antioxidants suppresses lymphangiogenesis via promoting lymphatic endothelial cell apop-
tosis and death. In this review article, we provide an overview of types and sources of ROS, discuss
the role of ROS in governing lymphangiogenesis and lymphatic function, and summarize the role of
lymphatics in various diseases.

Keywords: lymphatic vessels; lymphangiogenesis; reactive oxygen species; superoxide anion;
hydrogen peroxide; nitric oxide

1. Introduction

The lymphatic system, constituted by a network of lymphatic vessels (LVs), lymph
nodes (LNs), and lymphoid organs, runs parallel to the blood vascular system. Both lym-
phatic and blood circulatory systems work in synchrony to maintain tissue homeostasis.
The blood vascular system supplies nutrients, oxygen, and hormones to various body or-
gans. In contrast, the lymphatic system plays an important role in transporting extravasated
interstitial fluid, immune cells, inflammatory cytokines, antigens, and lipoproteins from
the peripheral tissue to the draining LNs and back to the systemic venous circulation. Thus,
the lymphatic system is pivotal for the maintenance of interstitial fluid homeostasis, host
defense, adaptive immunity, and regulation of inflammatory responses [1–3]. The LVs
are present throughout the human body with the exception of bone marrow and tissues,
such as the epidermis, where blood vessels are also absent. These vessels are categorized
in a hierarchical network of vessels, including capillaries, pre-collecting, and collecting
lymphatics, based on their specific functions and morphological features [4,5]. Lymph
flows through the lymphatic network in a unidirectional manner and at low pressure. The
lymph flow rate is influenced by various extrinsic and intrinsic forces. Dysfunctional lym-
phatic vessels are responsible for several pathological conditions, including inherited and
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acquired lymphedema, malabsorption syndromes, autoimmune disease, atherosclerosis,
neurological disorders, and immune deficiency [6–8].

The LVs are lined by a single layer of lymphatic endothelial cells (LECs), which pos-
sess specific markers and regulatory molecules, including Prospero homeobox 1 (Prox1),
podoplanin, vascular endothelial growth factor receptor 3 (VEGFR3), and lymphatic vessel
endothelial hyaluronan receptor 1 (LYVE-1) [9–13]. Like angiogenesis, lymphangiogen-
esis is the formation of new lymphatic vessels from pre-existing lymphatics. It results
from a complex series of cellular events, including proliferation, sprouting, migration, and
formation of vessel-like structures by LEC. Unlike developmental lymphangiogenesis, lym-
phangiogenesis in adults is dysregulated and less coordinated and occurs in pathological
conditions such as inflammation, wound healing, and tumor growth [14–16]. These patholo-
gies are often characterized by an accumulation of inflammatory cells and tissue edema,
which necessitate lymphangiogenesis and LV remodeling for the removal of immune cells,
cytokines, and tissue fluid [15,16]. Due to the various functions of LVs, lymphangiogenesis
is regulated by multiple signaling pathways, as reviewed earlier [17,18].

Reactive oxygen species (ROS) such as superoxide anion, hydrogen peroxide, and
nitric oxide are known to play both physiological and pathophysiological roles. Low levels
of ROS are required to mediate LEC proliferation and migration, contributing to lymphan-
giogenesis. Increased generation of ROS by LEC leads to oxidative stress and inhibits LEC
proliferation, migration, and tube formation via inducing apoptosis and cell death [19–21].
Based on these and the literature review, in this review article, we provide an overview of
types and sources of ROS, discuss the role of ROS in governing lymphangiogenesis and
lymphatic function in various pathological conditions, and summarize the role of LVs in
various diseases.

2. Reactive Oxygen Species and Free Radicals

Reactive molecules and free radicals derived from molecular oxygen are called ROS.
Free radicals are molecular species capable of independent existence that contain one or
more unpaired electrons and include nitric oxide (NO•), superoxide anion (O2

•−), hydroxyl
radical (•OH), and lipid peroxyl radical (LOO•). Examples of non-radical derivatives of
molecular oxygen are peroxynitrite (ONOO−), hydrogen peroxide (H2O2), hypochlorous
acid (HOCl), and ozone (O3). ROS are synthesized as necessary intermediates in a broad
range of biochemical processes and function as second messengers in physiological signal-
ing mechanisms, contributing to the maintenance of tissue homeostasis [22]. In contrast,
under pathophysiological conditions, overproduction of ROS and/or diminished antiox-
idant systems (also known as oxidative stress) may induce oxidative damage to DNA,
protein, and lipid molecules. Oxidative-stress-induced alterations from physiological to
pathophysiological signal transduction pathways and subsequent cellular damage play a
critical role in the initiation, development, and progression of several diseases, including
cardiovascular, inflammatory, neurologic, cancer, diabetes, and aging [19,23–25]. In this
section, we briefly describe the chemistry and biochemistry of ROS and free radicals.

