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Objective: The study investigated microRNA-152-3p-mediated autophagy and sensitivity of paclitaxel-resistant ovarian cancer cells.
Methods: The miR-152-3p mimics and miR-152-3p inhibitor were transfected in A2780 cells and A2780T cells, and the scrambled 
sequences were transfected as a negative control group, the transfection efficiency was detected by qPCR technology. MTT was used 
to detect the proliferation and IC50 value of the cells after transfection. The expression of target proteins in A2780 cells and A2780T 
cells were detected by qPCR; The expression of phosphatase and tensin homolog (PTEN) and ATG4D after transfection were analyzed 
by Western blot. The knockdown efficiency of PTEN was detected by reverse qRT-PCR, MTT and Western blot.
Results: The expression level of miR-152-3p in A2780T cells was 52-fold higher than that in A2780 cells according to the results of 
qPCR. Downregulation of miR-152-3p reversed PTX-induced autophagy, inhibited cell proliferation and apoptosis, and reduced drug 
resistance in A2780T cells. Moreover, PTEN appeared to be a potential target of miR-152-3p, and low expression levels of miR-152- 
3p increased PTX sensitivity by downregulating PTEN in vitro.
Conclusion: PTEN may be a novel therapeutic target gene for patients with PTX-resistant ovarian cancer. These findings provide 
a potential translational framework for developing novel therapeutic strategies to overcome paclitaxel resistance in ovarian cancer.
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Introduction
Ovarian cancer ranks as one of the most fatal malignancies affecting women worldwide,1 with chemotherapy being the 
cornerstone of treatment. Despite paclitaxel’s status as a first-line treatment, resistance is common,2 often leading to 
relapse and increased mortality.3 This highlights the urgent need to elucidate the mechanisms underlying paclitaxel 
resistance in ovarian cancer.

Autophagy, a process central to cellular homeostasis,4–6 plays contrasting roles in cancer.7 Initially, it serves as 
a tumor suppressor, preventing oncogenic transformation and shielding healthy cells from malignant progression.8 Yet, as 
cancer advances, autophagy can support tumor growth and survival, contributing to therapeutic resistance and tumor 
resilience. This dualistic nature makes autophagy a compelling target for cancer therapy, particularly in overcoming drug 
resistance.9

Recent studies underscore the importance of autophagy in the context of chemotherapy resistance. For instance, 
Zhang et al reported that TXNDC17-mediated regulation of BECN1 induces autophagy, conferring paclitaxel resistance 
in ovarian cancer.10 Furthermore, interactions between PTEN and autophagy-related proteins like BECN1 have been 
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implicated in the resistance mechanisms of epithelial ovarian cancer.11–13 Moreover, recent research has demonstrated 
that PTEN interacts with autophagy-related pathways, which may contribute to cancer cell survival and 
chemoresistance.14 The modulation of autophagy by miRNAs, including their influence on drug resistance and cancer 
progression, is increasingly recognized. For example, Xu et al demonstrated that miR-541 sensitizes hepatocellular 
carcinoma to sorafenib through the ATG2/RAB1B axis.15 Similarly, Huang et al found that miR-93 regulates multiple 
autophagy regulators, affecting glioma resistance to temozolomide.16

Notably, miR-152-3p has been implicated in the proliferation and metastasis of thyroid cancer cells, including the 
modulation of ERBB3 expression.17 However, the precise mechanisms by which miR-152-3p modulates autophagy- 
related resistance to paclitaxel in ovarian cancer remain uncharted. Our study aims to fill this gap by exploring the role of 
miR-152-3p in paclitaxel resistance, particularly its regulatory effects on PTEN and ATG4D, which may be pivotal in 
autophagy-mediated drug resistance pathways in ovarian cancer cells.

Materials and Methods
Bioinformatic Analysis
Expression data for miR-152-3p was retrieved from GEO datasets (GSE53829 and GSE190245) and TCGA ovarian 
cancer cohort. Putative miR-152-3p targets were identified through an integrated analysis of multiple prediction 
algorithms: miRDB (v6.0), TargetScan (v7.2), and miRWalk (v3.0). These predictions were cross-referenced with 
autophagy-related genes from the Human Autophagy Database (HADb). Based on experimental validation of elevated 
miR-152-3p expression in paclitaxel-resistant cells, we prioritized ATG4D and PTEN for functional studies after 
confirming their significant correlation (|r| > 0.1, StarBase v3.0) with miR-152-3p expression.

Cell Culture
The human ovarian cancer cell line A2780 and its paclitaxel-resistant variant A2780T were obtained from Shanghai Mei 
Xuan Biotechnology Co., Ltd. (Shanghai, China). The parental A2780 cells were maintained in RPMI-1640 medium 
(Invitrogen; Thermo Fisher Scientific, Inc.) supplemented with 10% fetal bovine serum (FBS; Gibco; Thermo Fisher 
Scientific, Inc). To maintain the drug-resistant phenotype, A2780T cells were cultured in the same medium with the 
addition of paclitaxel (PTX; Sigma-Aldrich). The PTX concentration was gradually increased from 100 ng/mL to 400 ng/ 
mL to achieve approximately 20-fold resistance compared to the parental cells. All cells were maintained at 37°C in 
a humidified atmosphere containing 5% CO2.

