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The frequency and global impact of infectious disease outbreaks, particu-

larly those caused by emerging viruses, demonstrate the need for a better

understanding of how spatial ecology and pathogen evolution jointly

shape epidemic dynamics. Advances in computational techniques and the

increasing availability of genetic and geospatial data are helping to address

this problem, particularly when both information sources are combined.

Here, we review research at the intersection of evolutionary biology,

human geography and epidemiology that is working towards an integrated

view of spatial incidence, host mobility and viral genetic diversity. We first

discuss how empirical studies have combined viral spatial and genetic data,

focusing particularly on the contribution of evolutionary analyses to epide-

miology and disease control. Second, we explore the interplay between virus

evolution and global dispersal in more depth for two pathogens: human

influenza A virus and chikungunya virus. We discuss the opportunities

for future research arising from new analyses of human transportation and

trade networks, as well as the associated challenges in accessing and sharing

relevant spatial and genetic data.
1. Introduction
The consequences of international trade and travel for the dynamics of infec-

tious disease are appreciated by researchers and the general public alike. In a

highly mobile world, with over half a million travellers in the air at any one

moment, viruses have more opportunities than ever before to disseminate glob-

ally. Growth in the reach, volume and speed of human mobility over the past

century has connected pathogens with new and growing host populations,

and contributed to a boom in emerging and re-emerging epidemics [1,2].

The increasing connectivity of our world affects transmission in many ways.

Greater mobility, through business travel, tourism and labour movement, leads

to more pathogen introductions, while social and ecological changes in recipi-

ent locations may raise the likelihood that introductions will become

entrenched rather than die out. The establishment of new travel routes between

previously unconnected locations also contributes. For example, direct air travel

between South America, Africa and southeast Asia now links tropical continen-

tal regions, where infectious disease burdens are higher and year-round

transmission is more common. Further, the increasing volume of global trade

through shipping and air freight can spread contaminated goods or introduce

disease vectors such as mosquitoes to new locations through accidental carriage

(e.g. [3]).

Despite the importance of geography for infectious disease epidemiology,

the effects of global mobility upon the genetic diversity and molecular evol-

ution of pathogens are under-appreciated and only beginning to be

understood; indeed, a recent monograph on the spatial epidemiology of
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infectious disease makes no reference to pathogen genetic

variation [4]. Patterns of host mobility may be particularly

important for RNA viruses, the infections on which we

focus here. Because many viruses do not survive for long

outside the environment of their host, close proximity of

hosts (or of hosts and vectors) is often necessary for trans-

mission. Further, because rates of RNA virus mutation

and evolution are high, their genomes can accrue genetic

differences while being spatially disseminated during an

individual outbreak. The evolutionary and spatial dynamics

of these pathogens are therefore linked and reciprocally

influence each other [5,6]. This fundamental principle has

several important consequences. First, genetic differences

among viruses sampled from diverse locations will contain

information about the spatial processes that gave rise to the

virus’s geographical distribution. The abundance of viral

gene sequences and advances in analytical methods have

increased our ability to infer these processes and track viral

spread [6]. Second, rapidly evolving viruses are capable of

adapting swiftly to the novel environments they encounter

as they spread geographically [7], with the potential to alter,

for example, vector specificity or sensitivity to drugs or

immune responses. Third, spatial sampling provides a

common frame of reference whereby virus evolution and

migration can be integrated with epidemiological data,

or with environmental measurements such as humidity or

land use. Integration of geographical data with genetic analy-

sis promises to provide a fuller understanding of the origins,

dispersal and dynamics of evolving pathogens [8].

In this article, we explore each of these themes. We first

review how spatial and genetic data are combined in empiri-

cal studies of viral transmission. Later we discuss in depth

two human pathogens, influenza A virus (IAV) and chikun-

gunya virus (CHIKV), whose global dynamics depend

critically on the reciprocal interplay between virus evolution,

spatial ecology and host mobility.
2. Methods for combining viral spatial and
genetic data

Since the contemporary spatial distribution of a fast-evolving

virus is the result of interacting ecological and evolutionary

processes, consideration of spatial incidence or genetic data

in isolation may provide only partial insight into the under-

lying transmission dynamics [5,9]. Consequently, there is

considerable interest in the development new analytical

methods, formal and informal, that combine both sources

of information.