2.1. Nitric Oxide (NO•)

NO• plays a role in several biological processes and has vasodilatory, anti-inflammatory,
and anti-thrombotic activities. It is produced by endothelial nitric oxide synthase (eNOS),
neuronal NOS (nNOS), and inducible NOS (iNOS) [22]. These isoforms catalyze the forma-
tion of L-citrulline from L-arginine, and NO• is produced as a byproduct of the reaction.
NOS-mediated NO• production is dependent on the availability of oxygen, so in case of
limited oxygen supply, the nitrate–nitrite–NO pathway acts as a backup system to main-
tain sufficient NO• production [26]. Nitrate is first reduced by gastrointestinal and oral
commensal bacteria to nitrite, which is further reduced to NO• by various pathways, as
mentioned in Table 1. The formation of the iron–nitrosyl complex by the interaction of NO•

to Fe2+ heme protein activates soluble guanylyl cyclase (sGC), which synthesizes second
messenger cyclic guanosine monophosphate (cGMP). This sGC-cGMP signaling plays an
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important role in vasodilation, nerve signaling, mitochondrial biogenesis, angiogenesis,
and lymphangiogenesis [27,28]. NO• is also responsible for decreased production of O2

•−

from complex I and III of the electron transport chain, mitochondrial cytochrome c release,
and apoptosis [29,30]. Furthermore, NO• is responsible for limiting calcium availability in
vascular smooth muscle cells due to ATP-dependent potassium channel opening, which
prevents myosin light chain 2 (MLC2) phosphorylation and inhibits vasoconstriction [31].
The equilibrium between NO• and O2

•− production is regulated by the availability of
tetrahydrobiopterin (BH4, a cofactor required for NOS activity). The outcomes of reduced
availability of BH4 relative to its oxidized form, dihydrobiopterin (BH2), involve increased
O2
•− release and decreased NO• production [32]. This situation is called eNOS uncou-

pling, which can be culpable for more superoxide production by the activation of oxidase
enzymes, particularly NADPH oxidases (NOXs) and xanthine oxidase (XO); and progres-
sive reduction in NO• bioavailability [33]. Moreover, the interaction between NO• and
O2
•− forms ONOO−, a strong oxidant that can oxidize BH4 and leads to enhanced eNOS

uncoupling.

2.2. Superoxide Anion (O2
•−)

O2
•− is the precursor of most ROS and is rapidly dismuted to H2O2 spontaneously

or via the reaction catalyzed by superoxide dismutase (SOD). The rate of spontaneous
dismutation of O2

•− is very low compared to enzymatic dismutation (8 × 104 M−1 s−1

versus 2 × 109 M−1 s−1) [34]. Enzymes involved in the biological production of O2
•−

include NOX isoforms, XO, uncoupled eNOS, and lipoxygenase. Phagocytes involving
myeloid cells-neutrophils, macrophages, and monocytes, kill invading pathogens via
producing a large amount of O2

•−, also called a respiratory burst. It is also formed due to
the leakage of one electron from the mitochondrial electron transport chain to molecular
oxygen [35]. It has been reported that approximately 1–3% of electrons leak to produce
superoxide anions during the mitochondrial transport chain [36].

2.3. Hydrogen Peroxide (H2O2)

H2O2, a highly stable and cell-permeable molecule, is generated because of O2
•−

dismution catalyzed by SOD. It acts as a signaling molecule in cellular signal transduction
pathways [37]. In addition, XO and Nox4 are direct sources of H2O2 [37,38]. It plays
a role in various physiological activities involving cell differentiation, proliferation, and
migration [22,39]. Due to its cell-permeable nature, it can act in a paracrine manner between
various cell types to regulate cellular signaling.

2.4. Peroxynitrite (ONOO−)

It is formed because of the interaction of NO• with O2
•− and can lead to increased

NOS uncoupling in the endothelium. It is highly toxic and acts as a substrate for the
formation of super active nitroso peroxo carboxylate (ONOOCO2

−) or peroxynitrous
acid (ONOOH) [40]. It is capable of altering the oxidative state of lipids, DNA, and
tyrosine and methionine residues in proteins [41]. Peroxynitrite stimulates the nitration of
tyrosine residues present in proteins, for instance, SOD, by reaction mediated by transition
metals. [42]. Further, peroxynitrite in phagocytic cells acts as a cytotoxic effector molecule
against invading pathogens, including bacteria and parasites [43–45].
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Table 1. Types and generation of reactive oxygen species.

