
Waldmann ﻿Genet Sel Evol  (2016) 48:42 
DOI 10.1186/s12711-016-0219-8

RESEARCH ARTICLE

Genome‑wide prediction using Bayesian 
additive regression trees
Patrik Waldmann*

Abstract 

Background:  The goal of genome-wide prediction (GWP) is to predict phenotypes based on marker genotypes, 
often obtained through single nucleotide polymorphism (SNP) chips. The major problem with GWP is high-dimen-
sional data from many thousands of SNPs scored on several thousands of individuals. A large number of methods 
have been developed for GWP, which are mostly parametric methods that assume statistical linearity and only addi-
tive genetic effects. The Bayesian additive regression trees (BART) method was recently proposed and is based on the 
sum of nonparametric regression trees with the priors being used to regularize the parameters. Each regression tree 
is based on a recursive binary partitioning of the predictor space that approximates an unknown function, which will 
automatically model nonlinearities within SNPs (dominance) and interactions between SNPs (epistasis). In this study, 
we introduced BART and compared its predictive performance with that of the LASSO, Bayesian LASSO (BLASSO), 
genomic best linear unbiased prediction (GBLUP), reproducing kernel Hilbert space (RKHS) regression and random 
forest (RF) methods.

Results:  Tests on the QTLMAS2010 simulated data, which are mainly based on additive genetic effects, show that 
cross-validated optimization of BART provides a smaller prediction error than the RF, BLASSO, GBLUP and RKHS meth-
ods, and is almost as accurate as the LASSO method. If dominance and epistasis effects are added to the QTLMAS2010 
data, the accuracy of BART relative to the other methods was increased. We also showed that BART can produce 
importance measures on the SNPs through variable inclusion proportions. In evaluations using real data on pigs, the 
prediction error was smaller with BART than with the other methods.

Conclusions:  BART was shown to be an accurate method for GWP, in which the regression trees guarantee a very 
sparse representation of additive and complex non-additive genetic effects. Moreover, the Markov chain Monte Carlo 
algorithm with Bayesian back-fitting provides a computationally efficient procedure that is suitable for high-dimen-
sional genomic data.

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
The concept of genome-wide prediction (GWP) was 
introduced by Meuwissen et al. [1] and refers to the idea 
that regression coefficients of single nucleotide polymor-
phism (SNP) markers can be summed to provide overall 
breeding values that are used for selection purposes. In 
order to identify SNPs that affect the phenotype of inter-
est, state of the art genome-wide marker data comprise 
several thousands, sometimes millions of SNPs. Since the 
number of individuals (n) is necessarily smaller than the 

number of SNPs (p), in the range of several hundreds to 
a few thousands, the consequence is a multivariate high-
dimensional statistical issue that is often referred to as 
the p ≫ n problem [2]. Joint modeling of the effects of all 
SNPs through standard multiple regression is not feasible 
because of the p ≫ n problem. For example, when p > n 
the ordinary least squares estimator is not consistent and 
will considerably over-fit the data resulting in a low pre-
diction accuracy [1]. Other problems with big genome-
wide datasets include spurious random correlations, 
incidental endogeneity, noise accumulation, and meas-
urement error [3]. Two popular statistical approaches 
to overcome some of these challenges are regularized 
regression and variable selection [4].
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Several studies have evaluated the predictive abili-
ties of different statistical and machine learning meth-
ods in genome-wide selection situations e.g. [5, 6], but 
relatively few studies have assessed both parametric and 
nonparametric methods under different genetic archi-
tectures. Howard et  al. [7] assessed the performance 
of ten parametric and four nonparametric methods in 
terms of accuracy and mean squared error using simu-
lated genetic architectures that consisted of purely addi-
tive or two-way epistatic interactions in an F2 population 
derived from crosses of inbred lines. They found that 
the parametric methods predicted phenotypic values 
less accurately when the underlying genetic architecture 
was entirely based on epistasis, whereas the parametric 
methods resulted in only slightly better predictions than 
nonparametric methods when the underlying genetic 
architecture was additive. However, they did not evaluate 
any regression tree method.

The classification and regression trees (CART) method 
was developed by Breiman et  al. [8]. A regression tree 
consists of three components: a tree structure with inter-
nal nodes, decision rules and a set of terminal nodes (also 
denoted leaves). Each observation moves down a tree 
according to the binary decision rules contained at each 
internal node until it reaches a terminal node. The termi-
nal nodes are parameterized such that each observation 
that is contained within a terminal node is assigned the 
same value. Tree size determines the complexity of the 
model and it needs to be tuned to reach the optimum 
size. Regression trees yield a flexible model that allows 
for nonlinearities and interaction effects in the unknown 
regression function, but single trees have problems with 
high variance, lack of smoothness and difficulty to cap-
ture additive structure [2].

The random forest (RF) method [9] is a collection of 
many trees, often hundreds to thousands, where the trees 
are constructed from nonparametric bootstrap samples 
of the original data. RF belongs to the category of ran-
domized independent regression trees, where trees are 
grown independently and predictions are averaged to 
reduce variance. Instead of finding the best split rule at a 
tree node by using all the predictor variables, RF selects 
at each node of each tree a random subset of variables 
that are used as candidates to find the best split rule for 
the node. The idea behind this is to de-correlate trees 
so that the average over the forest ensemble will have a 
lower variance. Thus, for RF choices need to be made 
on the number of bootstrap samples and the number of 
sub-samples of predictors for the decision rules. RF can 
also select and rank variables through different variable 
importance measures, which make it an important tool 
for genomic data analysis and bioinformatics research 
[10, 11].