MTT Assay
Cell viability was determined by MTT assay (Sigma-Aldrich; Merck KGaA). The cells were seeded into 96-well plates 
(1x104 cells/mL) for 24 h. Based on both pre-experimental results and prior research findings,18,19 A2780/A2780T cells 
were treated with paclitaxel at a concentration gradient of 20, 15, 10, 5, 2.5 μg/mL. A2780/A2780T cells were treated 
with paclitaxel at a concentration gradient of 20,15,10, 5, 2.5 μg/mL. After 48 h, 50 μL MTT (Sigma-Aldrich; Merck 
KGaA) was added to each well and incubated for additional 4 h. Finally, dimethyl- sulfoxide (150 μL) was added to each 
well, and the absorbance of the cells at 570 nm was measured using a microplate reader (SpectraMax, Molecular 
Devices). Cell viability was calculated as the absorbance of treated cells relative to that of untreated cells.

Reverse Transcription-Quantitative PCR (RT-qPCR)
Total RNA was extracted from A2780T and A2780 cells using Trizol (Shanghai GenePharma Co., Ltd.) according to the 
the manufacturer’s instructions. Reverse transcription of RNA to cDNA was performed with EasyScript One-Step 
Removal and cDNA Synthesis SuperMix (TransGen Biotech, China). The expression levels of mature miR-152-3p 
and the mRNA levels of PTEN and ATG4D were quantified by RT-qPCR employing SYBR Green Master Mix 
(TransGen Biotech, China). The thermocycling conditions were as follows: Initial denaturation at 94°C for 30s, followed 
by 45 cycles of 94°C for 5 s and 60°C for 30s. U6 was used as the internal control for normalization of miR-152-3p, 
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while GAPDH served as the internal control for normalization of mRNAs expression. The 2−ΔΔCt method was used to 
quantify the mRNA level. The primers used in RT-qPCR are shown in [Table 1].

Cell Transfection
A2780 and A2780T cells were transfected using Lipofectamine 2000 (Invitrogen, USA) according to manufacturer’s 
protocol. miR-152-3p mimics, inhibitors, and their respective controls (double-stranded NC mimic and single-stranded 
NC inhibitor) were obtained from GenePharma. Cells were seeded at 3.0×105 cells/mL in six-well plates and transfected 
at 60–70% confluency with 100 nM of the oligonucleotides. Briefly, transfection complexes were prepared by combining 
oligonucleotides with Lipofectamine 2000 in serum-free medium and incubated for 20 min at room temperature. 
Following 6 h of transfection, the medium was replaced with complete growth medium. Cells were cultured for an 
additional 24 h before RNA or protein extraction.20 Transfection efficiency was validated by qRT-PCR. Oligonucleotide 
sequences are listed in [Table 2].

Transmission Electron Microscopy
Cells (A2780 and A2780T) were treated with paclitaxel (400 ng/mL) for 24 hours, reaching a density of 80–90%. The 
treated cells were fixed in 2.5% glutaraldehyde at 4°C for 24 hours, followed by three washes with phosphate-buffered 
saline (PBS). Next, the samples were fixed in 1% osmium tetroxide for 2 hours, dehydrated through a graded ethanol 
series, and embedded in epoxy resin 618. Ultrathin sections (~50 nm) were obtained using an ultramicrotome and stained 
with 3% uranyl acetate and lead citrate which are widely used contrast agents compatible with epoxy resin-embedded 
samples. The samples were examined under a transmission electron microscope (JEM-1200EX; JEOL, Ltd.) at varying 
magnifications (×10,000, ×25,000, ×200,000). Autophagosomes were identified as double-membrane structures contain-
ing engulfed cellular materials such as mitochondria or endoplasmic reticulum fragments.21

Table 1 The Primers Used in qRT-PCR

Gene name Primer Sequences

miR-152-3p Forward: 5ʹ-TCCGCTCAGTGCATGACAG-3ʹ
Reverse: 5ʹ-TATGGTTGTTCACGACTACTTCAC-3ʹ

PTEN Forward: 5ʹ-TGGATTCGACTTAGACTTGACCT-3ʹ
Reverse: 5ʹ-GCGGTGTCATAATGTCTCTCAG-3ʹ

ATG4D Forward: 5ʹ-CGCTAGTGGCACACATCCTC-3ʹ
Reverse: 5ʹ-TCACGCAGGGCACATACAC-3ʹ

GAPDH Forward: 5ʹ-CGACAGTCAGCCGCATCTT-3ʹ
Reverse: 5ʹ-CCAATACGACCAAATCCGTTG-3ʹ

U6 Forward: 5ʹ-CGCTTCGGCAGCACATATAC-3ʹ
Reverse: 5ʹ-TTCACGAATTTGCGTGTCATC-3ʹ

Table 2 RNA Oligo Synthesis

Gene name Primer Sequences

miR-152-3p mimic Sense: 5ʹ-UCAGUGCAUGACAGAACUUGG-3ʹ
Antisense: 5ʹ-AAGUUCUGUCAUGCACUGAUU-3ʹ

NC mimic Sense: 5ʹ-UUCUCCGAACGUGUCACGUTT-3ʹ
Antisense: 5ʹ-ACGUGACACGUUCGGAGAATT-3ʹ

si PTEN Sense: 5ʹ-CGGGAAGACAAGUUCAUGUTT-3ʹ
Antisense: 5ʹ-ACAUGAACUUGUCUUCCCGTT-3ʹ