Several trends in technology and data availability over the

last decade have spurred innovation in this area. The advent of

cheap, mobile global positioning systems and their wide-

spread adoption in disease surveys has revolutionized the

geospatial recording and analysis of infectious disease inci-

dence and prevalence, especially when combined with

geographical information systems (GIS) and pervasive elec-

tronic communication [10]. Further, a wide range of data

(e.g. high-resolution satellite images) that depict environ-

mental, infrastructural and socio-economic variables that

may determine disease dynamics are now available. Statistical

models have been developed to exploit the relationships

between these variables and geo-located disease data, and to

predict the spatial distribution of infectious diseases
(e.g. [11,12]). Of particular relevance to viruses are new

insights into human mobility, generated by the analysis of

datasets that describe global air travel passenger numbers

[13,14], movements of marked banknotes [15] and anon-

ymized mobile phone call records [16]. The latter have the

potential to untangle human mobility in unprecedented

detail and have been used to track population mobility follow-

ing disasters [17], predict infectious disease dynamics [18] and

plan disease elimination strategies [19]. At the same time as

this progress in disease geography, viral gene sequences

have greatly increased in abundance and length, in large

part due to the adoption by virologists of next-generation

sequencing technologies [20] that typically generate whole

viral genomes rather than sub-genomic sequence fragments.

Reported pathogen genomes are now more likely to be anno-

tated with locations and dates of sampling, and for the most

intensively studied species, such as HIV-1 and influenza,

more than 100 000 virus sequences are publicly available.

The term ‘phylogeography’ is commonly applied to

studies that use evolutionary trees to combine genetic data

with spatial information [21]. Other statistical methods for

examining the spatial distribution of genetic variation do

not explicitly use phylogenies and are better described as

‘spatial genetics’ (reviewed in [22]), while some genealogical

approaches to population genetics combine aspects of both

approaches (e.g. [23]). Phylogenetic methods are commonly

applied to emerging viral epidemics, partly because the

rapid evolution of such pathogens can create sufficient

genetic variation for analysis at the level of individual infec-

tions, even during the early stages of an outbreak, and also

because alternative population genetic approaches typically

assume that mutation is negligible or that the processes of

genetic drift and migration are in equilibrium [24]. The

latter were developed with animal or plant populations in

mind and may not adequately represent the idiosyncratic

and dynamic dispersal histories that characterize eco-

logical invasions [25,26]. Further, a single evolutionary tree

(with associated estimation uncertainty) is often sufficient

to represent the shared ancestry of all sites in a RNA virus

sequence, owing to the absence or low rate of recombination

within them.

Methods that attempt to combine viral genetic and geo-

graphical information will be worthwhile only if the spatial

epidemiology of the pathogen population is recorded in its

genome sequences. The degree to which that occurs for the

pathogen in question will depend on its relative rates of

spatial movement and molecular evolution. A pair of typical

RNA virus genomes will diverge genetically from each other

on average at a rate of 1–20 nucleotide changes per year

(assuming 1023–1024 substitutions per site per year and a

genome 10 000–20 000 nucleotides long [27]). Hence, to a

very rough approximation, analyses of viral genomes are

unlikely to contain a reliable record of spatial epidemiological

trends that occur on time scales faster than a fortnight. It is

therefore unsurprising that many studies focus on global or

regional patterns, observed over a time scale of several

years or decades. Transmission dynamics over short time

scales can sometimes be partially resolved by augmenting

viral gene sequences with epidemiological incidence data

(e.g. [28,29]). It is also possible for virus sequences, particu-

larly those limited to the antigenic regions of capsid or

envelope proteins, to evolve too quickly relative to the rate

of geographical spread, in which case phylogeographic
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information is lost due to the mutational ‘saturation’ of infor-

mative sites in viral genes (e.g. [30]). In general, the rate of

pathogen molecular evolution will determine the time scale of

the spatial processes that can be reliably inferred; for example,

movement of influenza virus can, under the best circumstances,

be pinpointed from whole-genome sequences to within a few

weeks, whereas geographical trends in the diversity of much

slower-evolving Helicobacter pylori genes reveal the global

spread of the bacterium over more than 50 000 years [31].