Chipman et  al. [12] introduced a Bayesian version of 
CART (BCART), which samples trees from the pos-
terior distribution of trees using Markov chain Monte 
Carlo (MCMC) by proposing a number of possible alter-
ations to the current tree fit (e.g. growing or pruning a 
specific leaf node). MCMC tree sampling uses the same 
incremental moves that form the basis of CART. Unfor-
tunately, this means that the chains tend to get stuck in 
locally-optimal regions of the tree-space. As an alterna-
tive, Chipman et al. [13] developed the Bayesian additive 
regression trees (BART) method, which replaces a single 
tree parameter target with the sum of many small trees. 
BART belongs to the family of approaches based on addi-
tive regression trees, where each consecutive tree fits the 
residuals that are not explained by the remaining trees. 
Hence, BART is a sum-of-trees method, but is conceptu-
ally different from the random sampling approach of RF. 
Over-fitting is controlled by three prior distributions that 
result in simpler tree structures and less extreme esti-
mates at the leaves. Since BART mostly constructs very 
short trees, MCMC sampling is fast and mixes relatively 
well. Empirical studies have frequently shown that BART 
outperforms alternative prediction methods [14].

The purpose of this study was to review regression 
trees and RF, establish a connection between these meth-
ods and traditional genetics, introduce the BART meth-
odology, and compare the prediction properties of BART 
with those of the LASSO, Bayesian LASSO (BLASSO), 
genomic BLUP (GBLUP), reproducing kernel Hilbert 
space (RKHS) and RF methods. We used simulated data 
as well as real pig data to compare methods.

Methods
Regression trees
Consider a response vector y =

(

y1, . . . , yn
)T of n obser-

vations of a continuous trait and let the p predictors of 
the SNP values {0, 1, 2} be collected in the n× p design 
matrix X =

(

x1, . . . , xp
)

. A decision tree contains three 
parts, i.e. T = (⨅, j, τ). ⨅ is the structure of the tree with 
a finite collection of nodes where each node η has one 
parent node (except for the root node which has no par-
ents) and either zero or two children nodes. The nodes 
with zero children are denoted leaves or terminal nodes, 
and are located at the bottom of the tree. The nodes with 
children are called internal nodes and represent a binary 
split of the parent block, which is governed by a decision 
rule that is fully described by jη, which denotes the split-
ting variable at node η, and τη which refers to the loca-
tion of the split along variable jη. When a decision tree is 
applied to a regression problem, it is usually referred to 
as a regression tree [17]. Each leaf node in a regression 
tree is associated with a real-valued parameter µr that is 
collected into a vector µ = {µ1, . . . ,µR}. Each data vector 
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{

yi, xi
}

, where xi = xi1, . . . , xip, is associated with a cer-
tain leaf node via the function through tree T:

A regression tree for two SNPs and one phenotype, the 
genetic interpretation and response surface are described 
in Additional file 1.

Random forests
Single regression trees are easy to construct and still rela-
tively flexible, but there are some limitations. First, regres-
sion trees tend to have a high variance because of the 
binary splits and because the errors in the higher nodes 
are propagated downwards. Hence, a small change in the 
data may result in a very different tree structure, i.e. trees 
can be instable. Second, the terminal node surface is not 
smooth. This is a minor problem for SNP predictors that 
only have three possible values. However, it can be chal-
lenging in  situations where other continuous predictors 
are included in the model. Third, the binary splits will 
favor a non-additive structure (see [2] for further details).

In order to address the problems described above, Brei-
man [9] proposed the random forests (RF) methodology. 
The main idea of RF is to fit regression trees to boot-
strap samples of the original data, and then average the 
result. The trees are often grown until a minimum node 
size is reached and each tree is likely to have different 
split points and tree structures. For b = 1, . . . ,B boot-
strap samples 

{

yb,Xb

}

, the bth regression tree function 
is trained as:

and predictions for new test predictors X∗ are performed:

One of the key improvements in RF is the reduction in 
variance obtained by reducing the correlation between 
bootstrapped trees. This is achieved in the tree growing pro-
cess by choosing a random set of variables k for each binary 
split that is smaller than the total number of variables, typi-
cally k = √

p, p/3 or is inferred based on the minimum out-
of-bag (OOB) error. OOB is the mean prediction error on 
each training sample zi =

{

yi, xi
}

, using only the trees that 
do not have zi =

{

yi, xi
}

 in their bootstrap sample [2].

Bayesian additive regression trees
Chipman et  al. [13] introduced the Bayesian additive 
regression tree (BART) method, which as RF is a sum-
of-trees model, where each tree is constrained by three 
regularization Bayesian priors so that its size and effect 
are small. The BART model is defined as:

(1)f
(

yi, xi;T,µ
)

= µleafT(xi).