NC Sense: 5ʹ-UUCUCCGAACGUGUCACGUTT-3ʹ
Antisense: 5ʹ-ACGUGACACGUUCGGAGAATT-3ʹ

miR-152-3p inhibitor Sense: 5ʹ-CCAAGUUCUGUCAUGCACUGA-3ʹ
NC inhibitor Sense: 5ʹ-CCAAGUUCUGUCAUGCACUGA-3ʹ
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Flow Cytometry
Cell apoptosis was examined by flow cytometry using annexin V-fluorescein isothiocyanate (FITC)/propidium iodide 
(PI) staining according to the manufacturer’s instructions (KeyGEN BioTECH, KGA108). Briefly, cells were collected at 
the prespecified time points, washed twice with cold PBS and centrifuged at 4°C and 1,000 x g for 5 min. Next, cells 
were resuspended in 1X Annexin V Binding Buffer for 15 min. Subsequently, 5 µL Annexin V-FITC was added to 
100 µL cell suspension, and 15 min later, 5 µL PI was added for fluorescence-activated cell sorting (FACS) analysis in 
a FACS Calibur flow cytometer (BD Biosciences).

Western Blot
Western blot analysis was performed as described previously.22 In brief, cells were rapidly harvested using a cell scraper, 
followed by centrifugation in a high-speed refrigerated centrifuge at 4°C and 12,000 x g for 15 min. The supernatant was 
removed, and the total protein concentration was determined using the BCA protein assay kit. Proteins (20 µg per lane) were 
then loaded into each lane and separated using 10% SDS-PAGE gels. After separation, proteins were transferred to 0.45 µm 
PVDF membranes and blocked with 5% non-fat milk for one hour at room temperature. The membranes were subsequently 
incubated with primary antibodies overnight at 4°C. The primary antibodies used in this study are as follows: P Glycoprotein / 
ABCB1 antibody (WL02395, Wanleibio Co., Ltd)., GSTP1 antibody (66715-1-Ig, Proteintech), Bax antibody (#2772, Cell 
Signaling Technology), Bcl-2 antibody(#3498, Cell Signaling Technology), LC3 α/β antibody (WL01506, Wanleibio Co., Ltd)., 
p62 antibody (AF5384, Affinity), PTEN antibody (WL01901, Wanleibio Co., Ltd)., ATG4D Polyclonal Antibody (ABP56793, 
Abbkine), MRP1 antibody (#72202, Cell Signaling Technology), ABCG2 antibody (#42078, Cell Signaling Technology), anti- 
GAPDH antibody (ab181602, Abcam). The next day, the membranes were incubated with appropriate secondary antibodies at 
room temperature for 1 h and the signals were imaged by ChemiDoc XRS+ system (Bio-Rad, USA). Grey scale values of each 
blot were measured by ImageJ software, and the intensity of each band was normalized to the loading control GAPDH.

Statistical Analysis
Statistical analyses were conducted using GraphPad Prism software (version 8.2.1.1; GraphPad; Dotmatics). Data normality was 
evaluated using the Shapiro–Wilk test. For comparisons between two groups, unpaired Student’s t-test was used for normally 
distributed data. For multiple group comparisons, one-way ANOVA was performed, followed by Dunnett’s t-test for compar-
isons against a single control group or Fisher’s protected least significant difference (PLSD) test for pairwise comparisons among 
all groups. The threshold for statistical significance was set at p < 0.05, reflecting a widely accepted standard for balancing the 
risks of Type I and Type II errors. Adjustments for multiple comparisons were applied where necessary to minimize false- 
positive results.

Sample sizes were calculated based on preliminary experiments to achieve 80% statistical power at α = 0.05, considering 
expected effect sizes and variability. Data are presented as mean ± standard deviation (SD) from at least three independent 
experiments unless otherwise stated. For correlation analyses, Pearson’s correlation coefficient was calculated, with 
significance set at p < 0.05. Spearman’s rank correlation was applied for non-normally distributed data, where applicable.

Ethics Statement
This study was exempt from ethical review according to Article 32 (items 1 and 2) of the Measures for Ethical Review of 
Life Science and Medical Research Involving Human Subjects (National Health Commission of China, February 18, 
2023), as it utilized existing publicly available data that was previously collected with appropriate ethical approvals and 
patient consent.

Results
miR-152-3p Is Upregulated in Ovarian Cancer Tissues and Is Associated With Ovarian 
Cancer Resistance to PTX
It has been suggested that miRNAs may regulate autophagic activity by directly targeting autophagy-related proteins or 
pathways.23 Based on literature reviews and databases, the present study screened various miRNAs that were reported to 
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be differentially expressed in ovarian cancer tissues compared to normal tissues. To investigate miRNAs involved in 
ovarian cancer autophagy regulation, we performed differential expression analysis using the GSE53829 dataset (14 
normal ovarian and 27 cancer tissue samples). Using selection criteria of P < 0.05 and |log2FC| > 0.5, we identified 639 
differentially expressed miRNAs, comprising 248 upregulated and 381 downregulated miRNAs [Figure 1A]. Notably, 
miR-152-3p showed significant upregulation in ovarian cancer tissues compared to normal controls [Figure 1B]. To 
explore the relationship between miR-152-3p and paclitaxel resistance, we analyzed the GSE190245 dataset, which 
includes expression profiles of parental A2780 cells and their paclitaxel-resistant derivatives maintained at 300 or 1,100 
ng/mL PTX. Using stringent criteria (P < 0.05, |log2FC| > 1), we identified consistently differentially expressed miRNAs 
across both PTX concentrations. miR-152-3p emerged as significantly upregulated in PTX-resistant cells compared to 
parental cells [Figure 1C and D]. These findings demonstrate miR-152-3p upregulation in both ovarian cancer tissues and 
PTX-resistant cells, suggesting its potential role in paclitaxel resistance.

miR-152-3p Expression Correlates With Tumor Size in Ovarian Cancer
To evaluate the clinical significance of miR-152-3p in ovarian cancer, we analyzed miRNA expression profiles and 
clinical data from 424 ovarian cancer patients in the TCGA database. Patients were stratified into high and low 
expression groups based on median miR-152-3p levels. Statistical analysis revealed a significant correlation between 
miR-152-3p expression and tumor volume [Table 3].