Name of Molecule Half-Life of Molecule Generation of Molecule

Nitric oxide (NO•) 10−5 to 10−3 s

Nitric oxide synthase
L-arginine + O2 + NADPH→ L-citrulline + NO• +
NADP+

Reduction of nitrite
Deoxyhaemoglobin/myoglobin
NO2

− + Fe2+ + H+ → NO• + Fe3+ + OH−

Xanthine oxidoreductase
NO2

− + Mo4+ + H+ → NO• + Mo5+ + OH−

Protons
NO2

− + H+ → HNO2
2 HNO2 → 2 N2O3 + H2O
N2O3 → NO• + •NO2

Ascorbate
NO2

− + H+ → HNO2
2 HNO2 + Asc→ 2 NO• + dehydroAsc + 2 H2O

Polyphenols (Ph-OH)
NO2

− + H+ → HNO2
Ph-OH + HNO2 → Ph-•O + NO• + H2O

Superoxide (O2
•−) 10−11 to 10−9 s

NADPH oxidase
NADPH + 2O2 → NADP+ + 2O2

•− + 2H−

Xanthine oxidase
Hypoxanthine + H2O + 2O2 → Xanthine + 2O2

•− +
2H−

Xanthine + H2O + 2O2 → Uric acid + 2O2
•− + 2H−

Uncoupled endothelial nitric oxide synthase
NADPH + 2O2 → NADP+ + 2O2

•− + 2H−

Mitochondrial electron transport chain complexes I and III
O2 → O2

•−

Lipooxygenase
Arachidonic acid + O2 → HPETE+ O2

•−

Hydroxyl radical (•OH) 10−9 s

Fenton reaction
Fe2+ + H2O2 → Fe3+ + •OH + OH−

Haber-Weiss reaction
•O2

− + H2O2 → •OH + OH− + O2

HOONO→ •OH + NO2
•

Lipid peroxyl radical (LOO•) 7 s

L-H + •X→ L•+ XH
LOO• + L-H→ LOOH + L•

L• + O2 → LOO•

L-H: polyunsaturated fatty acid
•X: oxidizing character (i.e., •OH or O2

•−)
L•: lipid radical

Peroxynitrite (ONOO−) 10−2 s O2
•− + NO• → ONOO−

Hydrogen peroxide (H2O2) 10−8 (in presence of catalase) or 10−3 s 2O2
•− + 2H+ → H2O2 + O2

Hypochlorous acid (HOCl) <1 min Myeloperoxidase
H2O2 + Cl− → HOCl + OH−

Ozone (O3) 1 min x1O2 + yH2O

Cells 2022, 11, x FOR PEER REVIEW 4 of 20 
 

 

NADPH + 2O2 → NADP+ + 2O2•− + 2H−  
 
Mitochondrial electron transport chain complexes I and III 
O2 → O2•− 
 
Lipooxygenase 
Arachidonic acid + O2 → HPETE+ O2•− 

Hydroxyl radical (•OH) 
 10−9 s 

Fenton reaction 
Fe2+ + H2O2 → Fe3+ + •OH + OH− 

 
Haber-Weiss reaction 
•O2− + H2O2 → •OH + OH− + O2 

 
HOONO → •OH + NO2• 

Lipid peroxyl radical 
(LOO•) 
 

7 s 

L-H + •X → L•+ XH 
LOO• + L-H → LOOH + L•  
L• + O2 → LOO• 

 
L-H: polyunsaturated fatty acid 
•X: oxidizing character (i.e., •OH or O2•−) 
L•: lipid radical 

Peroxynitrite (ONOO−) 10−2 s O2•− + NO• → ONOO− 

Hydrogen peroxide (H2O2) 10−8 (in presence of catalase) or  
10−3 s 

2O2•− + 2H+ → H2O2 + O2 

Hypochlorous acid (HOCl) <1 min Myeloperoxidase 
H2O2 + Cl− → HOCl + OH− 

Ozone (O3) 1 min x1O2 + yH2O ↔ [H2O3(y−1)H2O] → H2O2 + (x−1)3O2 + 
O3 

2.2. Superoxide Anion (O2•−) 
O2•− is the precursor of most ROS and is rapidly dismuted to H2O2 spontaneously or 

via the reaction catalyzed by superoxide dismutase (SOD). The rate of spontaneous dis-
mutation of O2•− is very low compared to enzymatic dismutation (8 × 104 M−1 s−1 versus 2 
× 109 M−1 s−1) [34]. Enzymes involved in the biological production of O2•− include NOX 
isoforms, XO, uncoupled eNOS, and lipoxygenase. Phagocytes involving myeloid cells-
neutrophils, macrophages, and monocytes, kill invading pathogens via producing a large 
amount of O2•−, also called a respiratory burst. It is also formed due to the leakage of one 
electron from the mitochondrial electron transport chain to molecular oxygen [35]. It has 
been reported that approximately 1–3% of electrons leak to produce superoxide anions 
during the mitochondrial transport chain [36]. 

2.3. Hydrogen Peroxide (H2O2) 
H2O2, a highly stable and cell-permeable molecule, is generated because of O2•− dis-

mution catalyzed by SOD. It acts as a signaling molecule in cellular signal transduction 
pathways [37]. In addition, XO and Nox4 are direct sources of H2O2 [37,38]. It plays a role 
in various physiological activities involving cell differentiation, proliferation, and migra-
tion [22,39]. Due to its cell-permeable nature, it can act in a paracrine manner between 
various cell types to regulate cellular signaling. 
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2.5. Hydroxyl Radical (•OH)

The dismution of H2O2 (Fenton reaction) and peroxynitrous acid (ONOOH), which
is formed from the oxidation of ONOO−, results in the generation of •OH. Haber–Weiss
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reaction comprising spontaneous interaction of O2
•− and H2O2 is an alternate source of

hydroxyl radical production [46]. Generally, •OH does not play any role in cell signaling,
but it is an important contributor to oxidative stress [47]. Its cellular levels can be altered
by antioxidant enzymes and iron ligands.

2.6. Lipid Peroxyl Radical (LOO•)

Oxidation of unsaturated fatty acids present in cell membranes and lipoproteins leads
to the formation of a lipid alkyl radical (L•), which rapidly reacts with molecular oxygen
to form lipid peroxyl radical (LOO•). LOO• radical reacts with various proteins and
carbohydrates by lowering the activation energy even much more than enzyme-catalyzed
reactions, leading to the production of corresponding carbonyl compounds [48]. These
radicals are highly destructive to cells, and once produced, they may lead to unrelenting
lipid breakdown [49].