(2)fb( · ;Tb,µb),

(3)ŷ∗ = 1

B

B
∑

b=1

fb
(

X∗;Tb,µb

)

.

where the residuals are normally distributed with an 
error variance, i.e. e ∼ N

(

0, σ 2
e

)

, and M is the number of 
trees to be fitted. By assuming that the tree components 
(Tm,µm) are independent of each other and of σ 2

e , and 
that the terminal tree nodes of each tree are independent, 
it is sufficient to define three priors, p(Tm), p(µrm|Tm) 
and p

(

σ 2
e

)

.
p(Tm) consists of three parts, i.e. (1) the probability 

that a node at depth d is non-terminal which is speci-
fied as α(1+ d)β; (2) a uniform prior over the variables 
that are assigned for the interior splitting nodes; and (3) 
a uniform distribution over the splitting rule assignment 
at each interior node conditional on the splitting variable. 
Chipman et al. [13] showed that good default choices are 
α = 0.95 and β = 2.

The prior of the terminal node parameter conditional 
on the tree p(µrm|Tm) is the conjugate normal distribu-
tion N

(

µµ, σ
2
µ

)

. The hyperparameters µµ and σ 2
µ of this 

distribution are chosen so that min(y) = Mµµ − κ
√
Mσµ 

and max(y) = Mµµ + κ
√
Mσµ. Chipman et  al. [13] 

suggested an approach where y is rescaled so that 
min(y) = −0.5 and max(y) = 0.5, and set µµ = 0 and 
κ
√
Mσµ = 0.5. Moreover, κ = 2 seems to provide a good 

default choice that appropriately shrinks the terminal 
node parameters µrm towards zero. Larger values of κ and 
M result in more regularization of µrm.

The prior of the residual variance p
(

σ 2
e

)

 is the conju-
gate inverse scaled Chi square distribution σ 2

e ∼ ν�σ /χ
2
ν  . 

The hyper-parameters ν and �σ are chosen based on an 
upper bound of the residual standard deviation σ̂e. Chip-
man et al. [13] proposed two ways of estimating σ̂e, but 
only the approach that uses the sample standard devia-
tion of y is possible in the p ≫ n setting. The value of ν 
should be between 3 and 10, and the value of �σ to locate 
the qth quantile of the prior should be set at σ̂e. The 
default values are ν = 3 and q = 0.9. The number of trees 
M also needs to be set. Although it would be possible 
to estimate the optimal number of trees by assigning a 
hyper-prior to this number, Chipman et  al. [13] recom-
mended not doing this because it increases the compu-
tational load considerably. Based on simulated examples, 
they show that M = 200 provides very good prediction 
performance. An alternative is to choose the hyperpa-
rameters based on cross-validation.

BART MCMC algorithm and posterior prediction
An MCMC algorithm for BART can be constructed 
based on Gibbs sampling with some Metropolis–Hast-
ings steps [13]. Start by defining T−m as the set of all 

(4)y =
M
∑

m=1

f (X;Tm,µm)+ e,
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trees except tree Tm, and µ−m as the set of all terminal 
node parameters except µm. For each MCMC iteration, 
the Gibbs sampler draws successively from the following 
conditional distributions:

and

The M draws from (5) rely on the calculation of the 
partial residuals based on the fit that excludes the mth 
tree rm = y −

∑

l �=m
f (X;Tl ,µl) and then, in turn, sam-

ples from:

and

This algorithm is known as Bayesian backfitting [18]. 
In order to draw the trees in (7), a Metropolis–Hastings 
step is needed. The algorithm proposes new trees based 
on four possible changes of the current tree. The first 
move consists in growing a terminal node with probabil-
ity p = 0.25, the second move in pruning a pair of termi-
nal nodes with p = 0.25, the third move in changing an 
internal node with p = 0.4, and finally the fourth move in 
swapping a rule between parent and child with p = 0.1.

In (8), each of the entries in µm is sampled from a nor-
mal distribution, i.e. µrm ∼ N

(

0, 0.5/

(

κ
√
M
))

 where 
the default value of κ is as mentioned above. Finally, the 
residual variance is drawn from a scaled inverse Chi 
square distribution, σ 2

e ∼ Scale− inv− χ2
ν (ν, �σ ), where 

the default value of ν is equal to 3 and �σ is chosen to 
locate the 0.9 quantile of the prior at σ̂e.

The MCMC algorithm induces a sequence of 
t = 1, . . . ,T  posterior draws:

which can be used to perform mean predictions of new 
test data X∗:

Evaluation of predictions
Since the main goal of genomic prediction is to predict the 
future phenotypes based on available genotype and phe-
notype data, the full dataset was divided into training and 
test datasets. The training dataset was used to learn the 
model parameters, which thereafter predict the phenotypes 
of the test dataset (ŷ∗). To find the best model, the mean 

(5)p
(

Tm,µm|T−m,µ−m, σe, y
)

for m = 1, . . . ,M,

(6)p
(

σe|T1, . . . ,TM ,µ1, . . . ,µM , y
)

.

(7)p(Tm|rm,σe),

(8)p(µm|Tm, rm,σe).

