DOI: 10.1002/ece3.8499

RESEARCH ARTICLE

OpenAccess WILEY

Loss of the IR region in conifer plastomes: Changes in the selection pressure and substitution rate of protein-coding genes

Jingyao Ping¹ | Jing Hao¹ | Jinye Li¹ | Yiqing Yang² | Yingjuan Su^{3,4} | Ting Wang¹ |

¹College of Life Sciences, South China Agricultural University, Guangzhou, China

²College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China

³School of Life Sciences, Sun Yat-sen University, Guangzhou, China

⁴Research Institute of Sun Yat-sen University, Shenzhen, China

Correspondence Yingjuan Su, Xingang West Road,

Guangzhou, Guangdong, IA 510275, China. Email: suyj@mail.sysu.edu.cn

Ting Wang, Wushan Road, Guangzhou, Guangdong, IA 510640, China. Email: tingwang@scau.edu.cn

Funding information

This work was funded by the National Natural Science Foundation of China (31670200, 31770587, 31872670, and 32071781).

Abstract

Plastid genomes (plastomes) have a quadripartite structure, but some species have drastically reduced or lost inverted repeat (IR) regions. IR regions are important for genome stability and the evolution rate. In the evolutionary process of gymnosperms, the typical IRs of conifers were lost, possibly affecting the evolutionary rate and selection pressure of genomic protein-coding genes. In this study, we selected 78 gymnosperm species (51 genera, 13 families) for evolutionary analysis. The selection pressure analysis results showed that negative selection effects were detected in all 50 common genes. Among them, six genes in conifers had higher ω values than non-conifers, and 12 genes had lower ω values. The evolutionary rate analysis results showed that 9 of 50 common genes differed between conifers and non-conifers. It is more obvious that in non-conifers, the rates of psbA (trst, trsv, ratio, dN, dS, and ω) were 2.6- to 3.1-fold of conifers. In conifers, trsv, ratio, dN, dS, and ω of ycf2 were 1.2- to 3.6-fold of non-conifers. In addition, the evolution rate of ycf2 in the IR was significantly reduced. psbA is undergoing dynamic change, with an abnormally high evolution rate as a small portion of it enters the IR region. Although conifers have lost the typical IR regions, we detected no change in the substitution rate or selection pressure of most protein-coding genes due to gene function, plant habitat, or newly acquired IRs.

KEYWORDS

conifer, gymnosperm, inverted repeat region, rate heterogeneity, selection pressure

JEL CLASSIFICATION Genomics

Genomic

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2022 The Authors. *Ecology and Evolution* published by John Wiley & Sons Ltd.

1 | INTRODUCTION

The plastid genomes (plastomes) of most land plants have a highly conserved quadripartite structure, consisting of a large single-copy (LSC) region and a small single-copy (SSC) region separated by a pair of inverted repeat (IR) regions (Wicke et al., 2011). Due to selective pressure on photosynthesis-related elements, plastids have highly conserved gene content and order (Ruhlman & Jansen, 2014). And due to their highly conservation, a large copy number, lack of recombination, and uniparental inheritance, plastomes have been used to evaluate phylogeographic relationships, phylogeographic histories, and evolutionary events (Barrett et al., 2016; Julian et al., 2017; Moore et al., 2006; Pacheco et al., 2019; Shaw et al., 2014; Wang et al., 2020).

Inverted repeat regions are important in replication initiation (Heinhorst & Cannon, 1993), genomic stability (Maréchal & Brisson, 2010; Palmer & Thompson, 1982), and gene conservation (Palmer & Thompson, 1982; Wolfe et al., 1987). IR changes alter the size of the plastid genome (Kwon et al., 2020). From green algae to angiosperms, IR regions typically contain at least four rRNAs and five tRNAs (Mower & Vickrey, 2018). However, the IR region, as a hot spot of structural rearrangement, often contracts, expands, or is lost. In related species, the boundary of the IR region changes little, resulting in the gain or loss of a small number of genes (Downie & Jansen, 2015; Li et al., 2016; Ping, Li, et al., 2021; Wicke et al., 2014). The IR region of Pelargonium, Psilotum, and Trochodendraceae has undergone large-scale expansion, gaining a large number of genes from the SC region (Chumley et al., 2006; Grewe et al., 2013; Sun et al., 2013). The IR region is absent in the plastomes of some plant lineages, such as *prasinophyceans* (Lemieux et al., 2014), trebouxiophyceans (Turmel et al., 2015), streptophytes (Lemieux et al., 2016), Ulvophyceae (Cai et al., 2017), and Euglenaceae (Karnkowska et al., 2018) among algae; Pinaceae, Cupressophytes (Li, Gao, et al., 2016; Wu, Lin, et al., 2011; Wu, Wang, et al., 2011), and Taxaceae (Zhang et al., 2014) among gymnosperms; and the putranjivoid clade of Malpighiales (Jin et al., 2020), Tahina spectabilis (Arecaceae) (Barrett et al., 2016), legumes (Palmer & Thompson, 1981, 1982), Carnegiea gigantea (Cactaceae) (Sanderson et al., 2015), and Erodium species (Geraniaceae) (Blazier et al., 2016; Guisinger et al., 2011; Ruhlman et al., 2017) among angiosperms.

