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Abstract

Soil moisture is one of the main factors in agricultural production and hydrological cycles,

and its precise prediction is important for the rational use and management of water

resources. However, soil moisture involves complex structural characteristics and meteoro-

logical factors, and it is difficult to establish an ideal mathematical model for soil moisture

prediction. Existing prediction models have problems such as prediction accuracy, generali-

zation, and multi-feature processing capability, and prediction performance must improve.

Based on this, taking the Beijing area as the research object, the deep learning regression

network (DNNR) with big data fitting capability was proposed to construct a soil moisture

prediction model. By integrating the dataset, analyzing the time series of the predictive vari-

ables, and clarifying the relationship between features and predictive variables through the

Taylor diagram, selected meteorological parameters can provide effective weights for mois-

ture prediction. Test results prove that the deep learning model is feasible and effective for

soil moisture prediction. Its’ good data fitting and generalization capability can enrich the

input characteristics while ensuring high accuracy in predicting the trends and values of soil

moisture data and provides an effective theoretical basis for water-saving irrigation and

drought control.

1.Introduction

Water is the primary resource that determines the survival and development of the Earth’s

inhabitants. Soil moisture not only plays an important role in maintaining plant growth but

also is a key link in the water cycle of soil-plant-atmosphere continuum systems [1–4]. How-

ever, as human activities intensify, groundwater resources deteriorate in water quality [5,6],

and the amount of excavation is significantly exceeded [7,8]. The continuous decline of

groundwater levels leads to a decrease in soil water content and reduces the effective water

storage capacity of the soil. Especially in dry areas, the lack of precipitation causes the soil

water to not replenish in sufficient time, which negatively affects the normal growth of crops
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[9–11]. In this case, it is particularly important to develop an appropriate irrigation system at

the right time. The growth and regression of soil moisture directly affects water consumption

and growth of crops. It is an important indicator for drought resistance, flood control [12, 13],

and precision irrigation decisions[14,15] in agricultural production. It is important to achieve

accurate prediction of soil water regression regular patterns to properly manage agricultural

water resources and promote crop yield increases.

At present, the mainstream soil moisture prediction methods mainly use empirical formu-

las, linear regression, and neural networks to construct prediction models. The empirical for-

mula model is the earliest. By analyzing the initial soil water content, daily rainfall, average

temperature, and daily average saturation difference, and based on the multivariate linear rela-

tionship of soil moisture, Chen Xiaofeng [16] and others established a formula for a soil mois-

ture, precipitation, and drought assessment prediction model, which can provide drought

assessment for 5 to 10 days in the future. The model provides strategies for drought-resistant

irrigation systems; Jackson [17] uses the empirical formula to estimate the soil moisture flux

together with a time domain reflectometry instrument (TDR). The results are similar, but the

formula is simpler. Although the empirical formula is simple and easy to understand, the

model parameters have strong regional dependence, and need to be recalculated when trans-

planting to other regions, in which is time-consuming and inefficient. With the rapid develop-

ment of computer technology, various prediction models have emerged. J.W. Hummel [18]

used a near-infrared reflection sensor to collect soil moisture data and analyzed the data using

multiple linear regression, resulting in a predicted standard deviation of 5.31%. After the grey

correlation analysis of meteorological data, Shu Sufang [19] established a linear regression

model to predict soil moisture, which can show its trends. Linear regression has comparatively

large errors and unsatisfactory accuracy for nonlinear data prediction owing to internal limita-

tions and has difficulty meeting forecasting requirements. With the optimization of training

algorithms, domestic and foreign scholars gradually began to use neural network algorithms

for soil moisture prediction. Hou Xiaoli [20] et al. used an artificial neural network to predict

soil moisture values at different depths with multi-input meteorological data, and the results

were in good agreement with real data. On this basis, Ji Ronghua [21] improved the neural net-

work activation function. The traditional activation function was replaced by a complex num-

ber domain, and the network was trained according to the multi-layer perceptron structure.

The prediction accuracy improved by 9.1% compared with the traditional back-propagation

(BP) neural network, providing a more accurate theoretical basis for soil moisture prediction

M. Kashif Gill [22] avoided the curse of dimensionality problem in neural networks by using a

support vector machine to predict soil moisture and increased accuracy to 89%. Li Ning [23]

improved the neural network optimization algorithm based on the data characteristics of soil

moisture. The BP algorithm has slow training speed and easily falls into local optima because

the initial parameters of the network are randomly assigned. Therefore, the genetic algorithm

was introduced to find the global optimal initial parameters before training, which effectively

accelerate the training and improve the prediction accuracy of the model. However, soil mois-

ture involves complex structural effects and meteorological factors, and it is difficult to estab-

lish an ideal mathematical model for soil moisture prediction. The traditional neural network’s

structure characteristics and algorithms are weak for processing big data, prediction accuracy

is difficult to improve further, and generalization capability and scalability are limited.