(9)f t(·) =
M
∑

m=1

f
(

· ;Tt
m,µ

t
m

)

,

(10)ŷ∗ = 1

T

T
∑

t=1

f t
(

X∗; ·
)

.

squared prediction error (MSPE) was then calculated as 
MSPE = 1

ntest

∑ntest
1

(

ŷ∗ − ytest
)2. For the simulated QTL-

MAS2010 dataset, the 2326 individuals of generations 1–4 
were used as training data and the 900 individuals of gen-
eration 5 were used as test data. This strategy corresponds 
to the two-generation cross-validation approach [19]. The 
real dataset of Cleveland et  al. [16] was randomly divided 
into five different cross-validation sets that each comprised 
70 % of training data and 30 % of test data, and the MSPE 
was averaged over these cross-validation sets. This approach 
is an example of repeated random sub-sampling valida-
tion [19]. Predictions were obtained for the LASSO (using 
the glmnet package; [20]), Bayesian LASSO (BLASSO), 
genomic BLUP (GBLUP), Gaussian process with radial basis 
function kernel (GPRBF) as an example of a reproducing 
kernel Hilbert space (RKHS) method (all three using the 
BGLR package; [21]), RF (using the randomForest package; 
[9]) and BART (using the BayesTree package; [13]) methods.

LASSO and RF analyses were run with the default set-
tings of the glmnet and randomForest packages. The min-
imum mean squared error (minMSE) and minMSE +  1 
standard error of minMSE backwards along the regulari-
zation parameter λ path (minMSE + 1SE), i.e. the largest 
λ-value such that the error is within one SE of the mini-
mum, were used as stopping criteria for LASSO [20, 40]. 
The MCMC of the BART analysis was run for 75,000 iter-
ations for all datasets. Visual inspection of the σ 2

e  param-
eter showed that convergence was usually reached after 
a few thousand iterations. Hence, the first 25,000 itera-
tions were excluded as burn-in, and the remaining itera-
tions were thinned to a final sample of 5000. The MCMC 
of the BLASSO, GBLUP and RKHS analyses were run 
for 60,000 iterations, with a burn-in of 10,000 and thin-
ning of 10. The regression coefficients were obtained for 
the GBLUP and RKHS methods using β̂ = XT�−1

u/p, 
where � is the genomic relationship matrix for GBLUP 
and the genomic kernel matrix for RKHS. u is the vector 
with predicted genetic values [19].

The bandwidth parameter of the radial basis func-
tion (RBF) of the RKHS method was optimized by 
evaluating h = {0.05, 0.1, 0.25} for the QTLMAS2010 
data and h = {0.1, 0.5, 1} for the Cleveland data. BART 
were optimized by evaluating the MSPE over differ-
ent combinations of hyperparameters. Since BART is 
computationally demanding, the choice of the values 
was restricted to M = {10, 25, 50, 100, 200, 400, 600}, 
κ = {2, 3, 4, 5} and q = {0.9, 0.95} for the QTLMAS2010 
datasets, and M = {100, 200, 300}, κ = {3, 4, 5, 6} and 
q = {0.9, 0.95} for the Cleveland dataset. The num-
ber of trees for RF was optimized by evaluating 
M = {10, 25, 50, 100, 200, 400, 600} in the QTLMAS2010 
datasets and M = {100, 200, 300, 400, 600, 800} in the 
Cleveland dataset.
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Variable importance measures and inclusion proportion
It is possible to obtain different variable importance 
measures (VIMP). In the RF approach, there are several 
measures of variable importance. One common approach 
for regression trees is to calculate the decrease in pre-
diction accuracy from the OOB data. For each tree, the 
OOB portion of the data is passed through the tree and 
the prediction error (MSPEOOB) is recorded. Each pre-
dictor variable is then randomly permuted and j new 
MSPEOOB are calculated. The difference between the two 
are then averaged over all trees, and normalized by the 
standard deviation of the differences [2]. The variable 
showing the largest decrease in prediction accuracy is the 
most important variable. The result is often displayed in 
a variable importance plot of the top ranked variables, or 
in Manhattan type scatter plots of all variables.

BART uses a different approach where the selected var-
iables are those that appear most often in the fitted sum-
of-trees models of the MCMC chains. For each posterior 
draw, the function f t(·) calculates the variable inclusion 
proportion (VIP) of all splitting rules that use variable j 
as π t

j  and then the average as νj = 1
T

∑T
t=1 π

t
j . It should 

be noted that this approach depends on M and irrelevant 
predictors can get mixed with relevant predictors when 
M is very large [13].

QTLMAS2010 simulated data
This data was initially created for the QTLMAS2010 
workshop [15]. The simulated pedigree was founded by 
20 individuals i.e. five males and 15 females and includes 
3226 individuals across five generations. The pedigree 
structure was created by assuming that each female 
mates with only one male (mostly with males from their 
own generation) and gives birth to approximately 30 
progeny. Five autosomal chromosomes were simulated, 
each about 100  Mb long. The biallelic SNP data was 
simulated using a neutral coalescent model. The algo-
rithm produced 10,031 SNPs, including 263 monomor-
phic and 9768 biallelic SNPs. Mean LD (r2 calculated 
from unphased genotypes) between adjacent SNPs with a 
minor allele frequency (MAF) higher than 0.05 was equal 
to 0.100 (SD = 0.152).

