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One has found an important cell cycle controller. This guard can decide the cell cycle toward proliferation or quiescence. Cyclin-
dependent kinase 2 (CDK2) is a unique target among the CDK family in melanoma therapy. We attempted to find out TCM
compounds from TCM Database@Taiwan that have the ability to inhibit the activity of CDK2 by systems biology. We selected
Tetrahydropalmatine, Reserpiline, and (+)-Corydaline as the candidates by docking and screening results for further survey. We
utilized support vector machine (SVM), multiple linear regression (MLR)models and Bayesian network for validation of predicted
activity. By overall analysis of docking results, predicted activity, andmolecular dynamics (MD) simulation, we could conclude that
Tetrahydropalmatine, Reserpiline, and (+)-Corydaline had better binding affinity than the control. All of them had the ability to
inhibit the activity of CDK2 and might have the opportunity to be applied in melanoma therapy.

1. Introduction

One has discovered an important cell cycle controller. This
gatekeeper can decide the cell cycle toward proliferation or
quiescence [1]. The cell cycle means division and duplication
of the cells. If the process occurs in prokaryotes, it is termed
binary fission. In eukaryotes, the process can consist of inter-
phase and mitotic (M) phase. The interphase can be further
divided into G1 (gap 1) phase, S (synthesis) phase, and G2
phase [2, 3]. Normal cell cycle follows the ordinary steps, but
cancer cells grow without regulation. The rate of progress in
cell cycle is decided by cyclins and cyclin-dependent kinases
(CDKs). Entering of each phase is controlled by specific
cyclin-CDK complex. CDK is a member of serine-threonine
kinase family because a cyclin binds to a CDK and starts the
phosphorylation of its serine and threonine site [4, 5]. Cyclin
controls the activity of CDK. In other words, CDK is like the
engine in a car, and cyclin is like the gearbox. Cyclin E-CDK2
complex guides the process from G1 to S phase, while cyclin

A-CDK2 complex is required to pass through the S phase
[6, 7]. Related efforts let Hartwell et al., Bandara et al., and
Nurse win the Nobel Prize in Physiology or Medicine 2001
[8–10].

As mention to inhibitory mechanism, the genes of kinase
inhibitory protein/CDK interacting protein (kip/cip) family
prevent the progression of the cell cycle. Because these
proteins are produced in prevention of tumor formation, they
are known as tumor suppressors. The kip/cip gene family
includes the genes p21, p27, and p57. These proteins arrest
cell cycle in G

1
phase by binding to cyclin-CDK complexes

and inactivating them. P21, encoded by the CDKN1A gene,
is activated by p53 which plays a role in apoptosis; p27,
encoded by the CDKN1B gene, is activated by transforming
growth factor 𝛽 (TGF 𝛽) which is a growth inhibitor; p57,
encoded by the CDKN1C gene, is a negative regulator of cell
proliferation [11–15]. Cancer cells are loss of cell cycle rhythm.
CDK2 is encoded by CDK2 gene as a downstream product
of microphthalmia-associated transcription factor (MITF) in
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melanocytes, too. MITF is essential for development of em-
bryonic melanocytes and even malignant melanoma [16].
CDK2 has an important role in the occurrence and progres-
sion ofmelanoma among its CDK family. Inhibition of CDK2
significantly reduced growth of melanoma cells [17]. These
researches have told us that CDK2 would be a unique target
rather than other CDKs in melanoma therapy.

Malignant melanoma is very dangerous if it is not diag-
nosed and treated early. It causes high mortality rate [18].
Gold standard of primary melanoma is surgery; but com-
bined therapy, such as chemotherapy, immunotherapy, or ra-
diotherapy, is necessary to advanced or metastatic mela-
noma [19, 20]. The Raf protein/mitogen-activated protein
kinase/extracellular-signal-regulated kinase (RAF/MAPK/
ERK) signal pathway has thus become a molecular target for
therapeutic design of advanced melanoma harboring the B-
RAF gene mutation [21, 22]. However, not every melanoma
lesion carries this gene mutation. In addition, resistance to
RAF inhibitors has been reported recently [23–26]. Besides
melanoma, CDK2 is also overexpressed in other tumors [27,
28]. One study has demonstrated a significant increase of
cyclin E and CDK2 expression during tumor progression
in malignant melanoma compared to benign melanocytic
lesions [29]. Previous studies had demonstrated that Dinaci-
clib was a CDK1/2/5/9 inhibitor leading to tumor apoptosis
via p53 expression [30, 31].