With the rapid development of artificial intelligence in recent years, in 2006, Hinton [24]

proposed Deep Learning (DL), which uses a multiple hidden layer structure to increase the

classification and fitting capability to big data and multi-feature data. Compared with tradi-

tional neural networks, it shows strong computing power and has been successfully applied in

image recognition [25,26], search engines [27], stock price predictions [28], and other fields.
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Owing to the nonlinear and extremely complex nature of soil, some scholars have introduced

DL into soil particle size and soil texture analysis [29, 30] in recent years, overcoming the prob-

lems of low prediction accuracy. Based on this, our aim is to construct and optimize a soil

moisture prediction model through deep learning and its powerful data processing capabilities

to achieve high-precision prediction of soil moisture in Beijing.

2. Materials and methods

2.1 Data acquisition and overview

The test area is located in Beijing, China (E 115˚7’ ~ E 117˚4’, N 39˚4’ ~N 41˚6’), in Shunyi,

Yanqing and Daxing. It represents a typical semi-humid continental monsoon climate in the

North Temperate Zone. It is hot and rainy in summer, and is cold and dry in winter. Spring

and Autumn are short. The soil texture is mainly sandy soil or resembles sandy soil. Regarding

the two areas, Daxing is sandy loam, and Yanqing Shunyi is mostly medium loam. The main

crops are winter wheat and summer corn. The average annual rainfall in Beijing is 585 mm,

but the regional distribution is uneven, and the overall rainfall is increasing. From 2012 to

2016, the annual soil moisture change in Beijing was between 10% and 25%. The test area cov-

ers Beijing’s main planting areas. The proposed model can provide a theoretical basis for

water-saving irrigation strategies in Beijing.

The data used in this experiment is provided by the Beijing Meteorological Bureau and is

divided into two parts: meteorological data and soil moisture data. The data includes three

areas, Yanqing, Shunyi and Daxing. The period covered by the meteorological data and soil

moisture data is from 2012 to 2016.The meteorological data types include daily average tem-

perature, daily average air pressure, daily average relative humidity, daily average wind speed,

daily average surface temperature, and daily precipitation; soil moisture data includes soil

average mass water content at 10 cm and 20 cm depth in farmland.

2.2 Data processing and analysis

Different sources of meteorological data and soil moisture data result in different data formats

and lengths. Data integration and matching is required. The deep learning model requires a

large amount of data for training purposes and a long time-span data set to ensure complete

data characteristics. The method involves selecting the training set and test set according to

the amount of soil moisture data from 2012 to 2016. The integrated data contains missing val-

ues. If the missing value is included, and induces a large error, it will cause interference in the

model training. Therefore, we chose to eliminate data with missing values. The final data set

contains six meteorological features, as well as an initial moisture feature, and a pending pre-

diction feature of soil moisture. After processing, a total of 1,196 data samples from Yanqing

area were obtained, including 954 sets of data from 2012 to 2015 to build a training set, 242

sets of data in 2016 to build a test set, and 50 data samples were randomly selected from the

test set for model selection. At the same time, a total of 239 data from Shunyi area in 2016 and

235 data from Daxing area in 2016 were used to verify the extensibility of the model.

To predict the data, we must first understand the trend of the predicted features. According

to Fig 1, the water timing chart of the four years from 2012 to 2016, although the moisture data

fluctuates greatly, presenting a periodical status overall, generally from July to September each

year represents the data peak, the maximum soil water content is up to 25.6%. From November

to February of the next year indicates the period for minimum water content, which is only

7.50%. However, different years show large discrepancies because of different meteorological

conditions. Facing such complex prediction features, deep learning is suitable for soil moisture

prediction because of its data fitting capabilities.
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The regression prediction should be clear about the correlation between each variable and

the predicted feature, so that reasonable parameter characteristics can be selected for model

training. The first step is to analyze characteristics of the predicted variable. It can be seen

from Fig 2 that the autocorrelation graph of the predictive feature has no rapid decay to zero

with increases of the delay period, so because the soil moisture characteristic is a stationary

time series. Therefore, it is possible to grasp the changing trend of soil moisture characteristics

according to relevant meteorological parameters.