2.7. Hypochlorous Acid (HOCl)

It is generated in inflammatory cells such as activated neutrophils, monocytes, and
macrophages, which have myeloperoxidase (MPO) enzyme required to produce HOCl.
It is synthesized by the interaction of H2O2 with chloride ions. This HOCl has a strong
antimicrobial activity and can oxidize lipoproteins, lipids, and proteins [50,51]. HOCl can
also be responsible for the formation of monochloramines (NH2Cl), ONOO−, •OH, singlet
oxygen (O2), and O3 via interacting with NH3 and other ROS [50].

2.8. Ozone (O3)

Ozone has a powerful oxidizing property and can increase the process of leukocytosis
and phagocytosis. It is produced by electric discharge and irradiation of oxygen (air) with
short-wavelength ultraviolet radiations. It may be synthesized in vivo by an antibody-
mediated H2O oxidation pathway [52]. It can oxidize various biomolecules including lipids,
proteins, and nucleic acids [53,54].

3. Role of ROS in Regulating Lymphangiogenesis and Lymphatic Function

Excessive production of ROS, for instance, H2O2, contributes to cell death. ROS-stimulated
cell death occurs due to oxidative damage to cellular macromolecules involving proteins,
lipids, and nucleic acids, and/or induction of cell-death-signaling pathways [55,56]. Al-
ternatively, high ROS levels activate cell survival molecular-signaling cascades such as
mitogen-activated protein kinase and PI3K/Akt [57,58]. The PI3K/Akt signaling prevents
oxidative-stress-induced cell death and promotes cell survival. Furthermore, ROS have
been shown to trigger cell surface growth factor receptor-mediated cell survival signaling in
various cell types [59–62]. Thus, induction of growth factor receptor-mediated signaling in
response to ROS protects against oxidative-stress-induced cell damage. Nitric oxide derived
from eNOS in vascular endothelial cells plays an important role in stimulating angiogenesis
and maintaining vascular contractility [63,64]. Like vascular endothelial cells, LECs have
eNOS, and NO-derived from eNOS has been observed to be essential for lymphangio-
genesis [65]. Despite numerous indications of the regulation of blood vessel formation
(angiogenesis) by oxidative stress, the effects of ROS in modulating lymphangiogenesis are
understudied to date.

3.1. Nitric Oxide

Stimulation of LECs with VEGF-C, a lymphangiogenic factor, has been shown to
activate eNOS, which leads to the generation of NO and a subsequent increase in LEC
proliferation and lymphangiogenesis [66] (Figure 1). Under physiological conditions, vari-
ous immune cells, interstitial fluid, cytokines, and antigens present in initial lymphatics
are carried by collecting LVs to draining LNs. The lymph flow in collecting LVs depends
on the contractility of these collecting LVs. NO-derived from LEC eNOS is important
for the maintenance of lymphatic contractility [67]. In addition, NO released by LECs
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regulates lymphatic permeability [68,69]. Additionally, inhibition of NO production with a
NOS inhibitor, L-NMMA, blocks LV regeneration. Expression/activity of NOS in tumor
tissues positively correlates with lymphatic metastasis in various types of tumors [70]. Ge-
netic deletion of eNOS and pharmacological inhibition of its activity reduces peritumoral
lymphatic hyperplasia in VEGF-C-overexpressing fibrosarcoma and attenuates traffick-
ing of tumor cells to draining LNs, suggesting the role of NO in regulating lymphatic
drainage [66]. Inhibition of NO-mediated signaling using an sGC inhibitor abrogates ultra-
violet B-irradiation-induced LV enlargement, edema formation, and skin inflammation in
mouse models [28]. A recent study by Singla et al. reported matricellular protein R-spondin
2 (RSPO2) as an anti-lymphangiogenic protein [21]. The authors observed that RSPO2
suppresses VEGF-C-stimulated Akt and eNOS phosphorylation, leading to attenuation
of NO production by LEC and subsequent impairment in lymphangiogenesis. Moreover,
pharmacological NO supplementation using an NO donor prevented the inhibitory ef-
fects of RSPO2 on lymphangiogenesis [21]. All this information suggests that NO-sGC
signaling is pivotal in regulating lymphangiogenesis and maintenance of LVs. Increased
iNOS levels disrupt endogenous NO gradients normally regulated by eNOS and lead
to supra-physiological levels of NO, which in turn results in the induction of nitrosative
stress [71]. Liao et al. demonstrated that under inflammatory conditions, NO derived from
iNOS-overexpressing CD11b+ Gr-1+ myeloid-derived suppresser cells present around the
subcutaneous LVs suppresses lymphatic contractions [72] (Figure 1). A study by Rehal
et al. reported leaky and dilated LVs surrounded by iNOS+ CD11b+ inflammatory cells in
obese mice [73]. These inflammatory cells caused an increased generation of peroxynitrite
in obese mice. Additionally, LECs isolated from obese mice exhibited reduced VEGFR3
and podoplanin expression. These findings suggest that enhanced iNOS-derived NO
generation in obesity contributes to lymphatic injury and impaired lymphatic pumping
via nitrosative stress. Other reports revealed inhibition of lymphatic contractile function
with high NO levels and impaired NO signaling in diabetic condition [74–76]. Additionally,
reduced NO production due to decreased eNOS levels in the lymphatic thoracic duct
isolated from rats with metabolic syndrome has been shown to be responsible for reduced
vessel contractility [77]. Morris et al. showed KLF2-PPAR-γ-signaling-dependent elevation
of NOX-derived ROS production and reduction of bioavailable NO in response to shear
stress as observed with chronically increased lymph flow [78]. Further, it has been shown
that shear stress reduces eNOS expression and activity in LECs [79].
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Figure 1. Role of ROS in regulating lymphangiogenesis and lymphatic function. Activation
of VEGFR3 present in LECs by its ligand VEGF-C induces optimal Nox4-derived H2O2 pro-
duction, which in turn enhances VEGFR3 autophosphorylation and stimulates downstream pro-
lymphangiogenic signaling (upper panel). Oxidized LDL and RSPO2 inhibit lymphangiogenesis via
suppression of Akt/eNOS pathway. Under diabetic condition, excessive H2O2 generation elevates
epsin expression and promotes VEGFR3 degradation, leading to attenuated lymphangiogenesis
and reduced lymphatic transport. In inflammatory condition, supra-physiological NO production
by CD11b+ myeloid immune cells surrounding LVs contributes to nitrosative stress leading to the
suppression of lymphatic contractions and inducing LV leakiness (lower panel).