In this study, we aimed to determine the small molecules
binding and inhibiting the function of CDK2 that would be
an effective method to interfere with the aggressive biological
behavior of advanced melanoma. Knowing the mechanism
of various diseases provides us with the new direction to
resolve them [32, 33]. Modern technology in medicine helps
us be more confident in managing troublesome diseases [34].
Computational simulation has rapidly emerged in small mo-
lecular drug design [35–38]. Traditional Chinese Medicine
(TCM) has mild features, and it has therapeutic effect in se-
ries of diseases [39–41]. Application of TCM database lets it
become possible to find out drug-like molecules [42–44].
In this purpose, we attempted to find out candidate com-
pounds from the largest TCM Database@Taiwan (http://tcm
.cmu.edu.tw/) in the world that have the ability to inhibit the
activity of CDK2 [45].

2. Materials and Methods

2.1. Docking and Candidate Screening. All small molecular
compounds were downloaded from TCMDatabase@Taiwan
(http://tcm.cmu.edu.tw/) to identify potential CDK2 inhib-
itor screening [45]. Cyclin-dependent kinase 2 (CDK2) pro-
tein data and structure were obtained from the Uniprot
Knowledgebase (CDK2 Human, P24941) and Protein Data
Bank (PDB ID: 1URW).The resolution of its crystal structure
was from residue 1 to 298, and key residues of the binding sites
are located at Lys33, Asp86, Asp127, Asn132, and Asp145 [46].
PONDR-FIT program in the DisProt website was employed
to exclude the disordered residues of 3D structure of CDK2
[47, 48]. This experiment utilized the LigandFit program of
Discovery Studio (DS) 2.5 to filter out the small molecules

from TCM database that could dock with CDK2 binding
sites. All the small molecules for virtual screening had passed
through Lipinski’s Rule of Five, absorption, distribution, me-
tabolism, excretion, and toxicity (ADMET), to rule out po-
tential toxic compounds in DS 2.5 [49, 50]. The locations
of binding sites were originally at the ligand, imidazo(1,2-b)
pyridazines or I1p (N-[3-(dimethylamino)propyl]-4-[(4-im-
idazo[1,2-b]pyridazin-3-yl-2-pyrimidinyl)amino]benzenesul-
fonamide), binding with CDK2 crystal structure. All the
poses of small molecules in docking process were minimized
by the force field of Chemistry at HARvard Macromolecular
Mechanics (CHARMm) [51]. We also adopted the LIGPLOT
program to illustrate hydrogen bond (H-bond) and hydro-
phobic contact between the ligand and CDK2 protein
[52, 53].

2.2. Support Vector Machine (SVM), Multiple Linear Regres-
sion (MLR) Models, and Bayesian Network. We obtained 27
compounds and pIC50 data of CDK2 inhibitors from the
study of Tripathi et al. [54]. Then we drew 2D and 3D struc-
ture of these compounds byChemBioDraw software.Thenwe
utilized Genetic Function Approximation (GFA) algorithm
in DS 2.5 to find the appropriate molecular descriptors [41,
55]. The descriptors constructing multiple linear regression
(MLR) and support vector machine (SVM)models were vali-
dated by Matlab Statistics Toolbox and libSVM.The descrip-
tion normalized between [−1, +1] by SVM training model.
We utilized the activity of square correlation coefficient (𝑅2)
to validate each model. The data of these compounds was
adopted for predicting the control and top 3 candidate com-
pounds. We utilized fivefold cross validation and chose the
highest 𝑅2 of SVM and MLR to perform activity prediction
models.

For a well-defined Bayesian network, our algorithm was
used in Matlab codes that integrated the Bayes Net Toolbox
(BNT) package and the Banjo package to predict pIC50
value. The physiochemical properties relating to the binding
strength were extracted as descriptors by DS 2.5.