The results of the correlation analysis between the features of the data set and soil moisture

are shown in Fig 3. The reference variable of the Taylor map is the soil moisture feature (the

REF point of the X-axis), and other features standard deviation divided by the standard devia-

tion of the soil moisture are used to obtain the standard deviation ratio, which can be used to

evaluate the similarity between the fluctuation range of other features and the moisture feature,

and is then added into the correlation to participate in the analysis. There are seven variables

to be analyzed, where points 3 and 4 (average humidity and average wind speed) are outside

the standard deviation range. The data fluctuation range of these two points is more than 1.5

times the soil moisture, and exhibit data jump phenomena. Point 2 (average pressure) has a

standard deviation ratio of less than 0.25 (the data fluctuation is much smaller than the mois-

ture fluctuation range), but the correlation is the lowest. The data fluctuations of the three vari-

ables of points 1, 5, and 6 (average temperature, daily precipitation, and surface temperature)

are close to the REF data. The standard deviation ratio is approximately 1.5, and the correla-

tion is between 0.1 and 0.3. Point 7 (initial moisture) is the closest to the standard deviation

ratio of the soil moisture prediction data, almost coincides with the REF line, and the correla-

tion is close to 0.99, which indicates strong correlation characteristics. Thus, it is an essential

training feature to provide maximum weight for soil moisture prediction to improve regres-

sion accuracy.

Fig 1. Timing diagram of soil moisture in Yanqing area.

https://doi.org/10.1371/journal.pone.0214508.g001
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The data analysis is summarized in Table 1. It is obvious that other features and prediction

variables have positive or negative correlation characteristics, which can be used to provide

corresponding weights for model prediction, improve soil water prediction accuracy, and

multi-feature data can be used to improve the model’s generalization capability. The above

analysis indicates that the data set is reasonable for use.

2.3 Performance evaluation measures

Four evaluation measures were selected to indicate the performance of the different models.

Mean Absolute Error(MAE) is:
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Fig 2. Soil moisture autocorrelation plot.

https://doi.org/10.1371/journal.pone.0214508.g002

Research on soil moisture prediction model

PLOS ONE | https://doi.org/10.1371/journal.pone.0214508 April 3, 2019 5 / 19

https://doi.org/10.1371/journal.pone.0214508.g002
https://doi.org/10.1371/journal.pone.0214508


R Squared(R2) is:

R2 ¼ 1 �

X
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ð4Þ

In the above formula, ŷi is the predicted value, yi is the true value, and �yi is the average

value. MAE is the average of absolute errors, it can reflect the actual situation of the predicted

value error. MSE is the expected value of the square of the difference between the parameter

estimate and the parameter true value, it can evaluate the degree of the data change, and the

smaller value of the MSE, the better accuracy of the prediction model. RMSE is the arithmetic

square root of MSE. R2 can eliminate the influence of dimension on evaluation measure.

3. Model establishment

3.1 Model construction

Deep Neural Network Regression (DNNR) is a multi-hidden layer (at least two layers of hid-

den layers) regression neural network. Compared with the single hidden layer perceptron,

Fig 3. The Taylor plot of weather data.

https://doi.org/10.1371/journal.pone.0214508.g003

Table 1. Correlation between various features and soil moisture.

Feature Average

temperature

average

pressure

Relatively

humidity

average Wind

speed

Land temperature Daily precipitation Initial soil

moisture

Soil moisture correlation 0.24 -0.03 0.39 -0.28 0.18 0.17 0.97

https://doi.org/10.1371/journal.pone.0214508.t001
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when the same data is fitted, the increase of hidden layer depth in DNNR means the reduction

of nodes in each hidden layer, which can improve data fitting capability. The advantage of the

DNNR model is that it can correlate or discover feature combinations that have not appeared

before, and is good at fusing hidden feature attributes, reducing the complexity of feature engi-

neering and improving the generalization capability of the model. The DNNR network struc-

ture is shown in Fig 4.