The continuous quantitative trait used in this study was 
determined by 37 quantitative trait loci (QTL), includ-
ing nine known genes and 28 random genes. All QTL 
were modelled as additive effects, except for two pairs of 
epistatic QTL and three paternal imprinting QTL. The 
known genes were selected based on their high level of 
polymorphism and high linkage disequilibrium (LD) with 
SNPs. All known QTL had an additive effect of +3 (i.e. 
half the difference between the mean effects of homozy-
gotes). The random genes were drawn from the simulated 

SNPs (excluding those on chromosome 5) and their 
effects were sampled from a truncated normal distribu-
tion, N (0, 10). They were selected if the absolute value 
of their additive effect was less than 2, i.e. the additive 
effects of the random genes ranged from −1.98 to 1.93. 
The two epistatic pairs of QTL were located on chromo-
somes 1 and 2, respectively, and determined by four con-
trolled additive QTL with an additional epistatic effect of 
4 for the lowest homozygous pairs. The imprinting effect 
was equal to 3. Each simulated QTL was surrounded 
by 19  to  47 polymorphic SNPs (MAF  >  0.05) that were 
located within a distance of 1 Mb from the QTL. Of these 
SNPs, 364 were in moderate to high LD with the QTL 
(r2 > 0.1). The narrow-sense heritability (h2) was equal 
to 0.52 for males and 0.39 for females. SNPs with a MAF 
lower than 0.01 were discarded, but SNPs that deviated 
from Hardy–Weinberg equilibrium (HWE) were not 
removed because regression trees can handle non-linear 
relations. A final set of 9723 SNPs was available.

In order to also evaluate if BART can detect various 
forms of dominance and epistasis, a second simulated 
dataset was created based on the QTLMAS2010 data by 
adding effects at different loci on chromosome 5: (1) SNP 
9212 was a dominant locus by setting a value of 5 and 
5.01 for the effect of the heterozygous (Aa) and homozy-
gous states (AA) (for numerical reasons), respectively; 
(2) SNP 9404 was an over-dominant locus by assigning 
values of 5, −0.01 and 0.01 to the heterozygous (Aa) and 
homozygous (aa) and (AA) states, respectively; (3) SNP 
9602 was an under-dominant locus by assigning val-
ues of −5, −0.01 and 0.01 to the heterozygous (Aa) and 
homozygous (aa) and (AA) states, respectively; and (4) 
two SNPs 9694 and 9695 that had no additive effects were 
chosen to create an epistatic effect by assigning values of 
−0.01 and 0.01 to the homozygous aa and AA states, and 
a value of 5 to both AA homozygous states. Finally, the 
values of these new SNPs were summed to the original 
y-values.

Real data
Cleveland et  al. [16] published a pig dataset that com-
prised 3534 individuals with high-density genotypes and 
phenotype records, and estimated breeding values for 
five traits. Genotypes were obtained with the Porcin-
eSNP60 chip, which after quality control yielded 52,842 
SNPs. Missing genotypes were imputed using a prob-
ability score which results in non-integer values. SNPs 
with both known and unknown positions were included 
and imputed, but the map order was randomized and 
SNP identity was recoded. The number of SNPs was fur-
ther reduced by applying a more stringent MAF (<0.01), 
which resulted in a final number of 50,276 SNPs.



Page 6 of 12Waldmann ﻿Genet Sel Evol  (2016) 48:42 

Genotyped animals had phenotypes for five purebred 
traits (phenotypes from a single nucleus line), with her-
itabilities ranging from 0.07 to 0.62. For this study, we 
chose the trait that had a heritability of 0.38. This phe-
notype was corrected for environmental factors and 
rescaled by correcting for the overall mean. Individuals 
with missing phenotype data were removed and a final 
number of 3141 individuals was used.

Results
QTLMAS2010 data
For the original QTLMAS2010 dataset, the LASSO 
with the minMSE option was found to produce a MSPE 
of 62.020, which was the lowest value of all six meth-
ods (Table  1). The second best MSPE (62.595) was 
obtained with BART for the hyperparameters M = 200 , 
κ = 4 and q = 0.9. The BLASSO, GBLUP and RKHS 
methods performed more or less equally with MSPE 
of 66.209, 66.949 and 66.821, respectively. The low-
est MSPE (76.141) for the RF method was found for 
400 trees. Hence, RF can be considered to perform 

considerably worse than all other methods in terms of 
prediction error when the majority of the genetic effects 
are additive.

The analysis of the QTLMAS2010 dataset when domi-
nance and epistatic effects are added resulted in an MSPE 
of 64.353 for BART with hyperparameters M = 100 , 
κ = 4 and q = 0.9 (Table  2). This is considerably bet-
ter than the results with BLASSO (MSPE of 71.857), 
LASSO (minMSE option) (MSPE  =  83.377), RKHS 
(MSPE  =  91.852), GBLUP (MSPE  =  92.296) and RF 
(M = 600) (MSPE  =  99.836). These results show that 
BART can detect complicated non-additive genetic effects 
and accommodate these in the predictions of phenotypes.