The sequence substitution rate in the IR region differs from that in the SC region. In some legumes with missing IR regions, the synonymous substitution rate of genes entering the SC region from the IR region is similar to that of those already in the SC region (Perry & Wolfe, 2002). The IR region has a low substitution rate in *Cycas* (Wu & Chaw, 2015). Zhu et al. (2016) found that the synonymous substitution rate of genes in the SC region in vascular plants (angiosperms, gymnosperms, and ferns) is 3.7-fold that of genes in the IR region; after the transfer of genes between the SC and IR regions, the substitution rate becomes consistent. Some genes in the IR region have high synonymous substitution rates in some species (*Pelargonium*, Plantago, and Silene). In ferns, psbA, rps7, 3'-rps12, and ycf2 showed a reduced substitution rate and increased GC content after entering the IR region (Li, Kuo, et al., 2016). Recently, Ping, Feng, et al. (2021), Ping, Li, et al. (2021) reported that the substitution rate of 3'-rps12 in the IR region is lower than that of 5'-rps12 in the SC region in ferns and gymnosperms.

The IR region has important effects on genome stability and the evolutionary rate (Maréchal & Brisson, 2010; Palmer & Thompson, 1982; Wolfe et al., 1987). During gymnosperm evolution, conifers lost the IR region. Araucaria cunninghamii (Araucariaceae) is native to southeastern coastal areas of Oceania and is the main afforestation tree species in tropical and subtropical regions. It is one of the top five park tree species worldwide and an important garden ornamental plant, and it is cultivated widely in China. Callitropsis funebris (Cupressaceae) is endemic to China and distributed widely; it grows rapidly and has a wide range of uses and strong adaptability. Its phylogenetic classification is a focus of research (Zheng & Fu, 1978). As these two species are important representatives of their genera, we sequenced their plastomes. In this study, we selected 78 gymnosperms and 2 Polypodiales (outgroup) and analyzed selection pressure and the evolutionary rate using the maximum likelihood method. We investigated whether the selection pressure and evolutionary rate of protein-coding genes in conifers differed according to the presence of the IR region; whether the selection pressure and evolutionary rate of genes that enter the IR region differ from those that enter the SC region; and the heterogeneity of gymnosperm evolutionary rates.

2 | MATERIALS AND METHODS

2.1 | Sequencing and sequence preparation

Fresh leaves of Callitropsis funebris (E113°35', N23°15') and Araucaria cunninghamii (E113°200', N23°90') were taken from the campus of South China Agricultural University. Specimens were stored in Herbarium of the College of Life Sciences, SCAU (specimen no.: PJY-NYS1910 and PJY-BM1910). Plastid genomic DNA was extracted using the DNASECure Plant Genomic DNA Extraction Kit (Tiangen) and double-ended sequencing was performed on Illumina HiSeq2500 platform. Clean reads filtered by Trimmomatic V0.32 (Bolger et al., 2014) were spliced and assembled in Velvet V1.2.03 (Zerbino & Birney, 2008). The genes were predicted by the DOGMA Program (Wyman et al., 2004) and the plastome was mapped using the online site OGDRAW v1.3 (https://chlorobox.mpimp-golm. mpg.de/OGDraw.html) after gene annotation (Greiner et al., 2019). Finally, the sequence information was submitted on the Banklt Platform (https://www.ncbi.nlm.nih.gov/WebSub/), and Genbank accession no. is MT227812 and MT227813, respectively.

In addition, 76 gymnosperms and 2 Polypodiales (as outgroups) were downloaded from the NCBI database. A total of 78 gymnosperms cover 13 families and 51 genera (Table 1). Genious prime 2020

TABLE 1 The Information of sampled species

Ecology and Evolution

3 of 14

WILEY

Order	Family	Species name	GenBank accession no.	Species name	GenBank accession no.
Cycadales	Cycadaceae	Cycas revoluta	NC_020319	Cycas szechuanensis	NC_042668
		Cycas panzhihuaensis	NC_031413	Cycas taitungensis	NC_009618
	Boweniaceae	Bowenia serrulata	NC_026036		
	Zamiaceae	Stangeria eriopus	NC_026041	Zamia furfuracea	NC_026040
		Ceratozamia hildae	NC_026037	Encephalartos lehmannii	NC_027514
		Dioon spinulosum	NC_027512	Lepidozamia peroffskyana	NC_027513
		Macrozamia mountperriensis	NC_027511		
Ginkgoales	Ginkgoaceae	Ginkgo biloba	NC_016986		
Gnetales	Gnetaceae	Gnetum montanum	NC_021438	Gnetum ula	NC_028734
		Gnetum parvifolium	NC_011942	Gnetum gnemon	NC_026301
Ephedrales	Ephedraceae	Ephedra equisetina	NC_011954	Ephedra intermedia	NC_044772
		Ephedra foeminea	NC_029347	Ephedra sinica	NC_044773
Welwitschiales	Welwitschiaceae	Welwitschia mirabilis	EU342371		
Cupressales	Cupressaceae	Cryptomeria japonica	NC_010548	Cupressus tonkinensis	NC_039562
		Taiwania cryptomerioides	NC_016065	Cupressus gigantea	NC_028155
		Taiwania flousiana	NC_021441	Cupressus sempervirens	NC_026296
		Cunninghamia lanceolata	NC_021437	Callitropsis funebris	MT227813
		Juniperus monosperma	NC_024022	Callitropsis nootkatensis	KP099642
		Juniperus recurva	NC_042763	Callitropsis vietnamensis	KX832629
		Taxodium distichum	NC_034941	Hesperocyparis lusitanica	MH121051
		Taxodium mucronatum	NC_045277	Chamaecyparis formosensis	NC_034943
		Calocedrus formosana	NC_023121	Chamaecyparis hodginsii	NC_036996
		Glyptostrobus pensilis	NC_031354	Thuja occidentalis	NC_042177
		Metasequoia glyptostroboides	NC_027423	Thuja sutchuenensis	NC_042176
		Callitris rhomboidea	NC_034940		
	Тахасеае	Cephalotaxus sinensis	MF977938	Taxus fuana	NC_038099
		Cephalotaxus oliveri	NC_021110	Pseudotaxus chienii	NC_041503
		Amentotaxus argotaenia	NC_027581	Torreya fargesii	NC_029398
		Amentotaxus formosana	NC_024945		
	Sciadopityaceae	Sciadopitys verticillata	NC_029734		
Pinales	Pinaceae	Cedrus deodara	NC_014575	Picea neoveitchii	NC_043913
		Pinus massoniana	MF564195	Keteleeria davidiana	NC_011930
		Pinus yunnanensis	NC_043856	Tsuga chinensis	NC_030630
		Pseudolarix amabilis	NC_030631	Larix sibirica	NC_036811
		Pseudotsuga sinensis	NC_016064	Larix decidua	NC_016058
		Abies fargesii	NC_042775	Abies fanjingshanensis	NC_042777
Araucariales	Podocarpaceae	Nageia nagi	NC_023120	Retrophyllum piresii	NC_024827
		Podocarpus lambertii	NC_023805	Dacrydium elatum	NC_045880
		Dacrycarpus imbricatus	NC_034942	Manoao colensoi	NC_044893
	Araucariaceae	Agathis dammara	NC_023119	Araucaria heterophylla	NC_026450
		Wollemia nobilis	KP259800	Araucaria araucana	NC_045394
		Araucaria cunninghamii	MT227812	Araucaria bidwillii	NC_045395
		Araucaria angustifolia	NC_039155		
Polypodiales	Polypodiaceae	Lepisorus clathratus	NC_035739		
	Athyriaceae	Athyrium anisopterum	NC_035738		