From Fig 4, the DNNR network consists of an input layer, multiple hidden layers and an

output layer. The nodes are fully connected. The number of layers can be adjusted according

to the data scale. Corresponding hidden node and output layer activation functions can also be

flexibly selected. The essence of the model is a combination of algorithms. The mathematical

structure of the DNNR network is:

1. The number of input layer nodes is equal to the number of features of the input data. The

more hidden layers, the higher the number of features needed to reduce the influence of

underfitting or overfitting;

2. Each hidden layer node is composed of neurons. The neurons contain both rectifier activa-

tion and aggregation function, when constructing the DNNR model, the activation func-

tion in the default neuron is the Rectified Linear activation function, making the deep

learning network neurons have sparse characteristics, which reduces the influence of

Fig 4. The general deep regression network structure.

https://doi.org/10.1371/journal.pone.0214508.g004
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overfitting while increasing the depth of the network, improving the training speed of the

model, and effectively overcoming the problem of gradient disappearance. The Rectifier

activation function is defined as follows:

gðzÞ ¼ maxð0; zÞ ð5Þ

3. The regression model output layer is different from the classification model. It is a single

node. The output of the previous hidden layer is multiplied by the weight and is added to a

bias on the output node to obtain the regression prediction value. The function below

describes the process, where i is the number of nodes in the previous layer and c is the bias:

fðx;W; cÞ ¼
X

i

ðWT
i Xi þ cÞ ð6Þ

4. The overall function expression of the DNN model is a multi-level nested form, that is, the

output of the previous layer is the input of the next layer, x is the input feature in the func-

tion; w is the weight of the layer; and c and b are node biases.

fðx;W; c;w; bÞ ¼WT
X

i

ðWT
i Xi þ cÞ þ b ð7Þ

5. The optimization function selected was the Adagrad algorithm. Compared to the traditional

gradient descent algorithm (SGD), the same learning rate η is used for each training parame-

ter. The Adagrad algorithm adaptively adjusts learning rate η, which must be reduced with

the frequently occurring parameters to avoid parameter oscillation, and takes a larger η for

less frequently occurring parameters to accelerate model update. It is suitable for optimizing

any sparse data and perfectly matches the characteristics of the above Rectified Linear activa-

tion function.ri,tJ(θ) is the gradient of the i-th parameter in the t-th round; ε is the minimum

value; Gi,t is the accumulation of the previous t-step θi gradient; The expression is as follows:

yi;tþ1 ¼ yi;t �
Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gi;t þ ε

p ri;tJðyÞ ð8Þ

3.2 DNNR model training and optimization

The DNNR model training involves supervised training, in that the training set and the test set

features all need labels, and the model parameters (weights and biases) are adjusted according

to the comparison between the model prediction results and the labels to minimize the error.

Training is stopped when the maximum number of specified training steps is reached or the

preset accuracy is met.

The number of hidden layers and the number of hidden layer nodes can directly affect the

training speed and prediction accuracy of the model. This paper uses six meteorological data

features and one soil water content feature to predict soil moisture. So the number of input

layer nodes is 7, which is equal to the number of features; the output layer sets the number of

nodes (according to the regression characteristics) to 1; and because the data size is medium,

two hidden layers in the hidden layer structure are sufficient to meet the requirements. The

numbers of first layer and second layer hidden nodes need to be evaluated and selected

through multiple rounds of testing. The comparison results are shown in Table 2.
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It can be seen from Table 2 that each model structure is trained three times, in the compari-

son of the number of hidden layer nodes, the first layer nodes are connected with the input

layer and is responsible for learning the characteristics of the data set, the second layer nodes

are responsible for fitting the learned characteristics, so if the number of nodes is much larger

than the number of features it will cause information redundancy. Conversely, fewer nodes

can cause under-fitting. This affects the training accuracy of the model. The above theory is

consistent with the results shown in Table 2. Therefore, the number of nodes in the first layer

of the model is selected as 100. The second layer is selected as 50. Based on the above analysis,

a 7-100-50-1 model was finally selected. After determining the model structure, ten models

training operations were repeated to select the best results in multiple experiments. The results

are shown in Fig 5.

As can be seen from Fig 5, since the model weights are initialized with a random process,

the results of the ten models training are different, and the training loss value and the test loss

value fluctuate within a range of [0.4, 1.2], so the lowest model training loss value as the selec-

tion, which training loss value is 0.63 and the test loss value is 0.46.

In order to prove the performance of the selected model, the sliding window with data

length of 50 is set, the moving step is set to 10, in the case where the window slides to the end

of the data and the amount of data is less than 50, the amount of missing data is complemented

from the beginning of the test set. the method can select 25 sets of test data from the test set

with the data length of 242, and the test data volume of each set is 50, and the performance is

verified by inputting the model separately. The test results obtained 25 test loss values. The sin-

gle sample t-student test was used to analyze the 25 test loss values and the training loss values.