3.2. Superoxide Anion and H2O2

Increased generation of O2
•− scavenges NO and reduces NO bioavailability. Interac-

tion of NO with O2
•− forms peroxynitrite (ONOO−), which can further enhance protein

modification and DNA damage. Singla et al. observed Nox4 as the major NOX isoform
in LECs, which mainly generates H2O2 [21]. Exposure of LECs to H2O2 induces VEGFR3
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activation and downstream Akt phosphorylation [80]. VEGFR3 activation following H2O2
treatment occurs as a compensatory mechanism to promote the survival of LECs, and treat-
ments with antioxidants including N-acetylcysteine and catalase prevent H2O2-stimulated
VEGFR3 activation [80]. Considering the importance of VEGFR3 activation in the de-
velopment and maintenance of the lymphatic system, these findings may be the key to
understanding the pathogenesis of lymphatic-related diseases such as lymphedema. Hered-
itary lymphedema patients are susceptible to ROS-induced cell damage. Elevated ROS
generation and augmented lipid peroxidation occurring in lymphoedematous tissue are
considered to induce lymphatic endothelium damage [81,82]. Wu et al. reported that
LECs isolated from diabetic mice have high oxidative stress compared with cells isolated
from control mice, and LEC ROS levels inversely correlate with both in vitro and in vivo
lymphangiogenesis [19]. Mechanistically, the authors found that hyperglycemia-stimulated
ROS generation induces c-Src-dependent upregulation of epsins, which are responsible for
the degradation of VEGFR3 in LECs. Further, treatment of LECs with a high concentration
of H2O2, as observed in diabetes, causes VEGFR3 phosphorylation and degradation in a
ligand-(VEGF-C) independent manner [19]. These studies demonstrate that cell surface
VEGFR3 expression in LECs plays a beneficial role in protecting against oxidative-stress-
induced cell damage, and loss of VEGFR3 promotes pathological conditions [19,80].

Zawieja et al. reported attenuated lymphatic pumping after exposure to hypoxan-
thine and xanthine oxidase, which stimulate the generation of O2

•− and H2O2. Moreover,
treatment with SOD partially prevented the effects of hypoxanthine/xanthine oxidase on
lymphatic contractions [83]. In another study, Zawieja and Davis investigated the effects of
H2O2 challenge on the active pumping activity of mesenteric collecting lymphatics and
observed significantly declined contraction frequency and lymph flow in H2O2-exposed
lymphatics [84]. Further, a previous study has shown increased permeability of microvas-
culature in response to xanthine treatment, and treatment with O2

•− and •OH scavengers
reduced microvascular permeability [85]. In aging, there is a progressive decrease in NO
levels and a concurrent increase in the production of free radicals. Aging-associated oxida-
tive stress may be related to reduced levels of antioxidant enzymes such as SOD and/or
increased ROS production [86,87]. A previous report suggested that aging remarkably
reduces mesenteric LV contractility, which may limit the ability of these vessels to clear
interstitial fluids and inflammatory cells from the site of inflammation in elderly individu-
als [88]. A subsequent study revealed elevated ROS production and reduced antioxidant
enzyme levels in LECs isolated from aged rats, which suggests that aging-associated ox-
idative stress may contribute to lymphatic pump dysfunction in the elderly [89]. Thus,
both O2

•− and H2O2 play inhibitory roles in governing lymphatic pumping. A recently
published study showed that oxidized low-density lipoprotein (oxLDL) inhibits lymphan-
giogenesis, blocks cell cycle progression, reduces expression of Akt and eNOS, increases
p27 (an inhibitor of the cell cycle) expression, and induces intracellular ROS generation in
LECs [20]. Additionally, CD36 knockdown in LECs prevents oxLDL-induced suppression
of lymphangiogenesis. However, it is not known whether scavenging ROS can prevent
oxLDL′s effects on lymphangiogenesis.