 $II FY_{Ecology and Evolution}$

(Kearse et al., 2012) software was used to extract 50 protein-coding genes. And performed sequence alignment and correction through the ClustalW (codons) module in MEGA X (Kumar et al., 2018).

2.2 | Analysis of phylogenetic relationships

We constructed the phylogenetic relationships based on the common gene dataset (the two Polypodiales as the outgroup). MEGA X and PAUP4.0 (Swofford, 2002) were used to construct the NJ (neighbor-joining) tree and MP (maximum-parsimony) tree, respectively. RaxmIGUI2 software built ML (maximum-likelihood) tree with GTRGAMMAI substitution model and 1,000 bootstrap (Stamatakis, 2014). BI (Bayesian inference) tree was built with MrBayes 3.2.6 software (Huelsenbeck & Ronquist, 2001). We reconstructed a background tree combined with the published phylogenetic relationship to analyze selection pressure and evolution rate, finally.

2.3 | Analysis of selection pressure

Codeml program in PAML4.9 was used to analyze the selection pressure (Yang, 2004). The M0 (one-ration) model assumes that each branch has the same value of ω under the Branch model. The Model 2 (two-ratio) assumes the foreground branch and the background branch have different ω values. The likelihood ratio test of M0 and Model 2 can be used to detect the difference of selection pressure between the foreground branch and the background branch.

2.4 | Analysis of evolutionary rate

We used HyPhy 2.2.4 software (Pond et al., 2005) to calculate the evolution rate, which is based on the maximum likelihood method and in the context of the phylogenetic tree. The transition rate (trst), transversion rate (trsv), and trsv/trst (ratio) of each branch were calculated under the nucleotide *HKY85* substitution model with the local parameter. Similarly, the synonymous (*dS*) and non-synonymous (*dN*) substitution rates and *dN/dS* (ω) of each branch were calculated under the codon *MG94×HKY85×3_4* substitution model with the *rate Het*. parameter and *4 rate classes*. IBM SPSS v22.0 (IBM Corporation, 2014) software was used to perform the Mann–Whitney U test and Spearman's rank correlations test on related parameters.

3 | RESULTS

3.1 | Plastome characteristics

The 76 gymnosperms were divided into two types according to the presence of a typical IR region: 56 gymnosperms lacked a typical IR region (SC-56; conifer) and 22 gymnosperms had a typical IR

region (gnetophytes, cycads, and *Ginkgo biloba*; IR-22; non-conifer). For SC-56 (Appendix S1), the genome size ranged from 117,720 bp (*K. davidiana*) to 146,723 bp (*A. heterophylla*), with an average of 130,858 bp. The GC content ranged from 34.3% (*T. sutchuenensis*) to 39.1% (*C. davidiana*), with an average of 36.2%.

For IR-22 (Table 2), the genome size ranged from 109,518 bp (*Ephedra equisetina*) to 166,341 bp (*Macrozamia mountperriensis*), with an average of 142,888 bp. The GC content ranged from 36.6% to 40.1%, with an average of 38.7%. The size of the IR region ranged from 17,732 bp (*G. biloba*) to 26,137 bp (*Ceratozamia hildae*). Compared with other groups, the plastome of the gnetophytes was the smallest, and the proportion of SSC region was also the smallest (7.2–9.3%), but the proportion of the IR region was largest (16%–18.9%). The three groups all contained the protein-coding genes *rps7* and 3'-*rps12* in the IR region, and *ndhB* was present in *G. biloba* and cycads. All plants, except *G. biloba*, possessed *ycf2*. Individually, 3'-*psbA* was present in *Welwitschia mirabilis*, *Gnetum parvifolium*, and *Gnetum gnemon*, *rpl32 was* detected in *W. mirabilis*, and *rps15* was detected in *E. equisetina* (Figure 1).