Several of the most popular phylogeographic methods for

reconstructing epidemic spatial spread from genetic data (e.g.

[26,32–34]) treat the location information assigned to each

sequence as a discrete or continuous trait, and represent

movement as change in that trait along sampled lineages,

using stochastic models that are uncoupled from the pro-

cesses of molecular evolution. The focus is therefore on the

locations and ages of sampled lineages rather than on under-

lying population genetic processes of selection, genetic drift

and migration, an approach that may be viewed philosophi-

cally as either a strength or a weakness, depending on one’s

perspective and interests [21,35]. This ‘trait evolution’

approach to phylogeography facilitates the inference of the

locations of common ancestors in an epidemic and can be

practically applied to rapidly evolving pathogens with

complex spatial dynamics [34]. Further, the inferred changes

in location on a phylogeny are statistically independent

observations, whereas the sample locations themselves are

correlated due to their shared ancestry.

However, it is not always fully recognized that the esti-

mated locations of ancestors can be highly uncertain,

particularly those that are only distantly related to the sampled

cases. Consequently, viral phylogeography is far more infor-

mative when applied to datasets that contain genetic

sequences sampled sequentially through time, and which

include genomes situated close to the root of the sample phylo-

geny. A second under-appreciated aspect of phylogeographic

analysis is the importance of sample composition [36].

Although a highly detailed spatio-temporal record may not

be required to address every important question about patho-

gen spread, the accuracy with which gene sequences can

capture key patterns will depend on the representativeness of

sampling. If samples from key locations or regions are absent

or rare then virus movement will be underestimated and the

inferred locations of ancestors may be biased towards locations

that are over-represented in the sample. As a result, phylogeo-

graphic results should be interpreted carefully, combined with

other sources of epidemiological information and statistically

validated whenever possible.
3. Integration of viral spatial and genetic data in
practice

The simplest way to combine viral spatial and genetic data is

through the mapping of infections attributable to different

viral strains. This creates a link to genetic variation because

RNA viruses are classified into genotypes and subtypes

using analysis of their gene sequences. In recent years, the

global geographical distribution of strains of HIV-1 [37],

dengue virus [11] and hepatitis B and C viruses [38,39]

have been characterized in this way. Despite being primarily

descriptive, such studies can be useful in public health

planning. For example, severe disease following dengue
virus infection is more common in regions where two or

more viral serotypes co-circulate, and the success rate

of drug treatment for hepatitis C virus infection varies

significantly among viral genotypes.

Evolutionary analysis of viral genes can be used to vali-

date the putative source of an emerging viral outbreak that

has been identified through epidemiological surveillance

and contact tracing. For example, the proposed index case

of the 2007 outbreak of CHIKV in northeast Italy had

hosted a relative from Kerala, India (where the virus was epi-

demic), and phylogenetic analysis of virus E1 gene sequences

from the Italian outbreak showed it to be very closely related

to strains previously isolated in India [40]. Independent test-

ing of an outbreak’s source using viral genetics is especially

valuable when surveillance data is uncertain or absent, and

may become commonplace as viral genome sequencing

becomes routine in clinical diagnosis. It is therefore important

that public health agencies recruit and retain expertise in the

evolutionary analysis of pathogen genetic variation.

In addition to its confirmatory role, analysis of virus gen-

omes can answer questions of relevance to infectious disease

control that cannot be addressed using incidence reports

alone. For example, viral phylogenies can indicate if an

outbreak in a specific region is the result of a single introduc-

tion followed by onward transmission within the host

population of that region, or is composed of multiple inde-

pendent chains of transmission, each initiated by a separate

introduction from elsewhere or from a zoonotic reservoir

species. For example, analysis of viral genomes from the

Ebola epidemic in west Africa that began in Guinea in early

2014 indicated that it developed from a single introduction

from the virus’s reservoir in central Africa, and that the epi-

demic in Sierra Leone arose from the transmission of two

distinct viral lineages from Guinea [41]. By contrast, phyloge-

netic investigation of the HIV-1 subtype B epidemic in the UK

showed that it comprised hundreds of independent viral

introductions from other countries, at least six of which estab-

lished large and persistent chains of transmission in the UK

[42]. Epidemiological differences among observed trans-

mission chains can help to focus epidemic control efforts

more efficiently on specific populations or risk groups.