2.3. Molecular Dynamics (MD) Simulation. We utilized
GROningen MAchine for Chemical Simulations (GRO-
MACS) 4.0.733 for MD simulation of the candidates and the
control compound [56]. Minimization, heating, equilibra-
tion, and production were the four phases for selected pro-
tein-ligand complex simulation. We analyzed the trajectory
figures of root mean square deviation (RMSD), Gyrate, mean
square deviation (MSD), and solvent accessible surface area
(SASA).We illustrated each ligand and its corresponding pro-
tein change for the 3 candidates and the control. Total energy,
root mean square fluctuation (RMSF), RMSD matrix and
clustering diagram, and secondary structure changes were
adopted to compare the changes of the 3 candidates and the
control during MD [57]. We calculated distance of hydrogen
bond (H-bond) and its stability by torsion analysis between
the ligand and essential amino acids of CDK2. Best distance
of H-bond was set at 0.3 nm or 3 Å. CAVER software was
adopted to analyze all possible pathways when the ligand
bound with CDK2 protein [58]. The parameters were
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Figure 1: Disorder disposition of CDK2 structure. All the regions for key residues of CDK2 are in the nondisordered region (below 0.5).

Table 1: Top 10 candidates of scoring function based on TCM Database@Taiwan screening.

Name Dock score H-bond key residues H-bond quantity Predicted activity
SVM∗ MLR∗ BNT∗

Tetrahydropalmatine 89.140 Asp86 and Lys89 3 6.233 6.156 6.509
Reserpiline 88.034 Asp86 and Lys89 2 7.148 6.044 6.995
(+)-Corydaline 86.231 Asp86 and Lys89 3 6.217 6.283 6.499
Taspine 85.957 Asp86 1 6.194 7.855 5.810
Thaliglucinone 83.869 Asp86 1 6.294 7.780 5.678
Hirsuteine 80.343 Asp86 and Lys89 2 6.308 5.494 6.519
Methoxymecambridine 79.702 Asp86 and Lys89 3 6.591 5.498 7.428
Evernic acid 78.944 Asp86 and Lys89 3 6.192 5.919 4.706
Strobilanthin 77.505 Glu8 2 5.686 5.095 3.338
Roxburghine X 76.897 Asp86 and Lys89 2 6.194 9.572 7.756
Dinaciclib∗ 59.051 Ile10 1 6.405 3.229 6.899
Dinaciclib: control; SVM: support vector machine; MLR: multiple linear regression; BNT: Bayes Net Toolbox.

time sparsity 1; first frame 0; last frame 100; probe radius 0.9,
shell radius 4, shell depth 5.

3. Results and Discussion

3.1. Docking and Candidate Screening. All the regions for key
residues (Lys33 to Asp145) of CDK2 protein recorded in the
literature did not locate at the disordered region. We could
prove that the 3D structure of CDK2 (PDB ID: 1URW) was
reliable (Figure 1). Table 1 listed dock score, H-bond forming
residues, H-bond quantity, SVM, MLR, and BNT of the
top 10 TCM compounds ranked by dock score. We selected
Tetrahydropalmatine, Reserpiline, and (+)-Corydaline as the
candidates for further examination. Dinaciclib, the CDK2
inhibitor, was assigned as the control compound in this study.
Tetrahydropalmatine, Reserpiline, and (+)-Corydaline were
mainly extracted from Phellodendron amurense, Rauwolfia
serpentina, and Corydalis yanhusuo, respectively. The litera-
ture had proved that the original plants of top 3 compounds

had antitumor efficacy [59–62]. Therefore, we believed that
the top 3 candidate compounds had the potential role in
the inhibition of tumor growth. The structure of top 3 TCM
compounds and control compound was shown in Figures
2(a)–2(c) and 2(d). The candidate compounds which had
good affinity with binding sites according to scoring function
may be associated with H-bond, charge interaction, 𝜋 bond,
van der Waals forces, and hydrophobic contact.