Rank sum tests indicated no significant differences in genome size (p = .202) and significant differences in GC content (p < .01) between IR-22 and SC-56.

3.2 | Phylogenetic analysis

The 50 protein-coding genes comprised 30 photosynthetic system genes, 15 genetic systems, and 5 other genes (Table 3). The constructed phylogenetic results (Appendix S2) showed that the phylogenetic relationship constructed by the NJ method was the clearest, and each group formed a monophyletic branch. Using the BI and ML methods, we found that all groups, except the Pinales, formed a monophyletic branch. In the MP tree, the relationship between Cupressales and Araucariales was unclear.

The NJ (bootstrap value = 100) and MP (bootstrap value = 50) trees supported gnetophytes as the basic group of gymnosperms, and the MP (bootstrap value = 100) and BI (posterior probability = 1) trees supported gnetophytes and *P. neoveitchii* as sister groups. Based on previous reports, we accepted the *Gnepine* hypothesis, and performed a manual adjustment to obtain the phylogenetic tree for selection pressure and evolution rate analysis (Figure 2).

3.3 | Evolutionary analysis based on the presence of a typical IR region

With IR-22 as the foreground branch and SC-56 as the background branch, likelihood ratio tests of M0 and Model 2 yielded 18 genes with significant differences (p < .05). That is, these 18 genes experience different selection pressure in IR-22 and SC-56. Among them, six genes had an ω value in IR-22 that were lower than SC-56, and the rest were higher (Table 4).