ROS production is high in the colon of IBD patients, and its levels correlate with the
incidence of colitis [90,91]. However, in the case of IBD, elevated inflammation-induced LV
density and defective lymphatic drainage have been observed compared with controls [92,93].
Further, Nox1 is highly expressed in colon cancer and supports tumor growth. Stalin
et al. have recently demonstrated that inhibition of Nox1-mediated signaling via genetic
deletion and pharmacological approach (GKT771) reduces lymphangiogenesis, suppresses
recruitment of proinflammatory macrophages, and retards tumor growth [94], suggesting
that ROS contribute to colon lymphangiogenesis in the cancer setting. Considering the
findings of Wang et al., it is possible that ROS contribute to lymphangiogenesis via VEGFR3
activation in tumor tissue [80]. Recently, it has been demonstrated that Nox4 promotes
both VEGF-C-dependent and -independent lymphangiogenesis [95]. Additionally, there
is evidence of engagement of Nox2-derived ROS in regulating lymphangiogenesis [96].
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LPA-stimulated ROS production, which is mediated by phospholipase C and protein kinase
C, regulates LPA 1/3-dependent VEGF-C expression in prostate cancer cells [97]. LPA stim-
ulates lymphangiogenesis in the tumor-xenograft mouse models via controlling calreticulin
expression. Boehme et al. have recently demonstrated that LECs exposed to prolonged
pathologically elevated lymph flow exhibit hyperproliferative growth, which is mediated
by elevated hypoxia-inducible factor (HIF)-1α expression and increased mitochondrial
NOX-derived ROS production [98]. In addition, the authors report attenuated proliferation
of LECs exposed to mitochondrial antioxidants, indicating the importance of mitochondrial
ROS in driving LEC proliferation under mechanical stress. Under hypoxic conditions, tu-
mor cells upregulate HIF expression and activity, which induce the transcription of various
growth factors′ genes responsible for increasing angiogenesis and lymphangiogenesis [99].
All the above findings suggest that ROS regulates lymphatic permeability, contractility and
drainage, and lymphangiogenesis. Further studies are required to investigate the role of
ROS in specific diseases and cell types.

4. Role of Lymphatic Vessels in Various Pathologies
4.1. Tumor Metastasis

Lymphatics serve as a route for cancer progression and metastasis. Secretion of
well-known lymphangiogenic factor vascular endothelial growth factor (VEGF)-C and
other growth factors by tumor cells lead to increased LV density in tumor tissues [100].
Tumor-associated lymphatics aid in the drainage of interstitial fluid containing various cell
types and tumor-cell-originated macromolecules to sentinel LNs. Metastatic cells that de-
tach from the primary tumor readily enter into highly permeable surrounding LVs and reach
distant organs (Figure 2). Previous studies have indicated positive correlations between the
levels of VEGF-C, VEGF-D, and VEGFR3 with an increased incidence of LN and distant
organ metastasis [101–103]. In addition to metastasis, angiogenesis and lymphangiogenesis
support tumor growth by other mechanisms. For example, the blood vascular system sup-
plies nutrients and oxygen to the tumor hypoxic environment, while inflamed lymphatics in-
duce an immunosuppressive microenvironment via reducing dendritic cell (DC)-mediated
cytotoxic lymphocyte function by producing T cell inhibitory programmed-death ligand
1 (PD-L1), transforming growth factor-β (TGF-β), iNOS), and indoleamine 2,3-dioxygenase
(IDO), thereby stimulating tumor progression [104]. Moreover, tumor tissue LV density
has been shown to correlate with poor prognosis in cancer patients [105–107]. A previ-
ous study employing photodynamic therapy with benzoporphyrin-derivative verteporfin
to destroy tumor-associated LVs showed prevention of mouse melanoma cell metasta-
sis and subsequent tumor relapse. In addition, the combination of photodynamic and
anti-lymphangiogenic therapies further reduced the invasion of tumor cells into LVs [108].
Conversely, drainage of tumor antigen-carrying migratory DCs to draining LNs is required
for an antitumor immune response [109,110]. In addition, Fankhauser et al., in their study
using the mouse melanoma model, reported enhanced T cell infiltration and potentiation of
immunotherapy with experimental induction of tumor lymphangiogenesis [111]. Similar
beneficial effects of augmented intra-tumoral LV density have been shown in colorectal
cancer [112]. Therefore, despite the role of LVs in promoting tumor metastasis, LVs are
required for the generation of optimum antitumor immune response to potentiate im-
mune therapies. Future studies are required to further explore the role of LVs in specific
cancer types.
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4.2. Inflammation

Peripheral LVs serve as the principal route for the transportation of soluble anti-
gens, cytokines, and immune cells from peripheral tissue to draining LNs and aid in the
resolution of inflammation. LNs possess discrete compartments for T- and B lympho-
cytes. LECs present in afferent LVs via the expression of various adhesion molecules and
chemokines control the entry and transport of immune cells through LVs and their posi-
tioning within LNs. LECs secrete chemokines CCL21 and CCL19, which guide and help
in homing of CCR7+ activated DCs, macrophages, T- and B lymphocytes to lymphatics
and LNs [113–115], while LECs with low expression of podoplanin and CCL21 but high
CCR10 ligand CCL27 and Duffy antigen receptor for chemokines (DARC) levels direct
the movement of CCR10+ T-lymphocytes into LVs [116]. Medullary LECs present in LNs
expressing self-antigens and PD-L1 are involved in the depletion of alloreactive CD8+ T
cells [117]. Cell adhesion molecules-common lymphatic endothelial and vascular receptor-1
and mannose receptor 1, have been shown to regulate leukocyte trafficking via LVs [118].
Interestingly, a study suggested reduced maturation of DCs via interaction of DC CD11b
with intercellular adhesion molecule 1 receptor present in inflamed LECs [119].