We illustrated how the top 3 and control compounds
interacted with the binding sites of target protein. All the top
3 candidate compounds bound to Asp86 and Lys89 residues
and formed charge interaction with Asp86.The phenomenon
was consistent with the key residues described in the liter-
ature. According to this finding, Asp86 and Lys89 residues
were important binding sites. (+)-Corydaline formed 𝜋 bond
with Gln131, too. The control formed H-bond with Ile10 and
charge interaction with Lys9 (Figure 3). Figure 2 showed that
the candidates and the control formed hydrophobic contacts
in the binding sites in addition to H-bonds. The candidate
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Figure 2: Scaffold of the top 3 TCM candidates: (a) Tetrahydropalmatine, (b) Reserpiline, (c) (+)-Corydaline, and (d) the control: Dinaciclib.

and control compounds formed hydrophobic contact with at
least 3 amino acid residues, respectively.The same amino acid
residue was Thr160. Tetrahydropalmatine, Reserpiline, and
control compound formed hydrophobic contact with Leu134.
Reserpiline and (+)-Corydaline formed hydrophobic contact
with Ile10, too. Although control compound did not form H-
bond with any key residue, it formed hydrophobic contact
with Asp86 and Asn132 (Figure 4).

Based on the results of docking, we concluded that can-
didate compounds had more stable force than control com-
pound. The hydrophobic contact of candidate compounds
was less than control compound, but all of them formed
hydrophobic contact with amino acid residue Thr160. The
analytic result of binding sites was compatible with the trend
in dock score (Table 1). We proved that Asp86 was important
in the binding site again.

3.2. Support Vector Machine (SVM), Multiple Linear Regres-
sion (MLR) Models, and Bayesian Network. We selected
the following 7 optimum descriptors for predicting activi-
ties: ALogP, Num Hydrogens, Molecular Volume, CHI 3 C,
CHI V 3 C, JY, and Jurs RPSA. We employed these descrip-
tors for constructing SVM, MLR models, and Bayesian
network. For the 7 descriptors in this study, each set of ligand-
compound discrete data allowed us to estimate complex
relationships, the descriptors, and the binding strength, with-
out hypothesis of data distribution that may bias the Baye-
sian network inference model. Using these descriptors,

the predictive models were generated as follows: p(IC50) =
−10.551 − 0.406 ∗ ALogP − 0.776 ∗ Num Hydrogens +
0.095 ∗ Molecular Volume + 5.280 ∗ CHI 3 C − 2.794 ∗
CHI V 3 C + 6.356 ∗ JY − 40.920 ∗ Jurs RPSA. For this pur-
pose, we discretized the data of pIC50 and these descriptors
from continuous values into various categories on the basis of
their distribution property.The 27 ligands of CDK2 inhibitors
were randomly divided into 20 training sets and 7 test sets for
validation. The 𝑅2 for predicted biological activity of SVM,
MLR, and Bayesian network were 0.9207, 0.9124, and 0.6538,
respectively.These results suggested that predicted activity of
any given compoundwas almost consistent with observed ac-
tivity. SVM of Tetrahydropalmatine, Reserpiline, and (+)-
Corydaline were 6.233, 7.148, and 6.217. MLR of the 3 candi-
dates were 6.156, 6.044, and 6.283. BNT of the 3 candidates
were 6.509, 6.995, and 6.499. SVM,MLR, andBNTof the con-
trol were 6.405, 3.229, and 6.899. Predicted activities of the 3
candidates were almost the same as or better than the control
(Figure 5).

3.3. Molecular Dynamics (MD) Simulation. We drew the tra-
jectories of ligand and protein RMSD to show the deviation of
each ligand and its corresponding protein during the period
of MD. Interestingly, (+)-Corydaline had large deviation at
11 ns of MD, but it became stable after the large deviation.
In contrast, Tetrahydropalmatine and Reserpiline were stable
during thewhole period ofMD.However, the control was un-
stable during the whole period of MD. In contrast to ligand
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Figure 3: Docking poses of the ligands with CDK2 binding sites. (a) Tetrahydropalmatine, (b) Reserpiline, (c) (+)-Corydaline, and (d)
Dinaciclib. Pink dashed line: charge interaction; green dashed line: H-bond with amino acids main chains; blue dashed line: H-bond with
amino acids side-chains; orange line: 𝜋 bond.