TABLE 2 Plastome structure information of 22 species with typical IR regions

Sector nume Germe size/bp GC/F LSC/bp LSC/bp SSC percentage R/bp R percentage CD Gringo tiblea 156.98 9.5 9.254 6.3.2% 2.3.379 14.3% 25.9.06 15.4% 3 Gringo tiblea 156.98 9.5 9.89.73 54.7% 2.3.379 14.4% 25.9.06 15.4% 4 Coresternation 102.470 9.9 89.73 54.7% 2.3.149 14.4% 25.9.03 15.4% 4 Coresternation 165.495 9.9 90.73 54.7% 2.3.107 14.4% 25.9.03 15.4% 4 Coresternation 165.943 39.7 90.73 54.8% 2.3.103 14.4% 25.9.03 15.6% 4 Domentaneoritic 165.734 39.7 90.47% 2.3.3.03 14.4% 25.9.03 15.6% 4 Domentaneoritic 165.93 94.9% 2.3.3.23 14.4% 25.9.03 15.6% 4 Domentaneoritic										Number of g the IR region	enes in
Gindge blobe156/98992992/46.32%22.6714.2%17.7311.3%3Crosserolutu10.48010.44010.44010.44010.44010.44010.44014.44Crosserolutureris10.240010.488.9254.9%23.34914.4%25.04015.4%14Crosserolutureris16.50319.989.9054.9%23.34014.4%25.04015.4%14Crosserolutureris16.50319.990.9354.9%23.31614.1%25.04015.4%14Crosserolutureris16.50399.999.999.923.00014.1%25.04015.6%14Storesterolutureris16.51316.51314.0%25.34414.0%25.34614Storesterolutureris16.51316.73439.999.934.8%23.30014.1%25.34615.6%14Crosserolutureris16.51414.0%23.34514.4%25.34615.6%14Donorsprintorutureri16.34199.999.4%23.32214.4%25.34615.6%14Leptderingerifytig16.54999.999.4%23.32214.4%25.96415.6%14Leptderingerifytig16.54999.999.4%23.32314.4%25.96415.6%14Leptderingerifytig16.54999.999.999.4%23.32414.4%25.96415.6%14Leptderingerifytig16.6491	Species name	Genome size/bp	GC/%	LSC/bp	LSC percentage	SSC/bp	SSC percentage	IR/bp	IR percentage	CDS	tRNA
Construction162.48939.4854.9854.9823.37914.4825.00615.484Corst ponchinuents12.47039.489.97254.7823.44814.4825.04515.4484Corst strutingents163.40339.999.954.94823.310914.14825.50315.6484Corst strutingents165.34339.999.954.94823.310914.14825.50315.6484Strutingents165.34339.999.999.954.94823.310514.14825.50415.5634Strutingents165.34339.790.43754.94823.310514.14825.54315.5684Strutingents165.34339.790.44154.8623.32314.44825.64315.684Dion spinlosum161.31539.790.44154.8623.32314.44825.64315.684Under struting165.9239.790.44154.8623.32414.14825.64315.684Under struting165.9239.790.44154.8623.32414.14825.64315.684Under struting165.9239.790.44154.8623.32414.14825.64315.684Under struting165.9239.790.44154.8623.32414.14825.64315.684Under struting165.9239.990.44154.8623.32414.148 <td>Ginkgo biloba</td> <td>156,988</td> <td>39.6</td> <td>99,254</td> <td>63.2%</td> <td>22,267</td> <td>14.2%</td> <td>17,732</td> <td>11.3%</td> <td>ო</td> <td>9</td>	Ginkgo biloba	156,988	39.6	99,254	63.2%	22,267	14.2%	17,732	11.3%	ო	9
Cycos pandifluaensis162,47039.488,93254,7%23,44%16,4%25,04515,4%16Cycos serbiunensis142,08093.488,97054,9%23,310714,3%25,00315,4%4Cycos serbiunensis165,69039.990,7354,8%23,03614,1%25,00315,6%4Cycos serulute165,14039.990,7354,8%23,03614,1%25,00315,6%4Stangene serulute165,14039.990,24054,9%23,03614,1%25,34715,5%4Stangene serulute165,14197.997.994,4154,8%23,330214,1%25,34315,6%4Correstanderblueur165,14197.997.997.4%23,34214,1%25,64215,5%4Correstanderblueur165,82297.997.4%23,34214,1%25,64215,5%4Correstanderblueur165,82297.997.4%23,34214,1%25,64215,5%4Correstanderblueur165,82297.997.4%23,34214,1%25,64215,5%4Correstanderblueur165,82297.997.4%54,7%23,34214,1%25,64215,5%4Correstanderblueur165,82297.997.4%23,34214,1%25,94815,5%4Correstanderblueur165,82297.997.4%24,1%25,94815,5%4Lepfoder	Cycas revoluta	162,489	39.4	88,978	54.8%	23,379	14.4%	25,066	15.4%	4	6
Cycas sechtamensis16.208339.488,7054.9%23.10714.3%25.00315.4%4Cycas sechtamensis163.40339.590.21655.2%23.0314.1%25.04315.5%4Bowenis serutation163.40339.590.21655.2%23.03014.1%25.94315.6%4Bowenis serutation165.43439.599.2054.8%23.03014.1%25.94315.5%4Stangeria eriopus165.13439.790.44154.8%23.35514.4%25.94315.6%4Coro spinulosum165.9339.990.7454.8%23.32314.1%25.94315.6%4Coroparinteriorus165.9339.990.7454.7%23.32314.1%25.64315.6%4Lopdazzania166.34154.9%34.7%23.32314.1%25.64315.6%4Lopdazzania165.9339.990.9054.7%23.32314.1%25.64315.6%4Lopdazzania165.9339.990.7454.7%23.32414.1%25.64315.6%4Macczania165.9390.9054.7%23.32414.1%25.94315.6%4Lopdazzania165.9438.754.7%23.32414.1%25.94315.6%4Macczania115.0138.264.91454.7%23.34114.0%15.6%16.6%Macczania113.2438.2<	Cycas panzhihuaensis	162,470	39.4	88,932	54.7%	23,448	14.4%	25,045	15.4%	4	7
Cycar talturgensis163,40339,590,21655,2%23,03141%25,07415.3%4Bowenia serrulata165,69539,990,73354,8%23,15614,0%25,94615.6%4Bowenia serrulata165,73439,790,47354,8%23,05614,1%26,13715.6%4Forger ariptus165,73439,790,47354,6%23,05314,4%26,13715.6%4Corretozamia hilder165,73440,188,7454,6%23,05314,4%26,13715,6%4Lonor spinulosum164,91399,790,4154,8%23,23214,1%25,64315,6%4Lonor spinulosum164,31439,891,1154,8%23,23214,1%25,64315,6%4Lonor spinulosum165,3739,990,8054,7%23,23214,1%25,64315,6%4Lonor spinulosum165,3116,3116,3414,0%25,9%15,6%44Macrozamia165,3116,3454,3%23,33414,1%25,9%15,6%4Macrozamia165,3116,3431,1%54,3%23,33414,1%25,9%15,6%4Macrozamia165,3116,3431,4%23,33414,1%25,9%15,6%16Macrozamia165,3116,3431,4%24,3%15,6%15,6%16Macrozamia115,1%38,264,91 <td< td=""><td>Cycas szechuanensis</td><td>162,083</td><td>39.4</td><td>88,970</td><td>54.9%</td><td>23,107</td><td>14.3%</td><td>25,003</td><td>15.4%</td><td>4</td><td>7</td></td<>	Cycas szechuanensis	162,083	39.4	88,970	54.9%	23,107	14.3%	25,003	15.4%	4	7