Further epidemiological insights can be obtained by using

evolutionary ‘molecular clock’ models, which place viral phy-

logenies on a real time scale of months and years [8], and

enable estimation of the age of the most recent common

ancestor (MRCA) of transmission chains in different

locations. It is not always appreciated that the MRCA of an

outbreak does not necessarily represent the same infected

individual as the index case; the former can be more recent

(but never older) than the latter. Despite this condition, esti-

mated MRCA ages are sometimes weeks to years earlier

than reported dates of virus discovery. Thus, this difference

indicates a ‘time lag’ of epidemiological surveillance, the dur-

ation of which might be used to evaluate the efficiency and

timeliness of systems of pathogen detection and notification.

If transmission is predominantly local and movement

unimpeded by geographical barriers then the genetic and

geographical distances among sampled infections are

expected to be positively correlated. This principle, known

as isolation by distance [24], forms a simple yet direct link

between genetic and spatial information, and represents

an important null hypothesis in spatial genetics. Strong corre-

lations may be observed for viruses that disperse gradually,
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such as rice yellow mottle virus during its spread across sub-

Saharan Africa [43]. However, patterns of isolation by dis-

tance can be swiftly lost if landscape features affect the

dynamics of spread. A study of Zaire ebolavirus in central

Africa suggested that the epizootic underwent an abrupt

change in direction at a major biogeographic river barrier

[44]. Rerouting geographical distances between virus

sequences through this ‘pivot point’ led to much stronger cor-

relations of genetic and geographical distances than when

straight line distances were used [44]. Evidence for isolation

by distance may be also eroded by high rates of host move-

ment (a topic discussed later in the context of influenza

viruses). The Ebola study, and others (e.g. [45]), illustrate

the importance of using the locations of ancestral infections

when reconstructing the geographical distance travelled by

the chain of transmission that connects two sampled cases,

especially when dissemination is not uniform in space. As

discussed above, ancestral locations are typically inferred

using one of the ‘trait evolution’ phylogeography methods.

Highly heterogeneous dispersal may be a common fea-

ture of all ecological invasions [46]. This variation has

been accommodated in phylogeographic analysis using

‘relaxed random walk’ models that allow dispersal rates to

vary significantly among phylogeny branches [34]. Appli-

cation of this approach to the West Nile virus invasion of

North America that began in New York in 1999 revealed

that the epidemic was driven by a heterogeneous mix of

local transmission and rare, long-range viral movements

that probably represent seasonal migration of birds, the

natural hosts of the virus [47]. An important consequence

of such approaches is that each phylogeny branch becomes

an independent observation of viral translocation, con-

ditional on the data. This enables spatial epidemiological

parameters, such as the epidemic diffusion coefficient and

wavefront velocity, to be readily estimated from viral

genome sequences alone [47].

A key goal of viral phylogeography is to help predict

future pathogen spread by indicating those social or environ-

mental factors that are associated with virus movement. This

is often achieved by qualitative comparison of virus genetic

diversity or dispersal history with geographical data. For

example, the early spread of HIV-1 in east Africa was

explored by combining phylogenetic analyses with regional

data on road network architecture and population density,

obtained using GIS techniques [48]. More recent phylo-

geographic studies have formalized this approach by

parametrizing location exchange rates as a function of differ-

ent potential causal factors, so that the effects of these drivers

of spatial spread can be quantified and tested using genetic

data [49]. Crucially, this enables virus genomes and host

mobility data to be combined in a single statistical frame-

work. Retrospective application of this technique to the

2009 influenza A pandemic demonstrated that combining

both data sources predicted the global dissemination of the

pandemic better than either alone [49].