A2780T Is a PTX-Resistant Ovarian Cancer Cell Line
PTX-resistant ovarian cancer cells were purchased directly from Shanghai Meixuan Biotechnology Co., Ltd. First, any 
morphological differences between A2780T and the parental cell line A2780 were assessed, and no significant difference 
between the two cell lines was found [Figure 2A]. Next, the half-maximal inhibitory concentration (IC50) of A2780T and 
A2780 cells was determined via MTT assay, and the IC50 value of A2780T cells was significantly higher than that of 
A2780 cells [Figure 2B and C]. P-glycoprotein (P-gp), encoded by the ABCB1 gene, is key in cancer drug resistance, 
expelling chemotherapeutic drugs from cells and lowering their effectiveness.24 It binds drugs and ATP to promote drug 
efflux, leading to reduced drug levels within cells and resistance. P-gp is prevalent in drug-resistant cancer cells.25,26 

Thus, the expression of P-gp in A2780T and A2780 cells was determined. Compared with A2780 cells, P-gp was highly 
expressed in A2780T cells [Figure 2D and E]. The results demonstrated that A2780T were PTX-resistant ovarian cancer 
cells.

miR-152-3p enhances proliferation and PTX resistance while suppressing apoptosis in To validate our bioinformatics 
findings, we first compared miR-152-3p expression between A2780 and A2780T cells. qRT-PCR analysis revealed a 52- 
fold higher expression in A2780T cells compared to A2780 cells [Figure 3A]. To investigate whether miR-152-3p 
modulation affects PTX sensitivity in A2780T cells, cells were transfected with miR-152-3p mimic, miR-152-3p 
inhibitor or miR-NC, followed by PTX treatment. RT-qPCR was used to verify the transient transfection efficiency of 
miR-152-3p [Figure 3B and C]. To explore the functional role of miR-152-3p in ovarian cancer, MTT assay was 
employed to assess the proliferation of A2780T and A2780 cells after transfection. As expected, low expression of miR- 
152-3p inhibited cell proliferation [Figure 3D and E]. In drug sensitivity assays, miR-152-3p inhibition reduced the IC50 
value of A2780T cells by approximately 50%, while its overexpression increased the IC50 value of A2780 cells by about 
60% [Figure 3F–I]. Western blot analysis showed that miR-152-3p inhibition decreased expression of drug-resistance 
markers, with GSTP1 and P-gp levels reduced by 28% and 61%, respectively. [Figure 3J–L]. Conversely, miR-152-3p 
overexpression elevated these markers in A2780 cells, although notably, P-gp was undetectable in parental A2780 cells 
[Figure 3M and N].

Flow cytometry analysis of cell death revealed that miR-152-3p inhibition enhanced PTX-induced apoptosis and 
secondary necrosis in A2780T cells, as indicated by increased Annexin V-positive/PI-negative and Annexin V/PI double- 
positive populations, respectively [Figure 4A and B]. In A2780 cells, overexpression of miR-152-3p by transfection with 
miR-152-3p mimics decreased PTX-induced apoptosis. [Figure 4C and D].

Furthermore, the expression of Bax, Bcl-2 were detected by Western blot. The results showed that, when miR-152-3p was 
suppressed, the expression of Bax increased and was accompanied by a decrease in Bcl-2 expression. The survival advantage of 
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resistant cells under paclitaxel treatment is reinforced by these protein expression changes, which suggest a shift toward anti- 
apoptotic mechanisms.27 [Figure 4E–G]. However, after overexpression of miR-152-3p in A2780, the opposite trend was shown 
[Figure 4H–J]. These results indicated that miR-152-3p was capable of sensitizing ovarian cancer cells to paclitaxel treatment. In 
addition, the knockdown of miR-152-3p inhibited proliferation and promoted apoptosis of paclitaxel-resistant ovarian cancer 
cells.