Under the premise of 95% confidence interval, the obtained bilateral Sig value was 0.51>0.05.

At a significant level of 0.05, there was no significant difference between the test loss value and

the training loss value, indicating that the trained model has good generalization ability. The

specific analysis results are shown in Table 3.

4. Results

To verify the generalization capability of the constructed model, all the 242 sets of data in the

test set were selected for prediction experiments. The prediction results are shown in Fig 6.

Table 2. Comparison of training results of different model structures.

Model construction Train steps Train loss Test Loss Average train loss Average test loss

7-50-100-1 15000 0.99 0.58 0.92 0.96

0.85 1.31

0.91 1.00

7-50-50-1 15000 0.95 0.55 0.92 0.81

0.94 0.88

0.87 1.08

7-100-50-1 15000 0.63 0.46 0.63 0.68

0.66 0.73

0.61 0.86

7-50-25-1 15000 0.84 1.29 0.86 1.31

0.77 1.44

0.97 1.21

7-150-100-1 15000 0.51 2.24 0.56 1.42

0.58 1.08

0.60 0.94

https://doi.org/10.1371/journal.pone.0214508.t002
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The soil moisture prediction value is consistent with the true value, and 92.56% of the data pre-

diction error is within ±1. The predicted value is higher than the true value. The prediction of

soil high water content data (data points with water content of 15% or more) is accurate,

where the minimum relative error is 0.06% and the maximum is only 8.75%. The prediction of

low water content data (data points with water content of 15% or less) exhibits somewhat

higher prediction error, where the maximum relative error is 17.29% and the minimum is

0.58%. It remains within a stable acceptable error range, and the average relative error is 0.57,

which ensures that the soil moisture data predicted by the model can be used in actual guid-

ance in Yanqing.

At the same time, the model is also used to predict soil moisture data in the Daxing and

Shunyi areas. The previously constructed Shunyi area test set (a total of 239 sets of data) and

the Daxing area test set (a total of 235 sets of data) were input into the prediction model for

model scalability verification. The prediction results are shown in Fig 7. The true value range

of soil moisture in Shunyi area from 12.2 to 26.4, and the range of prediction value from 10.6

to 23.9. The true value range of soil moisture in Daxing area from 8.3 to 26.6, and the range of

Fig 5. The DNNR model training results(ten times).

https://doi.org/10.1371/journal.pone.0214508.g005

Table 3. Single sample t-student test.

t Degree of freedom Average difference Sig.

Test data -0.669 24 -0.039 0.510

https://doi.org/10.1371/journal.pone.0214508.t003

Research on soil moisture prediction model

PLOS ONE | https://doi.org/10.1371/journal.pone.0214508 April 3, 2019 10 / 19

https://doi.org/10.1371/journal.pone.0214508.g005
https://doi.org/10.1371/journal.pone.0214508.t003
https://doi.org/10.1371/journal.pone.0214508


prediction value from 7.8 to 23.4. It can be seen that the extreme value of prediction in other

areas to the soil moisture are lower than the true value.

DNNR model error analysis results are in Table 4. The average absolute error of Shunyi pre-

diction is 1.33, and the overall prediction value is lower than the actual value. However, the

predicted value and the true value have a strong Pearson correlation of 0.97. The average abso-

lute error of Daxing prediction is 1.03, the overall predicted value is close to the true value, and

the predicted value and the true value have a strong Pearson correlation characteristic of 0.96.

The above analysis can clearly see that because the soil moisture has regional characteristics,

the predicted values of other regions contain different degrees of error, the further statistical

Fig 6. The comparison of daily soil moisture prediction in Yanqing (DNNR).

https://doi.org/10.1371/journal.pone.0214508.g006

Fig 7. The comparison of daily soil moisture prediction in Shunyi and Daxing (DNNR). (A)Comparison of daily soil moisture prediction in Shunyi.(B)

Comparison of daily soil moisture prediction in Daxing.

https://doi.org/10.1371/journal.pone.0214508.g007
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analysis of the prediction for the three regions are shown in Fig 8. The average value of the raw

soil moisture of Yanqing area is 18.32%, the average value of prediction is 18.34%. The average

difference is only 0.02%, It indicates that the soil moisture value can be accurately predicted

and has very close data center trend. The average value of the raw soil moisture of Shunyi area

Table 4. Multi-region prediction error analysis of DNNR model.