RMSD, protein RMSD of the 3 candidates and the control
were relatively stable after 6 ns of MD. (+)-Corydaline cor-
responding protein had the largest mean RMSD value, and
Tetrahydropalmatine corresponding protein had the smallest
mean RMSD value.We concluded that the 3 candidates could
bind with CDK2 more stably than the control (Figure 6(a)).
The trajectories of ligand and protein Gyrate were drawn to
show the average distance of atoms to the center of each li-
gand and its corresponding protein. It showed the compact
degree of each ligand and its corresponding protein. Similar
to ligandRMSDof (+)-Corydaline, it had large change at 11 ns
of MD but became stable after the large change. In contrast,
Tetrahydropalmatine and Reserpiline were stable during the
whole period of MD. However, the control was unstable dur-
ing the whole period of MD. In contrast to ligand Gyrate,

protein Gyrate of the 3 candidates and the control was
fluctuated during the whole period ofMD. It was evident that
all the 3 candidates and the control could induce compact
change of CDK2 (Figure 6(b)). We drew the trajectories of
ligand and protein MSD to show the deviation of atoms from
the beginning to the end ofMD. Interestingly, (+)-Corydaline
had steep rise after 11 ns of MD. However, it had steep drop
after 19 ns of MD and diminished the gap between the other
ligands. In contrast to ligand MSD, protein MSD of Reserpi-
line had the largestmeanMSDvalue.We speculated that the 3
candidates could bind with CDK2 as the control successfully
despite the different patterns of MSD (Figure 6(c)). The tra-
jectories of ligand and protein SASA were drawn to show the
surface area in contact with water of each ligand and its cor-
responding protein. Ligand SASA of the 3 candidates and the
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Figure 4: Docking poses of the ligands with CDK2 binding sites. (a) Tetrahydropalmatine, (b) Reserpiline, (c) (+)-Corydaline, and (d)
Dinaciclib.

control were stable during the whole period of MD. In con-
trast to ligand SASA, protein SASA of the 3 candidates and
the control were fluctuated during the whole period of MD.
It was evident that all the 3 candidates and the control could
induce surface change of CDK2 (Figure 6(d)). According to
the figures of RMSD, Gyrate, MSD, and SASA, we concluded
that the 3 candidates could bind with CDK2 and induce its

conformational change the same as or even more stable than
the control.

We illustrated total energy to observe the binding energy
stability for the ligand and protein. The average total energy
of ligand-protein complex for Tetrahydropalmatine, Reserpi-
line, (+)-Corydaline, and the control was −840000, −840000,
−839500, and −839500KJ/mol, respectively. The results of
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Figure 5: 20 training sets and 7 test sets using SVM, MLR models and Bayesian network for predicted activity. 𝑅2 of SVM = 0.9207, MLR =
0.9124, and Bayesian = 0.6709.

total energywere almost the same for the 3 candidates and the
control (Figure 7). RMSF was drawn to calculate the fluctu-
ation degree of every residue of CDK2 protein during MD.
The largest fluctuation of the 3 candidates was near residue
40. However, the largest fluctuation of the control was near
residue 160. Interestingly, even the line graph of RMSF was

similar, but not the same for the 3 candidates (Figure 8). We
concluded that all the 3 candidates and the control bound
with CDK2 protein stably but caused different fluctuation in
individual residues.

We illustrated RMSD matrix and clustering diagram of
MD conformations from 15 to 20 ns to find the representative
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Figure 6: Analysis of MD trajectories generated by Gromacs. (a) RMSD, (b) Gyrate, (c) MSD, and (d) SASA.
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Figure 7: Total energy. (a) Tetrahydropalmatine, (b) Reserpiline, (c) (+)-Corydaline, and (d) Dinaciclib.
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Figure 8: RMSF. (a) Tetrahydropalmatine, (b) Reserpiline, (c) (+)-Corydaline, and (d) Dinaciclib.
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Figure 9: RMSD matrix and clustering diagram of MD conformations from 15 to 20 ns. (a) Tetrahydropalmatine, (b) Reserpiline, (c) (+)-
Corydaline, and (d) Dinaciclib.