4. Case study: influenza virus
In addition to generating information essential for vaccine

design, the global surveillance of influenza viruses has

resulted in an unparalleled collection of virus genome

sequences sampled through space and time, providing an

opportunity to explore the processes that underpin the
global dynamics of this important pathogen [50]. Although

human influenza is primarily transmitted in household and

community settings, epidemics of IAVs in temperate climates

are seasonal and experience strong genetic bottlenecks,

implying that transmission in these locations is typically

not sustained and that epidemics are re-established by the

importation of viral lineages from populations in which

transmission is more persistent [51–53]. This so-called

‘source–sink’ model of global IAV circulation has been inves-

tigated in detail for the H3N2 subtype of IAV (figure 1), a

dominant strain of human influenza since its emergence in

1968. Various studies have used phylogeographic and popu-

lation genetic methods to infer the location through time of

the ‘source’ population of H3N2 influenza, and most con-

clude that it resides primarily in east or southeast Asia

[49,52,54] (figure 1). However, temperate regions, particu-

larly the USA, may also contribute as a source [55], and

there is evidence for viral gene flow into Asia from elsewhere

[56], suggesting that the migration dynamics of H3N2 influenza

are more complex than those represented by a simple source–

sink model. Differences among these studies may however be

attributable to variation in analysis methodology and sequence

sampling strategy; seasonal fluctuations in sampling and the

comparative under-sampling of IAV from south Asia, Africa

and Latin America means that conclusions should be inter-

preted carefully [36]. Nevertheless, all analyses implicate

global mobility as a driver of worldwide human influenza

virus dispersal (figure 1); air passenger flux is a considerably

better predictor of the movement of IAV lineages among

locations than geographical distance [13,49]. Thus, the spatial

genetics of human influenza, and possibly of other pathogens,

may be better characterized by ‘proximity by mobility’ than by

the traditional notion of ‘isolation by distance’.

The emergence of pandemic H1N1 (pH1N1) influenza in

2009 was the first influenza pandemic in the post-genomic

era. Genetic analysis of the pandemic in its early stages was

aided by pre-planned and intensive virus sequencing in

some countries, and by the immediate and open sharing of

the resulting data through online databases. Consequently,

the molecular epidemiology of the virus could be tracked in

‘real time’ as the epidemic unfolded [57,58]. This included

phylogeographic analyses that studied the global dispersal

of the virus during its establishment phase [59,60], which fol-

lowed patterns of international air travel [13,61]. The

intensive sampling of virus sequences during the pandemic

enabled the molecular epidemiology of IAV to be scrutinized

at such a high resolution that the importation, extinction and

persistence of individual transmission chains in specific

locations could be observed (e.g. [62–64]). Comparisons

among countries of the dynamics of transmission chains

may provide useful insights. For example, only two of

many pH1N1 lineages that were introduced to the UK at

the start of the pandemic were detected there six months

later [64], while a pair of pH1N1 transmission chains

appear to have persisted in west Africa for almost 2 years

[65]. The latter observation seems to be at odds with the

extensive spatial mixing of IAV imposed by air travel, but

west Africa is connected comparatively weakly within the

global air transportation network [66] and influenza persist-

ence might be facilitated there by climatic variability that

can generate temporal overlap among epidemics in neigh-

bouring regions [65], as has been previously suggested for

IAV persistence in southeast Asia [52].
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Figure 1. (a) The modular structure of global air travel. Airports (small dots) can be grouped into 14 communities (colours; inset) such that there is high con-
nectivity within communities but low connectivity among them (hence French Guiana belongs to the European, not South American, community). Larger circles
indicate the approximate geographical centre of each community. (b) A phylogeny of the H3N2 subtype of human IAV, estimated from more than 1000 virus
haemagglutinin gene sequences that were sampled worldwide between 2002 and 2007. A molecular clock model was used, hence phylogeny branches represent
time (time scale shown below the tree). The thickness of each branch is proportional to its number of descendent tips (up to a maximum thickness) and indicates
lineage persistence. Each phylogeny branch is coloured according to its most probable location, which was inferred using a phylogeographic model that takes into
account the global air travel network. The thicker, uppermost lineage represents the most persistent lineage of H3N2 influenza, which, for most years, is estimated to
be located in southeast or east Asia. Figure adapted from Lemey et al. [49].
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Local persistence of transmission chains also raises ques-

tions about the mobility processes that drive IAV spread at

sub-national scales. Mathematical analyses of mortality and

physician visit statistics have suggested different drivers for

the spread of seasonal [67,68] and pandemic [69] influenza

across the continental US. These studies variably emphasized

the relative importance of workplace commuting [68], domestic

airline travel [67] and school opening dates [69]. As an indepen-

dent source of information about transmission, viral genetic

data could help to resolve this problem. However, it is possible

that sub-genomic influenza haemagglutinin gene sequences

do not contain sufficient information to answer fine-scaled

questions about viral dispersal over very short time scales.
Instead, complete viral genome sequences will probably be

needed to achieve the phylogeographic resolution required.