AREA Evaluation Measures DNNR

Yanqing MAE 0.57

MSE 0.61

RMSE 0.78

R2 0.98

Shunyi MAE 1.33

MSE 2.58

RMSE 1.61

R2 0.97

Daxing MAE 1.03

MSE 1.97

RMSE 1.40

R2 0.96

https://doi.org/10.1371/journal.pone.0214508.t004

Fig 8. The comparison for average soil moisture predictions and real values in three regions(DNNR).

https://doi.org/10.1371/journal.pone.0214508.g008
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is 19.80%, the average value of prediction is 18.58%. The average and predicted values of soil

moisture in this region differ by more than 1%, but it is still acceptable. The average value of

the raw soil moisture of Daxing area is 15.77%, the average value of prediction is 15.26%. The

average difference is weaker than the Yanqing area but better than the Shunyi area. It can also

accurately predict the soil moisture data values.

The above results indicate that the model has great generalization capability and remain

within a stable acceptable error range, which ensure that the soil moisture data predicted by

the model can be used in actual guidance in Beijing.

5. Discussion

The location of this test was in Beijing, because soil water movement is a complex time series

system, and its changes are closely related to regional climatic conditions and ecological

Table 5. The comparison of multi-model prediction evaluation measures.

Model R2 RMSE MAE

LR[19] 6.89

SVM[22] 0.89 4.05 3.65

ANN1[22] 0.74 6.01 4.96

ANN2[20] 0.98

AGNN[23] 1.26

DNNR 0.98 0.78 0.57

https://doi.org/10.1371/journal.pone.0214508.t005

Fig 9. The comparison of daily soil moisture predictions in Yanqing, Shunyi and Daxing(MLP). (A) Comparison of daily soil moisture prediction in

Yanqing.(B) Comparison of daily soil moisture prediction in Shunyi. (C) Comparison of daily soil moisture prediction in Daxing.(D) The comparison for

average soil moisture predictions and real values in three regions.

https://doi.org/10.1371/journal.pone.0214508.g009
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environments, with obvious random fluctuations, and the differences of soil moisture regres-

sion regular patterns have large divergence. Therefore the discussion in this paper is mainly

focused on a domestic soil moisture model evaluation. The input variables of the existing soil

moisture prediction model are selected from air temperature, air humidity, atmospheric pres-

sure, soil moisture, daily precipitation, illumination duration, radiation intensity, average

wind speed, and initial soil moisture [16–22]. The different model characteristics require dif-

ferent input variables, so proper selection of variables (among those above) is also one of the

keys for accurate soil moisture prediction [7,10,18]. Selecting appropriate meteorological

parameters as the input features of the model can significantly improve the accuracy of soil

moisture prediction. With the rapid development of the agricultural Internet of Things, the

types and quantities of monitoring data are constantly increasing. Thus, a model must have

sufficient data compatibility and expandability while ensuring the accuracy of prediction. At

the same time, soil moisture has strong regional characteristics, which make it difficult to

directly compare the performance between prediction models constructed using different

regions and their corresponding datasets. It is necessary to use the evaluation indicators as

qualitative and quantitative measurement criteria to analyze the advantages and disadvantages

of different models. Therefore, the selection of input features and models, and the evaluation

of model performance after being fully constructed are issues that need to be addressed,

Using SPSS to analyze the autocorrelations of moisture data found that it is a non-station-

ary time series, indicating that the water content is affected by other meteorological parame-

ters. Increases in air/soil temperature, light, and wind speed will accelerate the evaporation of

soil surface water, which is a negative correlation parameter. Soil/air humidity, atmospheric

pressure, and rainfall increase soil moisture, which is a positive correlation parameter. The

rainfall factor has the most direct impact and greater amounts of rainfall can directly saturate

the soil moisture. Existing models all select the initial moisture as the input feature, and other

input feature selections will have larger differences. Ji Ronghua [20] and others analyzed the

rainfall, temperature, and wind speed in the western part of Cangzhou City, Hebei Province,

and only selected the most relevant rainfall data. The correlation coefficient (R2) was 0.88, so

the prediction model input only contained rainfall and initial moisture. After we analyzed the

soil moisture data in Yanqing, Beijing, the correlation between rainfall and prediction charac-

teristics is 0.17, and the standard deviation ratio is 1.5, indicating that the influence of meteo-

rological parameters in different regions is significantly different. Hou Xiaoli [19] and other

researchers selected five features: temperature, wind speed, duration of sunshine, humidity,

Table 6. Multi-region prediction error analysis results of MLP model.