Sphingosine 1-phosphate (S1P), synthesized intracellularly by phosphorylation of sph-
ingosine, is a metabolic intermediate linking sphingolipids to glycerophospholipids [120].
The levels of S1P vary between blood (∼1 µM) and lymph (∼0.1 µM). LEC-dependent
S1P gradient within LNs is required for egress of T- and B-lymphocytes from LNs into
efferent lymph and thus is important for lymphocyte recirculation [121]. Further, S1P en-
hances the survival of naïve T cells and regulates the organization of LV junctions [122,123].
Lysophosphatidic acid (LPA), a bioactive lipid, has also been reported to support lympho-
cyte trafficking [124]. Altogether, these discoveries support the pivotal role of lymphatics
in controlling immune response and inflammation.
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4.3. Gut Homeostasis and Inflammatory Bowel Disease

Intestinal LVs include lacteals present in intestinal villi and mesenteric collecting LVs
and constitute the largest lymphatic bed of the human body. These vessels aid in the
drainage of lymph from gastrointestinal and lumbar regions into cisterna chyli and pro-
mote intestinal homeostasis [125]. Intestinal LVs also play crucial roles in the absorption of
dietary lipids and the maintenance of gut immunity [126]. In adults, most of the lymphatics
are quiescent under physiological conditions; however, lacteal LECs proliferate slowly and
continuously, suggesting an ongoing lymphangiogenesis in adult lacteals [127]. A contin-
uous lacteal regeneration may be a compensatory mechanism for consistent exposure to
high lipoprotein levels, other biologically active dietary and microbial products, osmolarity
gradients, and high mechanical strain originating from gut peristalsis and villus contrac-
tions [128–130]. Despite knowing the important role of intestinal lymphatics, the molecular
factors regulating maintenance, renewal, and above functions of intestinal lymphatics are
not fully understood.

Intestinal LVs are pivotal for gut immunosurveillance involved in inducing mucosal
immunity and tolerance. These vessels regulate homing of CCR7+ DCs to mesenteric LNs
in response to LEC-secreted CCL21, thereby establishing oral tolerance [131]. The intestinal
epithelium has a high renewal rate and renews every 4–5 days in rodents and 5–7 days in
humans. Intestinal LVs help in the transportation of apoptotic intestinal epithelial cells to
mesenteric LNs and induce regulatory T (Treg) cells [132]. There are distinct mesenteric
LNs to which different regions of the intestine drain and orchestrate adaptive immune
responses specific to different intestinal segments [133].

Inflammatory bowel disease (IBD), including Crohn′s disease (CD) and ulcerative
colitis (UC), is characterized by chronic intestinal inflammation. Its primary causes include
genetic factors, dysregulation in immune response, diet, and other environmental cues [134].
Increased permeability of blood vessels in CD leads to accumulation of interstitial fluid
that results in enhanced lymph flow to prevent edema. In human IBD patients, studies
have reported augmented lymphangiogenesis, LV obstruction, dilation, and submucosal
edema [135–137]. The presence of obstructive lymphoid aggregates consisting of T cells, B
cells, and macrophages formed within lymphatic vasculature and expansion of mesenteric
fat on the intestinal wall (also called creeping fat) are the major characteristics observed in
patients with CD and result from impaired lymphatic drainage [138–140].

4.4. Lymphatics in Neurological Disorders

Under normal physiological conditions, the brain parenchyma is devoid of LVs, and
clearance of cellular debris and waste products of the brain are mediated by the glym-
phatic system [141]. This system was proposed to aid in the exchange of small molecules
between cerebrospinal fluid (CSF) and interstitial fluid [142,143]. Recent studies have
characterized the architecture and importance of LVs present in the brain and spinal
cord meninges [144–147]. In contrast to most peripheral lymphatic vasculature, which
develops during mouse embryonic stage, meningeal LVs mature postnatally [148]. In
adults, the development and maintenance of meningeal LVs depend on VEGF-C/VEGFR3
signaling [148]. The development, cytoarchitecture and morphology of meningeal LVs
have been reviewed recently [149]. Meningeal LVs are identified as the major route of CSF
outflow into deep and superficial cervical LNs in both humans and rodents [145,150–153].
These lymphatics are also required for the drainage of brain-associated interstitial fluid,
solutes, and various immune cells (lymphocytes and CD11c+ CCR7+ DC) egress from CSF
to the peripheral lymphatic system [145,151,153,154]. Citing the role of meningeal LVs
in the above-mentioned processes, these lymphatics are involved in the pathogenesis of
various age-related neurodegenerative diseases, such as Alzheimer′s disease. Ablation of
meningeal LVs in mouse models of Alzheimer′s disease has been shown to increase brain
β-amyloid levels and promotes its deposition in the meninges, demonstrating the role of
these vessels in the clearance of β-amyloids [145,155]. Further, meningeal LVs are essential
for the removal of extracellular tau aggregates from the central nervous system (CNS),
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which is another neuropathological hallmark of Alzheimer′s disease [156]. In addition,
impaired meningeal lymphatic drainage leads to the accumulation of brain α-synuclein ag-
gregates in Parkinson′s disease models [157,158] and induces neuroinflammation [159,160].