The spatial dynamics of influenza are also critical in asses-

sing the evolution of anti-viral drug resistance. The global

cycling of IAV lineages and low levels of local persistence

mean that resistance mutations can spread worldwide, and

can quickly erode any association at the local level between

rates of drug usage and viral resistance. Recent examples of

anti-viral drug resistance evolution include the rapid spread

in oseltamivir resistance in seasonal H1N1 influenza from

2007 to 2009 and the global rise of adamantane-resistant

H3N2 influenza during 2003–2006. An investigation of the

former that used a stochastic model of international air
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travel concluded that the oseltamivir-resistant strain rose to

global dominance because it exhibited a transmission advan-

tage in untreated hosts, probably conferred by genetic

hitchhiking [70]. Phylogeographic analysis of adamantane

resistance in A/H3N2 IAV has shown that resistance evolved

independently 11 times over 10 years [71], yet most of the resist-

ant viruses found were descended from a single resistant lineage

that was first detected in southeast Asia in 2003, before later

spreading worldwide, consistent with the above-mentioned

‘source–sink’ model of global IAV circulation.
g
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5. Case study: chikungunya virus
CHIKV is a mosquito-borne alphavirus that, while rarely fatal,

causes a debilitating fever and sometimes persistent arthralgia,

so is of some public health concern. In the 50 years that fol-

lowed the virus’s discovery in 1952 in Tanzania, sporadic

outbreaks were reported in central, west and east Africa, and

in south and southeast Asia [72]. However, the last decade

has seen an increase in the geographical range of CHIKV. Start-

ing from east Africa in 2004, CHIKV epidemics were reported

increasingly eastwards, first on Indian Ocean islands

(Comoros, Reunion, Seychelles and Mauritius) in 2005–2006,

then in India and Sri Lanka in 2006–2007 [73]. Numerous

countries in temperate regions have reported imported cases,

one of which, in Italy, caused an autochthonous epidemic

[40]. However, it is only within the last 18 months that

CHIKV has finally become established in the New World.

More than 750 000 suspected cases in the Americas have

been reported since the detection of CHIKV on the Caribbean

island of Saint Martin in December 2013, and several math-

ematical models that use data on human mobility and vector

distributions have already been developed to predict further

spread of the virus in the Americas (e.g. [74]).

The worldwide expansion of CHIKV has left a clear foot-

print in the genomic diversity of the virus, despite the fact

that its rate of molecular evolution is somewhat slower than

that of viruses like influenza and HIV [75]. Phylogeographic

analysis of CHIKV genomes (figure 2) shows that two virus

lineages (the ‘Asian genotype’ and the ‘Indian Ocean line-

age’) were responsible for the recent expansion of its

geographical range. The Asian genotype, first detected in

India in the 1960s, is the strain that has recently emerged in

the Caribbean and appears to have reached there via south-

east Asia and Micronesia. By contrast, the Indian Ocean

lineage was responsible for the significant epidemics in

south Asia from 2005 onwards (figure 2) [75].

Multiple genetic and ecological factors are thought to have

contributed to the global emergence of CHIKV. The two mos-

quito species principally responsible for human CHIKV

transmission are Aedes aegypti and Ae. albopictus. The collapse

of Ae. aegypti elimination efforts in the Americas [76] and

growing urbanization in the tropics and sub-tropics has pro-

vided suitable habitats for this primary vector. Additionally,

the globalization of trade in used tyres during the 1980s and

1990s enabled the secondary vector Ae. albopictus to expand

its range from southeast Asia to large parts of the rest of

the world [3]. Further, greater human travel between Africa,

Asia and the Americas has increased interchange between

locations where Aedes mosquitoes are prevalent, including

at times of the year when the vectors are highly active in

both places [73,77].
In addition to these ecological factors, there is strong evi-

dence that, as the geographical range of CHIKV expanded, the

virus evolved and adapted to local variation in the distri-

bution of vector species. Specifically, a single amino acid

change (A226V) in the viral E1 protein has been shown to

increase transmission and infectivity in Ae. albopictus mosqui-

toes [78]. This mutation arose multiple times within the

Indian Ocean lineage, usually in locations where Ae. albopictus
was the sole or dominant vector species [79], and thus