The regression coefficient and variable importance 
plots in Fig. 1 show that all methods detect the two major 
additive loci on chromosome 3 in the original QTL-
MAS2010 dataset. However, LASSO, BLASSO, GBLUP 
and RKHS assign a negative effect to the second addi-
tive locus, and RF has difficulties in detecting the first 
additive locus at the right position. The epistatic locus 
on chromosome 1 was also detected by all methods, but 

Table 1  Mean squared prediction error (MSPE) for the LASSO, Bayesian LASSO (BLASSO), genomic BLUP (GBLUP), repro-
ducing kernel Hilbert space (RKHS) regression, random forests (RF) and Bayesian additive regression trees (BART) meth-
ods evaluated on the simulated original QTLMAS2010 data

The lowest MSPE obtained with each method is highlighted in italics. M is the number of trees for RF and BART, and q and κ are hyperparameters of the BART priors. 
The stopping criteria for the regularization coefficient λ in LASSO were obtained based on tenfold cross-validation both at minimum MSE and minimum MSE plus 1 
standard error [42]

Method Mean squared prediction error (MSPE)

LASSO

 minMSE 62.020

 minMSE + 1SE 63.404

BLASSO 66.209

GBLUP 66.949

RKHS

 h = 0.05 66.910

 h = 0.1 66.821

 h = 0.25 67.200

RF M = 10 M = 25 M = 50 M = 100 M = 200 M = 400 M = 600

82.108 79.772 77.794 77.274 77.149 76.141 76.419

BART M = 10 M = 25 M = 50 M = 100 M = 200 M = 400 M = 600

 q = 0.9

 κ = 2 76.231 69.974 65.703 64.967 64.324 64.213 64.574

 κ = 3 71.325 68.537 66.755 63.772 62.782 62.919 63.476

 κ = 4 79.264 66.554 66.376 63.596 62.595 63.119 63.790

 κ = 5 72.344 70.608 65.467 62.705 62.715 63.997 64.982

 q = 0.95

 κ = 2 78.656 76.734 68.282 64.126 64.218 63.697 64.566

 κ = 3 74.893 68.379 64.858 63.762 62.884 63.108 63.402

 κ = 4 74.128 66.817 64.788 63.836 62.596 63.175 63.807

 κ = 5 76.757 66.284 64.512 62.648 62.823 63.912 64.976
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not the epistatic locus on chromosome 2. Neither of the 
imprinting effects were detected. Moreover, it is worth 
noting that BART seems to regularize very well, espe-
cially for loci on chromosome 5 that should have no 
genetic effects.

Analyses of the QTLMAS2010 dataset for which the 
phenotype was constructed with additional dominance 
and epistatic loci are in Fig.  2 and show that LASSO, 
BLASSO, GBLUP and RKHS detect the first domi-
nant locus and the two SNPs that form the epistatic 
locus, but neither the over- nor the under-dominant 
loci. Hence, these methods cannot handle dominance 
properly without the addition of matrices with a speci-
fied gene action. RF detected all non-additive effects, 
but they were not well-separated from adjacent noise. 
BART found all effects, with the over- and under-dom-
inant loci having variable importance measures that 
are twice as high as the weakly dominant and epistatic 
loci. This corresponds very well with the fact that BART 
should split the over- and under-dominant loci into two 
nodes.

Cleveland dataset
Analysis of the five random cross-validation partitions of 
the real pig dataset of Cleveland et  al. [16] also showed 
that BART performed best with an average minimum 
MSPE of 0.811 at hyperparameter values M = 200, κ = 5 
and q = 0.9 (Table  3). The second best performance 
was obtained with the RF method with M = 600 yield-
ing a MSPE of 0.813, which is close to that obtained with 
BART. LASSO, BLASSO, GBLUP and RKHS performed 
worse with a MSPE of 0.829, 0.821, 0.822 and 0.819, 
respectively. Hence, the ranking in terms of MSPE of the 
six methods differs from the ranking based on the QTL-
MAS data.

Penalized regression coefficients of the LASSO and 
BLASSO methods, back-calculated regression coeffi-
cients of the GBLUP and RKHS methods, and variable 
importance measures of the RF and BART methods aver-
aged over the five cross-validation partitions are in Fig. 3. 
The five highest ranked variables from the BART analy-
sis have SNPid = {5583, 16800, 17552, 36623, 44686} and 
are marked in different colors. SNP 36623 was clearly 

Table 2  Mean squared prediction error (MSPE) for the LASSO, Bayesian LASSO (BLASSO), genomic BLUP (GBLUP), repro-
ducing kernel Hilbert space (RKHS) regression, random forests (RF) and Bayesian additive regression trees (BART) meth-
ods evaluated on the simulated QTLMAS2010 data when dominance and epistatic effects were added

The lowest MSPE obtained with each method is highlighted in italics. h is the bandwidth of the radial basis function kernel. M is the number of trees for RF and BART, 
and q and κ are hyperparameters of the BART priors. The stopping criteria for the regularization coefficient λ in LASSO were obtained based on tenfold cross-validation 
both at minimum MSE and minimum MSE plus 1 standard error [42]

Method Mean squared prediction error (MSPE)