Contrary to the beneficial roles of meningeal LVs in Alzheimer′s and Parkinson′s dis-
ease and attenuating neuroinflammation, these lymphatics contribute to the pathogenesis
of autoimmune demyelinating disease of the CNS, multiple sclerosis. Further, by serving
as a route for the drainage of neurological immune cells and antigens to cervical LNs,
meningeal LVs may support CNS infection [153]. All these studies demonstrate the key
role of lymphatics in neurological pathologies.

4.5. Cardiovascular Disease

Atherosclerosis is a vascular inflammatory disease characterized by the accumulation
of lipids in large and medium-sized arteries. Hoggan et al. first reported the presence of
LVs in the arterial wall >100 years ago [161]. Subsequent studies described the existence of
lymphatics in the blood vessels of dogs, pigs, and humans [162–166]. Despite the presence
of LVs in the arterial wall, the functional role of arterial lymphatics in atherosclerosis
development has not been investigated until recently. Martel et al. demonstrated that these
arterial LVs play a critical role in the removal of high-density lipoprotein cholesterol from
atherosclerotic arteries and skin via macrophage reverse cholesterol transport (mRCT) [167].
Lymphatic insufficiency has been shown to elevate plasma cholesterol levels [168]. In
addition, hypercholesterolemia downregulates the expression of lymphangiogenic fac-
tors, including VEGF-C, Ang2, and FoxC2 in peripheral tissues, and impairs lymphatic
drainage [169]. ApoA-I and VEGF-C152S treatments have been shown to improve lym-
phatic transport and attenuate atherosclerotic lesion formation [170,171]. In addition, a
recent study by Singla et al. demonstrated the inhibition of atherosclerosis and reduced
accumulation of fluorescently-labeled cholesterol in the left carotid artery with improved
arterial drainage to periarterial LNs [21]. The role of lymphatics in cholesterol transport has
been reviewed in the past [172]. Dissections of the left carotid artery draining deep cervical
LNs and surrounding LVs in ApoE-/- mice have been observed to augment atherosclerosis
and promote the accumulation of CD3+ T cells in the intimal and adventitial arterial lay-
ers [173]. In addition, inhibition of lymphangiogenic VEGFR3-mediated signaling led to T
cell enrichment in atherosclerotic lesions, suggesting the role of arterial lymphatics in the
egression of arterial T cells. Taken together, these studies suggest that lymphatics play a
beneficial role in arterial cholesterol efflux and inflammatory cell egress, which suppresses
atherosclerosis development [174].

Blockade of coronary arteries due to atherosclerosis is responsible for the reduced
supply of blood to the cardiac muscles, consequently leading to cardiac tissue damage, cell
death, and heart failure. This process is accompanied by increased permeability of my-
ocardial microvasculature and results in interstitial fluid accumulation (myocardial edema)
and elevated lymph flow [175,176]. Previous studies have suggested that impairment of
cardiac lymphatic drainage stimulates cardiac edema, and stimulated cardiac lymphan-
giogenesis associates with improved cardiac function via supporting the resolution of
inflammation and reducing edema [177–180]. This information advocates that stimulated
cardiac lymphangiogenesis may be a novel and potential therapeutic approach for treating
cardiac disease.

4.6. Lymphedema

Tissue edema caused by an accumulation of protein-rich fluid due to impaired lym-
phatic drainage is referred to as lymphedema. It mostly occurs in limbs but can also affect
the chest wall, abdomen, neck, and genital regions. Primary lymphedema is a genetic
disease, e.g., Nonne–Milroy disease and Meige disease [181]. Secondary lymphedema is
usually caused by infection (Wuchereria bancrofti) and surgical and radiotherapy proce-
dures [182–184]. These diseases result from insufficient lymph drainage.
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5. Conclusions

LVs have significantly different structures and functions from blood vessels due to
their roles in the maintenance of tissue fluid homeostasis, uptake of dietary lipids and
macromolecules, and immunosurveillance. Significant advances have been made in the last
decade regarding the molecular mechanisms regulating LV formation. Low levels of ROS
are required for lymphangiogenesis, while excess generation of ROS contributes to inhibi-
tion of lymphangiogenesis and impaired lymphatic drainage. However, the effects of ROS
derived from LECs and other neighboring cell types (s) in regulating lymphangiogenesis
are understudied. Existing data support a pivotal role of NOX-derived ROS in regulating
LV formation, and future mechanistic studies are necessary to identify novel molecular
stimulators of NOXs, investigate the mechanisms of NOX activation and downstream
targets of ROS, and examine the effects of antioxidants in modulating lymphangiogenesis.
Understanding these mechanisms may provide new potential therapeutic targets for the
treatment of lymphatic-related pathological disorders.
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