represents a remarkable example of convergent molecular

evolution (figure 2). Fortunately, the Asian lineage that has

recently emerged in the Americas has, to date, shown no pro-

pensity to evolve mutations that elevate transmissibility in Ae.
albopictus mosquitoes.
6. Discussion
Our understanding and evaluation of the risks of infectious

disease spread are being refined by access to growing

geographically referenced databases of disease prevalence,

detailed satellite-based imagery and unprecedented infor-

mation about patterns of human mobility. Successful

integration of these sources of information with viral genetic

data will be technically and intellectually challenging, yet

holds great promise for our response to emerging viruses.

Recent modelling work indicates that pathogen diffusion

becomes highly regular when measured against a so-called

‘effective distance’ along the relevant mobility or transport net-

work [13]. Conceptually, this requires translating from variable

rates of spread through a space defined by geographical dis-

tances, to regular diffusion through a space defined by

effective distances. The former process is already accommo-

dated by phylogeographic analysis [34] so implementation of

the latter should be possible. This work suggests that empiri-

cally derived networks of contacts among hosts may

constitute a third common frame of reference by which genetic

and epidemiological data can be unified, supplementing the

temporal and spatial dimensions that are currently used [8].

In future, the concept of effective distances could be extended

to epizootic or vector-borne pathogens, for which landscape

heterogeneity is more important than human contact networks.

Previous work has already shown the possibility of defining

‘climatic distances’ that account for differences among locations

and seasons in their suitability for vector-borne disease trans-

mission [3]. Integrating genetic data in this context will

require a melding of phylogeographic and GIS techniques

[80,81] in order to detect more subtle deviations from dis-

tance-dependent movement than those imposed by human

transportation networks.

A significant obstacle to further progress is the availability

and expense of some of the most powerful and relevant data-

sets. For air travel, origin–destination data derived from air

ticket sales are available, but are highly expensive for research

purposes, and their use may require legal and confidentiality

agreements, resulting in a reliance on modelled datasets [14].

Moreover, detailed data on human mobility derived from

mobile phone call records often prompt privacy and commer-

cial concerns. Although virus genetic data are usually

deposited in publicly accessible databases such as GenBank

upon publication of the paper that report them, the delay

between sequence generation and publication may prevent

the opportunity to undertake real-time molecular
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epidemiology during an outbreak. Further, genetic data

obtained by surveillance efforts may be reported without

essential epidemiological information, such as the date and

location of sampling, or may never be published at all, for

reasons of commerce, politics or privacy. The success of

GISAID (http://gisaid.org) and other initiatives in facilitating

the timely sharing of influenza virus genomes during the

2009 H1N1 pandemic has unfortunately not been repeated

in subsequent outbreaks. We strongly support the recent

call for an international and inter-disciplinary consensus

towards the open sharing and release of pathogen genetic

information during epidemics [82].

New outbreaks of infectious disease, especially those

caused by viruses, are a common phenomenon in the twenty-

first century, and future trends in global mobility and trade

seem likely to maintain or even accelerate their rate of appear-

ance. Techniques and data to describe, explain and predict such

occurrences can help to measure and mitigate the risks from

novel and re-emerging pathogens. Statistical and mathematical

models that integrate spatially explicit data on pathogen

evolution with information on human movement and environ-

mental variability have much to contribute to epidemic

management, as well as deepening our understanding of

fundamental evolutionary and ecological processes.
Note added in proof
Since this review was written, the Asian genotype of CHIKV

has spread from the Caribbean to Mexico, Brazil and Columbia,
and local transmission has been observed in mainland France

and Florida, USA. A second CHIKV genotype (ESCA) appears

to have been introduced to Brazil from central Africa [83]. In

addition, two recent studies have provided further insights

into the interplay between human mobility and IAV evolution

and transmission. Bozick & Real [84] showed that interstate

commuter networks in the USA match the spatial genetic vari-

ation of IAV subtype H1N1. Bedford et al. [85] reported that

age-dependent differences in infection and air travel frequency

can explain the distinct evolutionary behaviours of influenza A

and B viruses.
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16. González MC, Hidalgo CA, Barabási AL. 2008
Understanding individual human mobility patterns.
Nature 453, 779 – 782. (doi:10.1038/nature06958)