Boweniaserulata 165,695 399 90,733 54,86 23,156 14,06 25,903 15,66 4 Stangeria eriopus 163,548 397 90,437 54,96 23,006 14,18 25,943 15,66 4 Carabarin hildude 165,734 397 90,437 54,68 23,035 14,48 25,346 15,56 4 Dion spinulosum 164,933 397 90,447 54,88 23,335 14,48 24,88 4 4 Dion spinulosum 164,933 397 90,441 54,88 23,335 14,48 25,649 15,66 4 Lepedindarperferidis 165,822 397 90,441 54,78 23,332 14,48 25,949 15,56 4 More commine perferidis 165,822 397 90,411 54,78 23,332 14,48 25,949 15,56 4 More commine perferidistrip 165,822 397 14,48 23,34 14,08 15,68 14	Cycas taitungensis	163,403	39.5	90,216	55.2%	23,039	14.1%	25,074	15.3%	4	7
Stangeria eriopus163,54839,589,85054,9%23,006141%25,34615,5%4Caratozamia hildae165,73430,790,48754,6%23,35514,4%26,13715,8%4Dioon spinulosum161,81540,188,75454,8%23,35514,4%24,85315,5%4Dioon spinulosum161,81533,790,4154,8%23,35514,4%26,64215,5%4Terepholator leturacea164,95333,990,03454,7%23,30214,1%25,64215,5%4Lepidazamia peroffskyama155,8233,990,04354,7%23,30214,1%25,64215,5%4Macrozamia155,8233,990,0454,7%23,30214,1%25,64215,5%4Macrozamia155,8230,990,0454,7%23,30214,1%25,64215,5%4Macrozamia155,8214,0%23,30214,1%25,64215,5%44Macrozamia155,9230,990,90454,7%23,30214,0%15,5%44Macrozamia155,9231,990,9154,7%23,33414,0%15,6%15,5%4Macrozamia114,9143186,09357,5%14,0%25,6%17,5%15,6%4Macrozamia114,9143186,09357,5%14,0%17,5%17,5%15,6%17,5%Macrozamia <td>Bowenia serrulata</td> <td>165,695</td> <td>39.9</td> <td>90,733</td> <td>54.8%</td> <td>23,156</td> <td>14.0%</td> <td>25,903</td> <td>15.6%</td> <td>4</td> <td>7</td>	Bowenia serrulata	165,695	39.9	90,733	54.8%	23,156	14.0%	25,903	15.6%	4	7
Cartozamic hildae165,7439.790,48754.6%22,97313.9%26,13715.8%4Dioon spinulosum161,81540.188,75454.8%23,35514.4%24.8554.8%4Dioon spinulosum161,81540.188,75454.8%23,32614.1%24.8515.5%4Zamia furfuracea164,95339.790,44154.8%23,32014.1%25.64215.5%4Lepidozamia peroffskyuna165,92939.990,0454.7%23,32014.1%25.64815.6%4Macrozamia165,93939.990,0454.7%23,32414.0%25.9%15.6%4Macrozamia165,93939.990,0454.7%23,32414.0%25.9%15.6%4Macrozamia165,93938.266,13957.5%23,32414.0%25.9%15.6%4Macrozamia114,9138.266,13957.5%23,32414.0%25.9%17.6%2Macrozamia113,04938.266,13957.5%23,32414.0%17.6%17.6%3Macrozamia113,04938.266,13957.5%94.9%87.3%17.6%17.6%3Macrozamia113,04938.264,94157.5%97.9%17.6%17.6%3Macrozamia113,04938.764,94157.3%17.8%17.6%17.6%3Macrozamia109,510	Stangeria eriopus	163,548	39.5	89,850	54.9%	23,006	14.1%	25,346	15.5%	4	7
Dioon spinulosum16.181540.188.75454.8%23.35514.4%24.8515.4%4Zamid furfurcea164.95339.790.44154.8%23.23214.1%25.64215.5%4Zerophalarts lehmanni165.82239.990.72454.7%23.30214.1%25.98115.6%4Lepidozamia peroffskyma165.93939.990.80454.7%23.32914.0%25.99115.7%4Macrozamia166.34138.291.17154.8%23.33414.0%25.99115.7%4Macrozamia115.01938.264.1957.5%94.948.3%19.6%17.6%3Macrozamia115.01938.264.1957.5%94.948.3%19.6%17.6%3Macrozamia115.01938.264.91457.3%9.3%19.6%17.6%3Macrozamia115.01938.264.91457.3%8.3%19.6%17.6%3Macrozamia115.01938.264.91457.3%8.3%19.6%17.6%3Macrozamia115.01238.264.91457.3%8.3%19.6%17.6%3Macrozamia115.01238.264.91457.3%8.3%19.6%17.6%3Macrozamia115.02238.264.91457.3%8.3%19.6%17.6%2Macrozamia115.02238.264.91457.3%8.7%22 <td>Ceratozamia hildae</td> <td>165,734</td> <td>39.7</td> <td>90,487</td> <td>54.6%</td> <td>22,973</td> <td>13.9%</td> <td>26,137</td> <td>15.8%</td> <td>4</td> <td>7</td>	Ceratozamia hildae	165,734	39.7	90,487	54.6%	22,973	13.9%	26,137	15.8%	4	7
Zamid Infrutancee164.95339.790.44154.8%23.22814.1%25.64215.5%4Freephalratos lethmanii165.82239.990.72454.7%23.30214.1%25.98815.6%4Lepidozamia peoffskyana165.93939.990.72454.7%23.30214.1%25.98815.5%4Macrozamia165.34239.990.80454.7%23.30214.1%25.98815.5%4Macrozamia165.34139.891.17154.8%23.33414.0%25.91815.5%4Macrozamia116.01938.064.1954.8%23.33414.0%25.91815.5%4Macrozamia115.01938.264.1957.5%94.498.3%17.1%17.1%4Gentum manunu114.91438.264.91457.5%94.948.3%17.6%17.1%5Gentum data113.24938.264.91457.5%9.75%9.3%17.6%17.1%5Gentum data113.24938.264.91457.5%9.75%9.3%17.6%17.4%5Gentum data113.24938.264.91457.5%9.75%9.75%17.6%17.4%5Gentum data113.24938.264.91457.5%9.75%17.6%20.9517.4%5Gentum data109.54836.760.9357.5%9.75%17.6%20.9517.4%5Gentu da	Dioon spinulosum	161,815	40.1	88,754	54.8%	23,355	14.4%	24,853	15.4%	4	7