LASSO

 minMSE 83.377

 minMSE + 1SE 84.832

BLASSO 71.857

GBLUP 92.296

RKHS

 h = 0.05 92.361

 h = 0.1 91.852

 h = 0.25 91.906

RF M = 10 M = 25 M = 50 M = 100 M = 200 M = 400 M = 600

107.908 105.123 100.784 101.992 100.327 100.900 99.836

BART M = 10 M = 25 M = 50 M = 100 M = 200 M = 400 M = 600

 q = 0.9

 κ = 2 80.717 76.892 70.845 65.294 65.196 66.283 66.906

 κ = 3 79.277 72.720 67.061 65.120 64.943 65.542 66.593

 κ = 4 87.030 71.401 65.635 64.353 65.149 66.483 68.050

 κ = 5 79.249 71.243 67.748 64.741 65.611 68.290 70.510

 q = 0.95

 κ = 2 86.328 70.452 67.744 65.465 65.308 65.801 66.998

 κ = 3 76.438 69.833 67.123 65.522 65.045 65.513 66.601

 κ = 4 86.653 74.651 67.164 67.220 65.074 66.544 68.163

 κ = 5 90.456 69.571 65.085 66.086 65.790 68.298 70.566
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detected by all methods. SNPs 5583 and 16800 were 
clearly separated in the LASSO, BLASSO, GBLUP, RKHS 
and BART analyses, but not so well in the RF analysis. 
SNP 15552 was more clearly separated in the RF and 
BART analyses than in the other analyses. SNP 44686 has 
a distinct effect only in the BART analysis.

Discussion
The partitioning of genetic effects into additive and non-
additive (dominance and epistasis) contributions has a 
long history in quantitative genetics [22]. The additive 
genetic effect is essentially the slope of a linear regres-
sion, whereas dominance refers to the deviation of the 
heterozygote from the linear additive genetic effect 
and epistasis to the interaction effects between differ-
ent SNPs. Most GWP studies use statistical methods 
that aim at inferring linear additive genetic SNP effects 
[23]. This study is based on the prediction of pheno-
types, not on the prediction of estimated breeding values 
(EBV). The reason for this choice is that most statistical 
methods used for the prediction of EBV enforce a lin-
ear additive genetic structure (e.g. BLUP) and therefore 
non-additive genetic GWP methods will be automatically 

disadvantaged when the statistical performance is evalu-
ated using EBV, for example in the calculation of correla-
tions between EBV and genomic EBV. Hence, there is an 
urgent need to switch focus from the restricted linearity 
assumptions in genome-wide studies to more realistic 
non-linear effects both within and between SNPs [19].

The RF methodology has been used in several genome-
wide association studies (GWAS) and GWP studies. 
Cabras et  al. [24] showed how RF can be successfully 
applied to discrete data on disease phenotypes for large-
scale GWAS. González-Recio and Forni [25] evaluated the 
GWP properties of four methods using simulated discrete 
data and disease resistance data in pigs. They found that 
RF produced most consistent results with a very good pre-
dictive ability and outperformed other methods in terms 
of correct classification. Heslot et  al. [26] used eight real 
datasets on plant breeding records to evaluate genomic 
selection properties of several statistical methods and 
found that RF together with the Bayesian LASSO and 
Bayesian variable selection methods performed best in 
terms of accuracy. Hence, it is somewhat surprising that 
RF performs worse than LASSO, BLASSO and GBLUP 
on the QTLMAS2010 data, but similar results have been 

Fig. 1  Manhattan plots of the penalized regression coefficients from the LASSO, BLASSO, GBLUP and RKHS methods, VIMP (percent decrease in 
MSE) for RF, VIP (average number of node splits per iteration) for BART from the analyses of the original QTLMAS2010 dataset. Dotted lines delimit 
chromosomes; the major additive genetic effects on chromosome 3 are indicated by magenta circles and the epistatic loci on chromosome 1 by 
blue diamonds
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obtained on large datasets in other studies [27]. The reason 
for this behavior is unclear, but we noted that RF did not 
detect the first additive locus on chromosome 3 properly. 
RF has been reported to be sensitive to highly correlated 
predictors [28]. One possible explanation is that highly 
correlated unimportant variables influence the building of 
trees and variable importance measures negatively.

The LASSO method sets unimportant variables to 
exactly zero and therefore provides an automatic variable 
selection procedure [2]. Bayesian LASSO can be imple-
mented in different ways. The original version of Park 
and Casella [29] produces credible intervals that can be 
used for variable selection. Hans [30] developed a Gibbs 
sampling approach that is similar to the stochastic search 
variable selection method and can be used on relatively 
large scale p ≫ n data. Credible intervals can be calcu-
lated for SNP effects in the GBLUP and RKHS methods, 
but it is computationally demanding due to the need to 
perform back-calculations for each MCMC iteration. 
Variable selection in tree ensemble methods is more dif-
ficult because of their non-parametric nature and lack of 
formally defined test statistics. Regarding the RF method, 
Diaz-Uriarte and Alvares [31] proposed an iterative 

backward elimination procedure for selecting genes from 
microarray data. Genuer et  al. [32] suggested a related 
heuristic rank-based method and Ishwaran et  al. [33] 
described an approach for forest variable selection based 
on minimal depth, which is a measure of the distance of a 
variable relative to the root of the tree. Unfortunately, all 
these RF VIMP selection techniques have certain draw-
backs when applied to large-scale data [10]. Recently, 
Bleich et  al. [34] suggested three permutation-based 
procedures for variable selection in BART. The methods 
are based on permuting the response, fitting a BART to 
each permutation and calculating the three different test 
statistics of the VIMP. However, to obtain a reasonable 
amount of permutations, these procedures become com-
putationally very demanding on large datasets and can-
not be performed without applying parallelization [35].