Figure 1 miR-152-3p is upregulated in ovarian cancer tissues and PTX-resistant cells (A) Heatmap showing differential miRNA expression between normal ovarian tissues 
(n = 14) and ovarian cancer tissues (n = 27) from GSE53829 dataset. A total of 639 differentially expressed miRNAs were identified (P < 0.05, |log2FC| > 0.5). (B) Box plot 
showing the significant upregulation of miR-152-3p in ovarian cancer tissues compared to normal tissues (*P < 0.05). (C) Heatmap depicting 25 differentially expressed 
miRNAs (11 upregulated and 14 downregulated) between parental A2780 cells and PTX-resistant cells maintained at 300 ng/mL or 1,100 ng/mL PTX from GSE190245 
dataset (P < 0.05, |log2FC| > 1). (D) Box plot showing the progressive upregulation of miR-152-3p in PTX-resistant cells compared to parental cells (**P < 0.01 vs 0 ng/mL; 
*P < 0.05 vs 300 ng/mL). Data are presented as mean ± SD. 
Abbreviations: miR, microRNA; PTX, paclitaxel.
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PTX Induces Autophagy in PTX-Resistant Ovarian Cancer Cells
The ability of PTX to induce autophagy has been reported in the literature.28 The present study further investigated 
whether PTX induces autophagy in A2780T cells. In the process of autophagy induction, the non-lipid form of LC3 
(LC3-I) is combined with phosphatidylethanolamine and then converted into the lipid form of LC3 (LC3II), which is 
associated with the biogenesis of autophagosomes.29 In addition to LC3II, the receptor SQSTM1 (p62) is also used as 
a marker for autophagy induction, since p62 protein binds to LC3 and the ubiquitinated substrate is degraded during 
autophagy.30 As LC3II is easily degraded on the lysosome, the expression of LC3II and p62 in the presence or absence of 
the lysosomal inhibitor chloroquine (CQ) was detected. It was found that, when the cells were treated with different 
concentrations of PTX, the expression of LC3II in A2780T cells increased significantly, while the expression of p62 
decreased, and in the presence of CQ, the expression of LC3II and p62 both increased, suggesting autophagy induction 
occurs [Figure 5A–C, G, I and J]. There were no obvious changes in A2780 cells. [Figure 5D–F, H, K and L]. 
Transmission electron microscopy (TEM) images revealed the presence of autophagosomes in both A2780 and 
A2780T cells, with distinct differences in their abundance and morphology upon treatment with paclitaxel (PTX, 400 
ng/mL for 24 hours). Autophagosomes were identified by their characteristic double-membrane structures and enclosed 
contents, such as fragmented mitochondria and endoplasmic reticulum. In A2780T cells, TEM analysis suggested an 
apparent increase in the number of autophagosomes in A2780T cells compared to A2780 cells [Figure 6].These data 
suggested that upon PTX induced autophagy in upon PTX -resistant ovarian cancer.

Knockdown of miR-152-3p Inhibits PTX-Induced Autophagy in A2780T Cells, and 
PTEN, ATG4D are Target Genes of miR-152-3p
The present study further validated the effects of miR-152-3p on autophagy in A2780T cells. The expression of miR-152- 
3p in the A2780T cells was knocked down by transfection, and the expression of LC3II and p62 was detected by Western 
blot. Compared with the NC group, the LC3II expression decreased, while the expression of p62 increased after 

Table 3 Relationship Between miR-152-3p Expression and Clinicopathological Characteristics 
of Ovarian Cancer Patients

Characteristics miR-152-3p Expression Total (N=424) a P value FDR

High (N=212) Low (N=212)

Clinical Stage 0.5 0.96
Stage IIA 2 (0.47%) 1 (0.24%) 3 (0.71%)

Stage IIB 3 (0.71%) 1 (0.24%) 4 (0.94%)

Stage IIC 6 (1.42%) 9 (2.12%) 15 (3.54%)
Stage IIIA 2 (0.47%) 4 (0.94%) 6 (1.42%)

Stage IIIB 5 (1.18%) 11 (2.59%) 16 (3.77%)

Stage IIIC 156 (36.79%) 154 (36.32%) 310 (73.11%)
Stage IV 38 (8.96%) 32 (7.55%) 70 (16.51%)

Sample type 0.28 0.85

Primary Tumor 206 (48.58%) 210 (49.53%) 416 (98.11%)
Recurrent Tumor 6 (1.42%) 2 (0.47%) 8 (1.89%)

Tumor size 0.0059** 0.02*

No macroscopic disease 39 (9.20%) 56 (13.21%) 95 (22.41%)
1–10 mm 102 (24.06%) 113 (26.65%) 215 (50.71%)

11–20 mm 22 (5.19%) 8 (1.89%) 30 (7.08%)

>20 mm 49 (11.56%) 35 (8.25%) 84 (19.81%)
Vital status 0.48 0.96

DECEASED 139 (32.78%) 131 (30.90%) 270 (63.68%)

LIVING 73 (17.22%) 81 (19.10%) 154 (36.32%)

Notes: **P < 0.01, *P < 0.05, a Chi-square test.
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transfection of miR-152-3p inhibitor [Figure 7A–C]. It is worth noting that the expression levels of LC3II and p62 were 
reduced by treatment with 400 ng/mL PTX, indicating decreased autophagic activity. The above experiments showed that 
inhibition of miR-152-3p suppressed the autophagy of A2780T cells, suggesting that miR-152-3p functions as a positive 
regulator of autophagy in A2780T cells.