structure in the period. The upper left part demonstrated
RMSD values from 15 to 20 ns. The lower right part showed
several stable clusters in the same period (Figure 9). Accord-
ing to clustering diagram after 19 ns to the end of MD, we

selected 19.66, 19.18, 19.00, and 19.48 ns as the snapshot of rep-
resentative structure for Tetrahydropalmatine, Reserpiline,
(+)-Corydaline, and the control. The MD poses of 0 ns and
snapshot after 19 ns were compared with docking poses of
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Figure 10: Snapshots of the ligand bound with CDK2 protein during docking and MD simulation.

the ligand and CDK2 protein in Figure 10.The docking poses
of the 3 candidates showed the common key residues only
(Asp86 and Lys89). Tetrahydropalmatine formed additional
𝜋 bond with Ile10 at 0 ns of MD when compared with
docking poses. Reserpiline formed additional 𝜋 bond with
Leu134 at 0 ns of MD when compared with docking poses.
Tetrahydropalmatine and Reserpiline still formed H-bond
with Asp86 at 19.66 and 19.18 ns of MD. Reserpiline formed
additional 𝜋 bond with Val18 at 19.18 ns. (+)-Corydaline only
formed𝜋 bondwith Lys89 at 0 ns ofMDwhen comparedwith
docking poses and formed H-bond with Asp206 at 19 ns as a
result of ligand change in direction. This finding proved the
large deviation of (+)-Corydaline in the ligand RMSD at 11 ns
and the steep drop in the ligand MSD of Figure 6 after 19 ns.
We speculated that the direction of ligand had changed since

11 ns. After changing its direction, the ligand became stable at
the end of MD. The control (Dinaciclib) was the other dra-
matic ligand when comparingMD poses with docking poses.
The H-bond with Ile10 which originally existed in docking
pose disappeared during MD. The control formed 𝜋 bond
with Lys89 and H-bond with Asp145 at 0 ns of MD in substi-
tute. It formed𝜋 bondwith Phe82 and Lys89 at 19.48 ns ofMD
(Figure 10).

We illustrated distance of H-bond between the ligand and
essential amino acids of CDK2 to discuss the binding force
between the ligand and protein. According to occupancy of
H-bond between the ligands and CDK2 protein, the ligands
formed H-bonds with several residues of CDK2 protein per-
manently or temporarily. We picked up different patterns of
distance of H-bond in the following description which did
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Figure 11: Distance of H-bond trajectories during MD simulation. (a) Tetrahydropalmatine, (b) Reserpiline, (c) (+)-Corydaline, and (d)
Dinaciclib.

not necessarily appear in previous docking or MD poses.
Tetrahydropalmatine formed H-bond with Lys89 of CDK2
unstably at late stage of MD but formed H-bond with Asp86
constantly at all stages of MD (Figure 11(a)). Reserpiline
formed H-bond with Lys33 of CDK2 at middle stage of MD
and formed H-bond with Gln85 unstably during MD
(Figure 11(b)). (+)-Corydaline formed H-bond with Lys89 of
CDK2 before 5 ns of MD. This compound also formed H-
bond with Ile10 of CDK2 before 5 ns of MD but formed H-
bond with Asp206 after 7 ns of MD instead (Figure 11(c)).

The control formed H-bond with Asp86, Lys89, and Gln131
of CDK2 unstably during MD (Figure 11(d)). H-bond was
important binding force between the ligand and protein.
Based on these changes, we could discover that all the can-
didates and the control formedH-bondswith essential amino
acids in quite different patterns.

The change in ligand torsion during MD also provided
important clues to the stability of the H-bond. Tetrahy-
dropalmatine formed 2 H-bonds with Lys89 of CDK2 as
shown in Figures 3(a) and 4(a). The torsion angles 1 and 2
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Figure 12: H-bond stability by torsion analysis. (a) Tetrahydropalmatine, (b) Reserpiline, (c) (+)-Corydaline, and (d) Dinaciclib.

mean H-bonds of the ligand within 180-degree fluctua-
tion (Figure 12(a)). Reserpiline formed H-bond with Lys89
as shown in Figures 3(b) and 4(b). The torsion angle 9
means stable H-bond of the ligand with tiny fluctuation
(Figure 12(b)). (+)-Corydaline formed H-bond with Lys89 as
shown in Figures 3(c) and 4(c). The torsion angle 13 means
faint H-bond of the ligand. This finding was consistent with
Figure 11(c). The temporary H-bond with Lys89 disappeared

after 5 ns of MD (Figure 12(c)). The control formed H-bond
with Ile10 as shown in Figures 3(d) and 4(d). The tor-
sion angle 16 means H-bond within 90- degree fluctuation
(Figure 12(d)).