AREA Evaluation Measures MLP

Yanqing MAE 0.66

MSE 0.93

RMSE 0.96

R2 0.97

Shunyi MAE 4.80

MSE 30.9

RMSE 5.57

R2 0.70

Daxing MAE 2.92

MSE 13.9

RMSE 3.73

R2 0.75

https://doi.org/10.1371/journal.pone.0214508.t006
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and precipitation as input. The correlation of the soil moisture content at 20 cm depth was pre-

dicted by a multi-layer perceptron (MLP) model to be 0.98, which is same as the correlation

prediction in this paper of 0.98, although the dataset is different. The DNNR model we used

has seven input features, indicating that the DNNR model can maintain prediction accuracy

while enriching the feature types. Shu Sufang [18] et al. defined 17 meteorological factors to

analyze the correlation with soil moisture in the Jinhua area. Finally, 5 mm precipitation and

evaporation differences were used to construct a linear regression model to predict soil relative

humidity. The average relative error at 20 cm depth prediction was 6.89%, which was higher

than the 0.57% of the DNNR model. It can be seen from the above analysis that a reasonable

increase of input parameters can improve the prediction accuracy of the model, and the pre-

diction accuracy of multivariate data is higher using variables that are easy to obtain from con-

ventional soil moisture monitoring stations.

To verify the superior performance of the DNNR model, we compared it with existing

models, most of the soil moisture prediction models are LR(Linear Regression), SVM(Support

Vector Machine), ANN(Artificial Neural Network) and related improvement models, the R2

of DNNR model is higher than SVM and ANN1 by 9% and 24%, the RMSE of DNNR model is

less than SVM and ANN1 by 80.74% and 87.02%, the MAE of DNNR model is less than LR,

SVM, ANN1 and AGNN by 91.73%, 84.38%, 88.51% and 54.76%, the comparison results are

shown in Table 5, that the DNNR model constructed in this paper is superior to the above

model in the evaluation of comparison with multiple performance measures.

Although the model has certain advantages in specific measures, the conditions are differ-

ent for each model, and the composition of the data set and regional differences are difficult to

eliminate. To solve this problem, this paper constructs a neural network model using the same

data set used for the DNNR for comparison purposes. MLP is one of the most widely used

advanced models, and it is more convincing to choose this model for comparison.

An MLP model was constructed using six meteorological features and an initial moisture

feature. The MLP model is a 1-100-1 three-layer network consisting of a single hidden layer.

The activation function of the hidden layer node is a hyperbolic tangent (Tanh). The training

features types and quantities are the same as those in Table 1.

First of all, the soil moisture in Yanqing area, Shunyi area and Daxing area of Beijing was

predicted and shown in Fig 9. It can be seen from Fig 9 that the MLP model predicts the soil

moisture in the Yanqing area with a correlation coefficient of 0.97, which is only lower than

the 0.98 of the DNNR model, but the prediction errors of the other two regions are larger. The

predicted values of Shunyi area and Daxing area are significantly lower than the raw soil mois-

ture data, and the correlation coefficients are 0.70 and 0.75, respectively, which is much lower

than 0.97 and 0.96 of the DNNR model. In Fig 9D, the average value of the raw soil moisture

of Yanqing area is 18.32%, the average value of prediction is 18.27%. The prediction effect of

Yanqing area is similar to the DNNR model. But the average value of the raw soil moisture of

Shunyi area is 19.80%, the average value of prediction is 14.92%. The average value of the raw

soil moisture of Daxing area is 15.77%, the average value of prediction is 13.28%. The average

errors of the predictions in the other two regions accounted for 24.65% and 15.79% of the raw

soil moisture data, respectively.

The MLP model error analysis results are in Table 6. All evaluation measures are weaker

than the DNNR model. In addition to the great prediction results of the Yanqing area, other

regional evaluation measures are difficult to accept. A further comparison of the two models is

shown in Figs 10 and 11.

The comparison between DNNR and MLP predicted value-real value sets are shown in Fig

10. The value of DNNR prediction is closer than MLP to the true value. The correlation coeffi-

cient of the DNNR model for the predicted value-real value of the Yanqing area, Shunyi area
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and Daxing area is 0.98, 0.97 and 0.96 and higher than the MLP model is 1.03%, 38.6% and

28.0% respectively.