Figure 2 Characterization of paclitaxel-resistant ovarian cancer cells (A2780T). (A) Representative phase-contrast microscopy images showing morphology of A2780 and 
A2780T cells. (B and C) Cell viability and IC50 values of A2780 and A2780T cells determined by MTT assay. (D and E) P-glycoprotein expression levels analyzed by Western 
blot, normalized to GAPDH. Data are presented as mean ± SD. ***P < 0.001 vs A2780 cells.
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Figure 3 miR-152-3p modulates cell proliferation, apoptosis and paclitaxel sensitivity in ovarian cancer cells. (A) Relative miR-152-3p expression in A2780T versus A2780 cells 
quantified by RT-qPCR. (B and C) Validation of miR-152-3p inhibition or overexpression 24h post-transfection by RT-qPCR in (B) A2780T cells transfected with miR-152-3p inhibitor 
and (C) A2780 cells transfected with miR-152-3p mimic. (D and E) Cell proliferation assessed in (D) A2780T cells transfected with miR-152-3p inhibitor and (E) A2780 cells 
transfected with miR-152-3p mimic. (F–I) Cell viability measured by MTT assay after paclitaxel treatment at various concentrations for 48h in transfected cells. (J–L) Expression of drug 
resistance-related proteins P-gp and GSTP1 analyzed by Western blot after miR-152-3p inhibition. (M and N) P-gp and GSTP1 protein levels after miR-152-3p overexpression. Data are 
presented as mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001 vs NC; #P < 0.05 vs NC+PTX. 
Abbreviations: NC, negative control; PTX, paclitaxel; miR, microRNA; SD, standard deviation.
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Figure 4 Impact of miR-152-3p on cellular apoptosis. (A and B) Flow cytometric analysis of apoptosis in A2780T cells transfected with miR-152-3p inhibitor and treated 
with paclitaxel (400 ng/mL, 24h). (C and D) Apoptosis analysis in A2780 cells transfected with miR-152-3p mimic followed by paclitaxel treatment. Apoptotic cells were 
quantified as the sum of Annexin V-positive and Annexin V/PI double-positive cells. (E–G) Western blot analysis of apoptosis-related proteins Bax and Bcl-2 in A2780T cells 
after miR-152-3p inhibition. (H–J) Bax and Bcl-2 protein levels in A2780 cells following miR-152-3p overexpression. Data represent mean ± SD from three independent 
experiments. *P < 0.05, **P < 0.01 vs NC; #P < 0.05, ##P < 0.01 vs NC+PTX. 
Abbreviations: NC, negative control; PTX, paclitaxel; miR, microRNA; ANXA5, annexin V; PI, propidium iodide; SD, standard deviation.
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Figure 5 Paclitaxel induces autophagic flux in PTX-resistant cells. (A–C) Western blot analysis of LC3-II and p62 expression in A2780T cells treated with increasing concentrations 
of paclitaxel (0–600 ng/mL, 24h). (D–F) LC3-II and p62 protein levels in A2780 cells under identical treatment conditions. (G–J) Analysis of autophagic flux in A2780T cells treated 
with paclitaxel in the presence of chloroquine (20 nM). (K–L) Corresponding analysis in A2780 cells. Data are presented as mean ± SD. *P < 0.05, **P < 0.01 vs negative control. 
Abbreviations: PTX, paclitaxel; LC3, light chain 3; CQ, chloroquine.
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To elucidate the mechanism by which miR-152-3p regulates autophagy, we conducted comprehensive bioinformatic 
analyses using multiple prediction tools (TargetScan, miRDB, and miRWalk) integrated with the Human Autophagy 
Database (HADb). This analysis identified four autophagy-related genes as potential targets: ATG4D, PTEN, CANX, and 
GRID2 [Figure 7D]. Correlation analysis using StarBase v3.0 platform and filtering for |r| > 0.1 further narrowed our 
focus to ATG4D and PTEN [Figure 7E].

The ATG4 family plays a role in autophagosome biogenesis, transporting contents to lysosomes,20 and PTEN, 
a known autophagy regulator, emerged as promising candidates.31 While PTEN is traditionally considered a tumor 
suppressor, recent evidence suggests context-dependent oncogenic functions, particularly when modified by Nedd8 and 
localized to the nucleus.32 Experimental validation revealed significantly higher expression of both ATG4D and PTEN in 
A2780T cells compared to A2780 cells [Figure 7F and G]. Notably, miR-152-3p knockdown in A2780T cells led to 

Figure 6 Observation of autophagosomes in A2780 and A2780T cells under transmission electron microscopy (TEM). Yellow boxes indicate autophagosomes, identified by 
their characteristic double-membrane structures and the presence of engulfed cellular components. The blue area represents A2780 cells treated with 400 ng/mL paclitaxel 
(PTX) for 24 h, while the pink area represents A2780T cells treated with 400 ng/mL PTX for 24 hours. Images are presented at different magnifications: ×10,000 in the left 
panel, ×25,000 in the middle panel, and ×200,000 in the right panel. Scale bars: 2 µm in the left panel, 500 nm in the middle panel, and 100 nm in the right panel. 
Abbreviation: PTX, paclitaxel.
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Figure 7 miR-152-3p knockdown suppresses paclitaxel-induced autophagy in A2780T cells, with PTEN and ATG4D identified as miR-152-3p target genes. (A–C) After 
silencing of miR-152-3p, the changes in expression of the autophagy-related proteins LC3II and p62 were detected by Western blot. Data shown in (B) and (C) represent 
quantification from three independent biological replicates (n=3). The data are presented as the mean ± standard deviation. (D) Venn diagram showing the intersection of 
predicted miR-152-3p target genes across four databases (Human Autophagy Database, TargetScan, miRDB, and miRWalk), identifying ATG4D, PTEN, CANX, and GRID2 as 
common targets. (E) Correlation analysis between miR-152-3p expression and ATG4D, PTEN, CANX, and GRID2 expression levels using the starBase platform. (F and G) 
RT-qPCR analysis comparing ATG4D and PTEN expression levels between A2780T and A2780 cells. (H and I) RT-qPCR validation of the regulatory relationship between 
miR-152-3p and its targets ATG4D and PTEN. (J–M) Western blot analysis showing PTEN and ATG4D protein levels following indicated treatments. Data are presented as 
mean ± standard deviation. *P < 0.05, **P < 0.01, ***P < 0.001 vs NC; #P < 0.05, ##P < 0.01 vs NC + PTX. 
Abbreviations: NC, negative control; miR, microRNA; PTX, paclitaxel; r, correlation coefficient; ATG4D, autophagy related 4D cysteine peptidase; PTEN, phosphatase and 
tensin homolog; CANX, calnexin; GIRD2, glutamate ionotropic receptor δ type subunit 2.
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decreased expression of both ATG4D and PTEN at both mRNA and protein levels [Figure 7H–M], suggesting an indirect 
positive regulatory relationship between miR-152-3p and these autophagy-related genes.