17. Bengtsson L, Lu X, Thorson A, Garfield R, von
Schreeb J. 2011 Improved response to disasters and
outbreaks by tracking population movements with
mobile phone network data: a post-earthquake
geospatial study in Haiti. PLoS Med. 8, e1001083.
(doi:10.1371/journal.pmed.1001083)

18. Wesolowski A, Eagle N, Tatem AJ, Smith DL, Noor
AM, Snow RW, Buckee CO. 2012 Quantifying the
impact of human mobility on malaria. Science 338,
267 – 270. (doi:10.1126/science.1223467)

19. Tatem AJ et al. 2014 Integrating rapid risk mapping
and mobile phone call record data for strategic
malaria elimination planning. Malar J. 13, 52.
(doi:10.1186/1475-2875-13-52)

20. Radford AD, Chapman D, Dixon L, Chantrey J, Darby
AC, Hall N. 2012 Application of next-generation
sequencing technologies in virology. J. Gen. Virol.
93, 1853 – 1868. (doi:10.1099/vir.0.043182-0)

21. Avise JC. 2000 Phylogeography. Cambridge, MA:
Harvard University Press.

22. Guillot G, Leblois R, Coulon A, Frantz AC. 2009
Statistical methods in spatial genetics. Mol. Ecol. 18,
4734 – 4756. (doi:10.1111/j.1365-294X.2009.04410.x)

23. Hudson RR. 1991 Gene genealogies and the
coalescent process. Oxf. Surv. Evol. Biol. 7, 1 – 44.

http://gisaid.org
http://gisaid.org
http://dx.doi.org/10.1038/nature06536
http://dx.doi.org/10.1098/rsif.2014.0950
http://dx.doi.org/10.1073/pnas.0508391103
http://dx.doi.org/10.1126/science.1090727
http://dx.doi.org/10.1126/science.1090727
http://dx.doi.org/10.1046/j.1365-294X.2003.02051.x
http://dx.doi.org/10.1046/j.1365-294X.2003.02051.x
http://dx.doi.org/10.1371/journal.pone.0088702
http://dx.doi.org/10.1371/journal.pone.0088702
http://dx.doi.org/10.1038/nrg2583
http://dx.doi.org/10.1073/pnas.0500057102
http://dx.doi.org/10.1098/rstb.2012.0250
http://dx.doi.org/10.1038/nature12060
http://dx.doi.org/10.1038/nature12060
http://dx.doi.org/doi:10.1038/ncomms5116
http://dx.doi.org/doi:10.1038/ncomms5116
http://dx.doi.org/10.1126/science.1245200
http://dx.doi.org/10.1126/science.1245200
http://dx.doi.org/10.1371/journal.pone.0064317
http://dx.doi.org/10.1038/nature04292
http://dx.doi.org/10.1038/nature06958
http://dx.doi.org/10.1371/journal.pmed.1001083
http://dx.doi.org/10.1126/science.1223467
http://dx.doi.org/10.1186/1475-2875-13-52
http://dx.doi.org/10.1099/vir.0.043182-0
http://dx.doi.org/10.1111/j.1365-294X.2009.04410.x


rspb.royalsocietypublishing.org
Proc.R.Soc.B

282:20142878

9
24. Slatkin M. 1993 Isolation by distance in equilibrium
and non-equilibrium populations. Evolution 47,
264 – 279. (doi:10.2307/2410134)

25. Neigel JE, Ball R, Avise JC. 1991 Estimation of single
generation migration distances from geographic
variation in animal mitochondrial DNA. Evolution
45, 423 – 432. (doi:10.2307/2409675)

26. Sanmartı́n I, Van Der Mark P, Ronquist F. 2008
Inferring dispersal: a Bayesian approach to
phylogeny-based island biogeography, with special
reference to the Canary Islands. J. Biogeogr 35,
428 – 449. (doi:10.1111/j.1365-2699.2008.01885.x)

27. Duffy S, Shackelton LA, Holmes EC. 2008 Rates of
evolutionary change in viruses: patterns and
determinants. Nat. Rev. Genet. 9, 267 – 276. (doi:10.
1038/nrg2323)
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