It should also be noted that since ensemble regression 
tree methods are black-box approaches, it is rather dif-
ficult to evaluate the genetic effect of a given SNP. How-
ever, some tools are available to investigate how SNPs 
influence the prediction. Partial dependence plots pro-
vide a useful approximation to visualize non-linearity 
within and interaction between important variables [2]. 

Fig. 2  Manhattan plots of the penalized regression coefficients from the LASSO, BLASSO, GBLUP and RKHS methods, VIMP (percent decrease in 
MSE) for RF, VIP (average number of node splits per iteration) for BART from the analyses of the QTLMAS2010 dataset with non-additive genetic 
effects added on chromosome 5. Dotted lines delimit chromosomes. The dominant locus is indicated by a red square, the over-dominant locus by a 
green upper triangle, the under-dominant locus by a cyan lower triangle, and the epistatic loci by blue diamonds



Page 10 of 12Waldmann ﻿Genet Sel Evol  (2016) 48:42 

The idea is to partition the predictors into a smaller sub-
set XS and its complement XC, where S = {0}, C = {1, 2} 
and S ∪ C. Then, the partial dependence functions are 
estimated by fS(XS) = 1

n

∑n
i=1 f (XS , xiC), where xiC are 

the values of individual i in the complementary geno-
types. The partial dependence functions represent the 
effect of XS on f (X) after accounting for the average 
effect of XC on f (X). The partial dependence functions 
can be evaluated for pairs of variables and thereby inves-
tigate epistatic effects. Unfortunately, similar computa-
tional difficulties apply to partial dependence plots as to 
variable selection, but it is likely that these problems will 
be solved in the near future.

The number of statistical machine learning methods has 
increased dramatically over the recent years [36, 37] and it 
is not possible to evaluate the prediction performance of 
all proposed methods. In this study, LASSO and its Bayes-
ian variant were used as references with well-documented 
good prediction properties under linearity assumptions 
[38], GBLUP and RKHS methods were chosen based on 
their popularity in the GWP area [19], and the RF method 
was used as a well-performing frequentist reference for 

ensemble regression tree prediction [10, 11]. A natural 
extension would be to compare BART with other machine 
learning methods such as Bayesian stochastic processes 
[39], deep learning [40] and reinforcement learning [41].

Conclusions
This study shows how the Bayesian additive regression tree 
method (BART) can be applied to large-scale genome-
wide SNP data for the prediction of unknown phenotypes 
and detection of the SNPs that contribute information 
for the prediction. Since BART is based on an ensemble 
of regression trees, it is a non-parametric and non-linear 
method that has the important feature of being able to han-
dle all types of genetic effects of SNPs in a very sparse way. 
Comparison of BART with the LASSO, BLASSO, GBLUP 
and RKHS methods using simulated data showed that the 
prediction error of BART under additive gene action was 
equally good or lower, and considerably better in the pres-
ence of dominance and epistasis. BART outperforms RF 
under all settings. Moreover, BART has the lowest predic-
tion error of all methods for the analysis of real pig data, 
which indicates that non-additive gene action contributes to 

Table 3  Mean squared prediction error (MSPE) for the LASSO, Bayesian LASSO (BLASSO), genomic BLUP (GBLUP), repro-
ducing kernel Hilbert space (RKHS) regression, random forests (RF) and Bayesian additive regression trees (BART) meth-
ods evaluated on the pig PorcineSNP60 chip genotype data with one phenotype

The estimates are the mean over five random cross-validation-folds with 70 % training and 30 % test partitions. The lowest MSPE obtained with each method is 
highlighted in italics. h is the bandwidth of the radial basis function kernel. M is the number of trees for RF and BART, and q and κ are hyperparameters of the BART 
priors. The stopping criteria for the regularization coefficient λ in LASSO were obtained based on tenfold cross-validation both at minimum MSE and minimum MSE 
plus 1 standard error [42]

Method Mean squared prediction error (MSPE)

LASSO

 minMSE 0.829

 minMSE + 1SE 0.861

BLASSO 0.821

GBLUP 0.822

RKHS

 h = 0.1 0.821

 h = 0.5 0.819

 h = 1 0.820

RF M = 100 M = 200 M = 300 M = 400 M = 600 M = 800

0.819 0.820 0.815 0.817 0.813 0.813

BART M = 100 M = 200 M = 300 M = 400 M = 600 M = 800

 q = 0.9

 κ = 3 0.822 0.820 0.821 – – –

 κ = 4 0.819 0.814 0.815 – – –

 κ = 5 0.814 0.811 0.812 – – –

 κ = 6 0.815 0.813 0.814 – – –

 q = 0.95

 κ = 3 0.826 0.820 0.821 – – –

 κ = 4 0.823 0.814 0.814 – – –

 κ = 5 0.815 0.812 0.812 – – –

 κ = 6 0.814 0.814 0.814 – – –
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the analyzed phenotype. To date, no GWP applications have 
used BART. Hence, there is a need for further applications 
and evaluations of BART using data from different species.
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