PTEN Knockdown Enhances PTX Sensitivity in A2780T Cells
High expression of PTEN in A2780T cells was verified in [Figure 7], and changes in IC50 and drug resistance proteins 
were evaluated by silencing the expression of miR-152-3p in A2780T cells. Transfection of PTEN-specific siRNA 
achieved approximately 60% reduction in PTEN expression compared to the negative control, as verified by RT-qPCR 
[Figure 8A]. MTT assays demonstrated that PTEN silencing significantly decreased the IC50 value of PTX in A2780T 
cells [Figure 8B and C]. Western blot analysis revealed concurrent downregulation of multiple drug resistance markers, 
including P-glycoprotein (P-gp), multidrug resistance protein 1 (MDR1), and ATP-binding cassette subfamily G member 
2 (ABCG2) [Figure 8D–F]. These findings indicate that PTEN depletion resensitizes resistant ovarian cancer cells to 
PTX treatment.

Figure 8 PTEN knockdown enhances PTX sensitivity in A2780T cells. (A) PTEN knockdown efficiency validated by RT-qPCR. (B and C) Cell viability and IC50 values 
assessed by MTT assay following PTEN silencing. (D–F) Expression analysis of drug resistance-associated proteins by Western blot after PTEN knockdown. Data are 
presented as mean ± SD. *P < 0.05, **P < 0.01 vs NC. 
Abbreviations: PTEN, phosphatase and tensin homolog; NC, negative control.
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Discussion
The miR-148/152 family, including miR-148a, miR-148b and miR-152, are involved in tumorigenesis and tumor 
progression,33 while the role and drug resistance mechanism of miR-152-3p have been reported in various cancers 
such as gastrointestinal cancer, endometrial cancer, liver cancer, breast cancer, prostate cancer and ovarian cancer.34–37 

miR-152-3p was upregulated in ovarian cancer and was correlated with malignant clinicopathological phenotype and 
overall survival, suggesting that miR-152-3p may become a novel marker for predicting ovarian cancer prognosis.38 

Analysis of TCGA, GEO online database found that miR-152-3p was highly expressed in ovarian cancer and PTX- 
resistant ovarian cancer cells, which was consistent with the results of in vitro experiments. There are limited studies on 
the mechanism responsible for the participation of miR-152-3p in ovarian cancer’s resistance to PTX. Cisplatin and 
paclitaxel are the first-line chemotherapeutic drugs for ovarian cancer treatment,39 and previous reports mostly focused 
on the mechanism of ovarian cancer resistance to cisplatin.40–43 For example, overexpression of miR-29c-3p partially 
inhibited autophagy and ovarian cancer resistance to cisplatin by downregulating the forkhead box protein P1/ATG14 
pathway, while miR-142-5p inhibited multiple anti-apoptotic genes such as X-linked inhibitor of apoptosis protein 
(XIAP) by targeting them. While it has been reported that miR-152-3p promotes the apoptosis of ovarian cancer cells,44 

but there is no report on the involvement of miR-152-3p in the resistance mechanism of ovarian cancer to PTX.
In the present study study, online gene databases (miRDB, miRwalk, TargetScan and autophagy-related database 

HADB) were used to collect miR-152-3p data and predict its autophagy-related target genes. The targeting association of 
ATG4D, PTEN, CANX, GRID2 and miR-152-3p was predicted through the starBase v3.0 platform, and through the 
correlation coefficient comparison, genes with a correlation coefficient |r| value >0.1 were selected. Thus, ATG4D and 
PTEN were identified as the predicted target genes of miR-152-3p, and subsequent biological experiments were 
conducted according to this theoretical foundation. It was found that, when the expression of miR-152-3p in A2780T 
cells was inhibited, the expression of ATG4D and PTEN was decreased. Although miRNAs are widely considered to 
negatively regulate downstream target genes, in vitro experiments have shown that miRNAs can also activate gene 
expression.45 G-rich RNA sequence binding factor 1-mediated miR-G-10 positively regulates the level of PIK3R3 and 
activates the AKT/NF-κB signaling pathway to inhibit the migration and invasion of cervical cancer.46 miR-G-1 
positively regulates the levels of transmembrane P24 trafficking protein 5 and lamin B1-mediated activation of 
autophagy, which promotes the sensitivity of cervical cancer to PTX.47 Previous studies have found that PTEN is 
negatively regulated by miR-152-3p in heart disease, diabetes, non-small cell lung cancer and other diseases.48–53 

However, the targeting relationship of miR-152-3p with PTEN and ATG4D in PTX-resistant ovarian cancer cells has 
not been reported to date. Previous studies have proposed a potential mechanism for miRNA to positively regulate genes: 
intragenic miRNA-host gene co-expression; miRNA targets and represses an intermediate gene, which in turn acts as 
a repressor of another gene related to the miRNA; a gene can act as a co-activator of transcription of miRNAs and target 
genes; super-enhancer-mediated co-expression of miRNA genes, and direct binding of miRNAs to regulatory regions of 
partner genes.54 The potential mechanism of miRNA’s positive regulation of genes provides a foundation for our future 
studies. The present findings indirectly indicate that the expression of PTEN and ATG4D may be positively regulated by 
miR-152-3p, although the specific regulatory association and potential mechanism need to be further verified by dual- 
luciferase reporter assay in future studies.