Encephalatos lehanati 165,82 399 90,724 54.7% 23.302 14.1% 25,898 15.6% 4 Jepidazamia peroffskyana 165,939 399 90,074 54.7% 23.302 14.1% 25,981 15.5% 4 Macrozamia 165,939 399 90,804 54.7% 23.329 14.0% 25,981 15.7% 4 Macrozamia 166,341 39.8 91,171 54.8% 23,334 14.0% 25,913 15.7% 4 Macrozamia 15,019 38.2 66,139 57.5% 94.94 8.3% 19,630 171% 3 Gretum montunum 114,914 38.2 64,914 57.5% 94.94 8.3% 19,630 171% 3 3 Gretum montunum 115,012 38.2 64,914 57.3% 94.94 8.3% 19,630 171% 3 3 Gretum montunum 115,012 38.2 64,914 57.3% 8,3% 19,630 171%	Zamia furfuracea	164,953	39.7	90,441	54.8%	23,228	14.1%	25,642	15.5%	4	7
Lepidozamia peorfishuad 15,39 39.9 90,804 54.7% 23,299 14.0% 25,981 15.7% 4 Macrozamia 166,341 39.8 91,171 54.8% 23,334 14.0% 25,918 15.6% 4 Macrozamia 115,019 38.2 66,139 57.5% 9494 8.3% 19,693 17.1% 4 Getum montanum 115,019 38.2 66,139 57.5% 9494 8.3% 19,693 17.1% 4 Getum montanum 115,019 38.2 66,139 57.5% 9494 8.3% 19,693 17.1% 4 Getum montanum 115,012 38.2 64,914 57.3% 8.7% 19,720 17.1% 4 Getum montanum 113,249 38.2 64,914 57.3% 8.79% 19,720 17.3% 17.3% 17.3% 17.3% 1 Getum montanum 115,012 38.2 64,914 57.3% 18,79% 17.3% 18.9% 1	Encephalartos lehmannii	165,822	39.9	90,724	54.7%	23,302	14.1%	25,898	15.6%	4	7
Macrozamia 166,341 39.8 9.1,11 54.8% 23,334 14.0% 25,918 15.6% 4 mountperiensis 115,019 38.2 66.139 57.5% 9,494 8.3% 19,693 17.1% 3 Gnetum montanum 115,019 38.2 66.139 57.5% 9,494 8.3% 19,630 17.1% 3 Gnetum montanum 113,249 38.2 66,995 57.5% 9,575 8.3% 19,772 17.1% 3 Gnetum montanum 113,249 38.2 66,991 57.3% 8,791 7.8% 19,772 17.5% 3 Gnetum montanum 115,022 38.2 66,591 57.3% 8,791 7.8% 20,051 17.4% 5 Gnetum gnemon 109,518 36.6 59,36 54.7% 8,078 7.4% 20,752 18.9% 6 Gnetum gnemon 109,567 36.6 59,366 54.7% 8,078 7.4% 20,742 18.9% 6 <td>Lepidozamia peroffskyana</td> <td>165,939</td> <td>39.9</td> <td>90,804</td> <td>54.7%</td> <td>23,299</td> <td>14.0%</td> <td>25,981</td> <td>15.7%</td> <td>4</td> <td>7</td>	Lepidozamia peroffskyana	165,939	39.9	90,804	54.7%	23,299	14.0%	25,981	15.7%	4	7
Image: definition of the	Macrozamia mountperriensis	166,341	39.8	91,171	54.8%	23,334	14.0%	25,918	15.6%	4	7
Gnetum parvifolium 114,914 38.2 64,095 57.5% 9,559 8.3% 19,630 17.1% 4 Gnetum lat 113,249 38.5 64,914 57.3% 8,791 7.8% 19,772 17.5% 3 Gnetum lat 115,022 38.2 64,914 57.9% 8,791 7.8% 19,772 17.5% 3 Gnetum gnemon 115,022 38.2 64,591 57.9% 8,739 7.8% 19,772 17.5% 3 Gnetum gnemon 109,518 38.2 64,591 57.9% 8,078 7.4% 20,051 17.4% 5 Fphedra freeminea 109,567 36.6 59,36 54.7% 8,078 7.4% 20,399 18.6% 6 Fphedra intermedia 109,667 36.6 59,936 54.7% 8,078 7.4% 20,399 18.6% 6 Fphedra intermedia 109,667 36.6 59,936 54.7% 7.4% 18.9% 6 Fphedra intermedia	Gnetum montanum	115,019	38.2	66,139	57.5%	9,494	8.3%	19,693	17.1%	с	ω
Image: Control definition definite definite definition definition definition definition definition	Gnetum parvifolium	114,914	38.2	66,095	57.5%	9,559	8.3%	19,630	17.1%	4	8
Internation 115,022 38.2 64,591 57.9% 8,329 7.2% 20,051 17.4% 5 Internation 109,518 36.6 59,36 54.7% 8,078 7.4% 20,572 18.9% 6 Internation 109,518 36.6 59,936 54.7% 8,078 7.4% 20,752 18.9% 6 Internation 109,567 36.7 60,708 55.4% 8,078 7.4% 20,399 18.6% 6 Internation 109,567 36.6 59,936 54.7% 8,103 7.4% 20,742 18.9% 6 Internation 109,550 36.7 59,961 54.7% 8,103 7.4% 20,742 18.9% 6 Internation 109,550 36.7 59,961 54.7% 8,103 7.4% 20,742 18.9% 6 Internation 109,550 36.7 68,556 57.3% 11,156 9.3% 20,743 18.9% 6	Gnetum ula	113,249	38.5	64,914	57.3%	8,791	7.8%	19,772	17.5%	С	8
Ephedra equisitina 109,518 36.6 59,936 54.7% 8,078 7.4% 20,752 18.9% 6 Ephedra forminea 109,584 36.7 60,708 55.4% 8,078 7.4% 20,399 18.6% 6 Ephedra intermedia 109,667 36.6 59,936 54.7% 8,247 7.5% 20,399 18.6% 6 Ephedra intermedia 109,667 36.6 59,936 54.7% 8,247 7.5% 20,742 18.9% 6 Ephedra intermedia 109,550 36.7 59,961 54.7% 8,103 7.4% 20,742 18.9% 6 Weiwitschia mirabilis 119,726 36.7 68,556 57.3% 11,156 9.3% 20,007 16.7% 5	Gnetum gnemon	115,022	38.2	66,591	57.9%	8,329	7.2%	20,051	17.4%	5	8
Ephedra forminea 109,584 36.7 60,708 55.4% 8,078 7.4% 20,399 18.6% 6 Ephedra intermedia 109,667 36.6 59,936 54.7% 8,247 7.5% 20,742 18.9% 6 Phedra intermedia 109,550 36.7 59,961 54.7% 8,103 7.4% 20,742 18.9% 6 Welwitschia mirabilis 119,726 36.7 59,961 54.7% 8,103 7.4% 20,743 18.9% 6	Ephedra equisetina	109,518	36.6	59,936	54.7%	8,078	7.4%	20,752	18.9%	6	80
Ephedra intermedia 109,667 36.6 59,936 54.7% 8,247 7.5% 20,742 18.9% 6 Ephedra sinica 109,550 36.7 59,961 54.7% 8,103 7.4% 20,743 18.9% 6 Welwitschia mirabilis 119,726 36.7 68,556 57.3% 11,156 9.3% 20,007 16.7% 5	Ephedra foeminea	109,584	36.7	60,708	55.4%	8,078	7.4%	20,399	18.6%	6	8
Ephedra sinica 109,550 36.7 59,961 54.7% 8,103 7.4% 20,743 18.9% 6 Welwitschia mirabilis 119,726 36.7 68,556 57.3% 11,156 9.3% 20,007 16.7% 5	Ephedra intermedia	109,667	36.6	59,936	54.7%	8,247	7.5%	20,742	18.9%	6	80
Welwitschia mirabilis 119,726 36.7 68,556 57.3% 11,156 9.3% 20,007 16.7% 5	Ephedra sinica	109,550	36.7	59,961	54.7%	8,103	7.4%	20,743	18.9%	9	8
	Welwitschia mirabilis	119,726	36.7	68,556	57.3%	11,156	9.3%	20,007	16.7%	5	œ