We drew secondary structure changes to discuss the
change of structural component when the ligand bound with
CDK2 protein. By observation of RMSF changes shown in
Figure 8, the most fluctuated regions for the 3 candidates and
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Figure 13: Secondary structure changes during MD simulation. (a) Tetrahydropalmatine, (b) Reserpiline, (c) (+)-Corydaline, and (d)
Dinaciclib.

the control were near residues 40 and 160. The findings of
secondary structure changes were similar to that of RMSF.
There were larger changes near residues 40 and 160, too
(Figure 13). We speculated that all the 3 candidates and the
control bound with CDK2 protein successfully and inhibited
the activity of CDK2 by inducing its structural component
change. We illustrated 3D simulation of ligand pathway to
analyze all possible pathways when the ligand bound with
CDK2 protein. There were 4 possible pathways for Tetrahy-
dropalmatine or Reserpiline. However, there were 6 and 10
possible pathways for (+)-Corydaline and Dinaciclib, respec-
tively (Figure 14).

4. Conclusion

One has found an important cell cycle controller. This guard
can decide the cell cycle toward proliferation or quiescence.

Normal cells follow the ordinary cycle, but cancer cells grow
without rhythm.The rate of progress in cell cycle is regulated
by cyclins and cyclin-dependent kinases (CDKs). CDK2 is a
unique target among the CDK family in melanoma therapy.
Previous studies had demonstrated that Dinaciclib was a
CDK1/2/5/9 inhibitor leading to tumor apoptosis. We at-
tempted to find out TCM compounds from the largest TCM
Database@Taiwan in the world that have the ability to inhibit
the activity of CDK2 by computational simulation.

We selected Tetrahydropalmatine, Reserpiline, and (+)-
Corydaline as the candidates by docking and candidate
screening results for further validation. Dinaciclib was
assigned as the control compound. All the 3 candidates were
better than the control in terms of docking score. Asp86 and
Thr160 were the key residues for the 3 candidates and the
control according to docking poses. All the 3 candidates were
enrolled in constructing predicted activity using SVM, MLR
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Figure 14: Analysis of transport pathways for CDK2 protein during MD simulation. (a) Tetrahydropalmatine, (b) Reserpiline, (c) (+)-
Corydaline, and (d) Dinaciclib.

models, and Bayesian network. These constructed models
were reliable due to high 𝑅2 values.The results suggested that
predicted activity of any given compoundwas almost consist-
ent with observed activity. Predicted activities of the 3 candi-
dates were almost the same as or better than the control based
on SVM, MLR, and BNT values.

MD simulation provided very useful information about
the dynamic changes when the ligands bound with CDK2
protein. According to the figures of RMSD, Gyrate, MSD,
and SASA, we concluded that the 3 candidates could bind
with CDK2 and induce its conformational change the same
as or evenmore stable than the control. Based on total energy
and RMSF, we concluded that all the 3 candidates and the
control bound with CDK2 protein stably but caused different
fluctuation in individual residues. The MD poses of 0 ns and
snapshot after 19 ns were compared with docking poses of
ligand and protein. The results let us know the interesting
change of binding sites during MD. We illustrated distance
of H-bond and torsion analysis to observe how the important
binding force affected the connection between the ligand and
CDK2 protein. There were many interesting findings which
had been described in the paper. The results of secondary
structure changes were similar to that of RMSF. We speculat-
ed that all the 3 candidates and the control bound with

CDK2 protein successfully and inhibited the activity of CDK2
by inducing its structural component change. Finally, 3D sim-
ulation of ligand pathway told us that there were many possi-
ble pathways when the ligand bound with CDK2 protein.

By overall analysis of docking results, predicted activity,
and MD simulation, we could conclude that Tetrahydropal-
matine, Reserpiline, and (+)-Corydaline had better binding
affinity than Dinaciclib. All of them had the ability to inhibit
the activity of CDK2 and might have the opportunity to be
used in melanoma therapy.
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