The comparison between DNNR and MLP predicted residual-predicted value sets are

shown in Fig 11. The most of residual fluctuation range of MLP is within [-2,+2], and the rela-

tive error of prediction is 0.27%. The most of residual fluctuation range of DNNR is within [-2,

+2], and the relative error is 0.11%. In the comparison of local data prediction, the perfor-

mance advantages of the DNNR model are not particularly prominent. But in other regions,

the soil moisture in Daxing and Shunyi areas of Beijing was predicted and compared to further

research the generalization capability of the DNNR model and MLP model in soil moisture

prediction application. The most of residual fluctuation range of MLP in Shunyi area and Dax-

ing area is within [0,12] and [–3,10]. The most of residual fluctuation range of DNNR in Shu-

nyi area and Daxing area is within [0,4] and [–2,4]. The DNN model residuals fluctuate

around the zero point in a small range with only a few outliers. However the residual of the

MLP model is difficult to control. The MAE of DNNR in Shunyi area and Daxing area

decreased by 72.29% and 64.73% compared with MLP, the MSE of DNNR in Shunyi area and

Daxing area decreased by 91.67% and 85.83% compared with MLP, the RMSE of DNNR in

Shunyi area and Daxing area decreased by 71.10% and 62.47% compared with MLP. The

above experiments show that under the same training set and test set conditions, the DNNR

model displays better prediction accuracy than the commonly used three-layer MLP network.

In summary, this paper uses the meteorological data and initial soil moisture data of Yanq-

ing in Beijing to construct a DNNR model to predict soil moisture, analyze the correlation

between various meteorological parameters, soil water content, and the characteristics of the

Fig 10. The fitting between the predictions and real values in Yanqing, Shunyi and Daxing. (A) DNNR model in Yanqing area.(B) MLP model in Yanqing

area. (C) DNNR model in Shunyi area.(D) MLP model in Shunyi area. (E) DNNR model in Daxing area.(F) MLP model in Daxing area.

https://doi.org/10.1371/journal.pone.0214508.g010
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moisture data. Based on the analysis results, the training set and test set are constructed. Then

the training model obtains the ideal result by predicting the depth of the Yanqing 20 cm depth

soil moisture and is then used to predict other areas. The prediction is acceptable and mean-

ingful. Various comparison tests prove that the DNNR model has good generalization ability

and fitting accuracy. However, this experiment still needs to proceed further: (1) it needs to be

further applied to more areas to verify the effectiveness of the model in predicting soil water

content under different climatic conditions; (2) using mixed data to construct data sets and

training models, such as fusing meteorological data and remote sensing data to analyze model

feasibility; (3) increase the control experiment by changing the input features, and further ana-

lyze the impact of different meteorological characteristics on the accuracy of soil moisture

prediction.

6. Conclusions

1. Soil moisture data is a non-stationary time series, which presents a periodic variation regu-

lar pattern involving large fluctuations. It is known from correlation analysis that each

parameter characteristic has a correlation with the moisture parameter, which affects the

predicted value, and that the initial soil moisture feature has the greatest weight. Humidity

and temperature are second. Although the rainfall variable directly affects the soil water

content, its distribution is highly random and noisy, leading to a low weight factor that can-

not be used as the only fitting parameter. Therefore, the seven input variables discussed in

this paper were selected as the inputs of the prediction model.

Fig 11. The distribution of prediction residuals in Yanqing, Shunyi and Daxing. (A) DNNR model in Yanqing area.(B) MLP model in Yanqing area. (C)

DNNR model in Shunyi areae.(D) MLP model in Shunyi area. (E) DNNR model in Daxing area.(F) MLP model in Daxing area.

https://doi.org/10.1371/journal.pone.0214508.g011
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2. The deep learning model is used to predict the soil moisture at a depth of 20 cm in the

Yanqing area. It was proven by experiments that too many layers of the model can lead to

too excessive training time and overfitting, the latter which affects training accuracy and

generality. Finally, a two-layer hidden layer was considered most suitable for our model’s

structure. The first layer is responsible for learning the input features, and the second layer

is responsible for polynomial fitting of the learned features, and too many nodes will cause

overfitting and reduce the prediction accuracy and generalization capability. Ultimately,

after ten repetitions of training, the model structure was determined to be 7-100-50-1 and

the DNNR model can ensure that the overall prediction error in the Yanqing area is con-

trolled at ±1.

3. At the same time, the DNNR model also can predict the moisture trends of other regions

(Shunyi and Daxing), and has ability to keep prediction error near the zero point. All evalu-

ation indicators are better than MLP model. The above results indicate that the DNNR

model has excellent generalization capability and scalability. It is feasible to apply soil mois-

ture prediction and provide technical support for irrigation strategies and drought control

using this model.
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