Autophagy is a survival adaptation mechanism that degrades excess or damaged organelles, large protein aggregates, 
and invading pathogens through the lysosomal system (vacuoles in plants and yeast), and is generally induced by stress 
stimuli such as hypoxia, energy or amino acid deprivation, radiation, drugs, etc. Autophagy plays an important role in the 
development of drug resistance in ovarian cancer therapy, and inhibition of autophagy enhances the antitumor effect of 
anticancer drugs on ovarian cancer.55,56 Therefore, an ideal anti-ovarian cancer drug should inhibit both cell proliferation 
and autophagy to reduce the resistance of ovarian cancer to chemotherapeutic drugs.57–60 ATG4D is a core protein of 
autophagy, and has been reported to play a role between autophagy and apoptosis.61 However, the specific effects of 
ATG4D on malignancies, including ovarian cancer, remain unclear. A previous study has reported that silencing ATG4D 
can significantly inhibit cell proliferation, promote cell apoptosis, and enhance the sensitivity of hepatocellular carcinoma 
to cisplatin, indicating that ATG4D can maintain the survival of cancer cells.62 PTEN is a tumor suppressor that is 
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frequently mutated in human cancers, and it has been reported that PTEN can promote cancer in the nucleus, and has 
multiple cytoplasmic and nuclear functions.63 PTEN induces autophagy and is associated with activation of the p-JUN- 
SESN2/AMPK pathway.64 A previous study found that the autophagy protein Beclin-1 may interact with PTEN to 
participate in drug resistance mechanisms and changes in macrophage activity observed in drug-resistant ovarian 
cancer.65 This study identifies miR-152-3p and PTEN as promising therapeutic targets.66 However, the roles and 
molecular mechanisms of ATG4D and PTEN in PTX-sensitive and drug-resistant ovarian cancer cells have not been 
reported to date. To further explore whether miR-152-3p can regulate autophagy by targeting PTEN to reverse the 
resistance of PTX-resistant cells to this drug, it is necessary to co-transfect miR-152-3p and PTEN in A2780T cells. After 
knockdown of PTEN in PTX-resistant ovarian cancer cells, both the resistance protein and IC50 were decreased, 
suggesting that PTEN may be a potential target for clinical treatment of ovarian cancer. While P-glycoprotein (P-gp) 
is well-established as the primary efflux transporter involved in paclitaxel resistance,67 we observed changes in MRP1 
and ABCG2 expression following PTEN silencing. Although paclitaxel may not be a direct substrate for MRP1 and 
ABCG2, these transporters have been implicated in multidrug resistance mechanisms through indirect pathways.24,68 The 
decreased expression of these transporters following PTEN silencing may reflect broader changes in cellular drug 
resistance mechanisms rather than direct paclitaxel transport, as PTEN has been shown to regulate multiple drug 
resistance pathways through PI3K/AKT signaling.69,70 Previous studies have demonstrated that PTEN can modulate 
ABC transporter expression and activity through the PI3K/AKT pathway,71 suggesting that PTEN’s role in drug 

Figure 9 Proposed mechanism of miR-152-3p-mediated paclitaxel resistance through PTEN-dependent autophagy regulation in ovarian cancer cells. In paclitaxel-resistant 
ovarian cancer cells (A2780T), elevated miR-152-3p expression and paclitaxel-induced autophagy are observed compared to sensitive cells (A2780). Bioinformatic analysis 
identified PTEN and ATG4D (autophagy related 4D cysteine peptidase) as autophagy-related target genes of miR-152-3p. miR-152-3p inhibition in A2780T cells led to 
increased PTEN expression, while PTEN silencing reduced both drug resistance-related protein expression and IC50 values. Furthermore, miR-152-3p downregulation 
suppressed cell proliferation, enhanced apoptosis, and decreased IC50 values. These findings demonstrate that miR-152-3p inhibition reverses paclitaxel resistance by 
targeting PTEN to suppress autophagy in paclitaxel-resistant ovarian cancer cells. 
Abbreviations: PTX, paclitaxel; miR, microRNA; PTEN, phosphatase and tensin homolog; IC50, half-maximal inhibitory concentration.
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resistance involves complex regulatory networks beyond direct regulation of specific drug transporters. Future studies are 
needed to elucidate the precise relationship between PTEN regulation and the expression of these drug resistance- 
associated proteins in ovarian cancer chemoresistance.

Conclusion
The present study highlighted the biological significance of miR-152-3p in ovarian cancer, and elucidates the molecular 
mechanism of PTX-resistant cells. Low levels of miR-152-3p reversed PTX resistance in PTX-resistant cells by targeting 
PTEN to inhibit autophagy [Figure 9]. The validation of these findings and their translational relevance in overcoming 
chemotherapy resistance would be achieved through the exploration of in vivo models and clinical samples. These 
findings provide new therapeutic targets and prognostic markers for individualized treatment of ovarian cancer. Future 
translation studies based on miR-152-3p postoperative trials and therapeutic interventions will benefit patients with 
ovarian cancer.
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