5 of 14

WILEY

_Ecology and Evolution

FIGURE 1 Comparison of IR regions between different taxa. Different color blocks represent different gene types. In species with typical IR regions, there were two protein-coding genes (*rps7* and 3'-*rps12*) located in the IR region. In *Ginkgo biloba*, the *ycf2* was located in the LSC region due to contraction of the IR region. Gnetophytes lost *ndh* genes, and in *Welwitschia mirabilis*, 3'-*psbA* entered IR region

We analyzed and tested the evolutionary rates of the 50 selected common genes (Appendix S3). Among these, we found that the related parameters of nine genes were significantly different between IR-22 and SC-56 (p < .05; Figure 3). Compared with SC-56, the genes with a higher evolution rates in IR-22 were trst (.003 vs. .001), trsv (.026 vs. .010), ratio (.082 vs. .031), dN (.007 vs. .001), dS (.070 vs. .025), and ω (.100 vs. .032) of psbA (2.6- to 4.2-fold that of the SC-56); trst (.052 vs. .021), dN (.033 vs. .014), dS (.112 vs. .051), and ω (.631 vs. .226) of rps8 (2.3- to 2.4-fold); dN (.010 vs. .002) of psbE (5-fold); and ω (.064 vs. .002) of petG (32-fold). Compared with IR-22, the genes with higher evolution rates in the SC-56 were trsv (.033 vs. .009), ratio (.504 vs. .145), dN (.063 vs. .022), dS (.068 vs. .024), and ω (.904 vs. .024) of ycf2 (1.2- to 3.6fold those of IR-22); trsv (.008 vs. .005) of rps4 (1.8-fold); and ratios of rpoC1 (.224 vs. .087), rbcL (.234 vs. .077), and cemA (.183 vs. .064) (2.6-, 3-, and 2.8-fold, respectively). Spearman's rank correlation test results showed that the evolutionary rate of genes other than *dS* of *rps8* (Spearman's rho = .157, p = .169) and ω of *psbA* (Spearman's rho = .212, p = .063) was significantly correlated (p < .05) with the IR region (Appendix S4).

The evolutionary rate of *psbA* (Appendix S5) was abnormally high in *Cycas taitungensis* and *G. biloba* and in *Cycas* spp. By contrast, the species evolutionary rate of SC-56 was low. For *rps8* (Appendix S6), evolutionary rates were high in *G. biloba*, *W. mirabilis*, and cycads; the values for most other species branches in SC-56 were 0, except *C. rhomboidea* and *S. verticillata*. For *rps4* (Appendix S7A), the transversion rate of IR-22 was low, and most values were 0. All species branches in SC-56 had high transversion rates, with those of *C. rhomboidea* and *S. verticillata* being abnormally high. For *psbE* (Appendix S7B), the dN of IR-22 was high (especially in *W. mirabilis* and *Dioon spinulosum*) and was 0 for most species in SC-56 (*n* = 49). For *ycf2* (Appendix S8), substitution rates were high in most branches of SC-56, especially *C. rhomboidea* and *S. verticillata*. In IR-22, the value of the other branches was 0, except in *W. mirabilis* and *G. biloba*.

TABLE 3 Types of common genes

Gene type	Gene name
Genes for photosynthesis	
Photosystem	psaA psaB psaC psal psaJ
Photosystem II	psbA psbB psbC psbD psbE psbF psbH psbl
	psbJ psbK psbL psbM psbN psbT
Genetic system genes	
Cytochrome	petA petB petD petG petL petN
ATP Synthase	atpB atpE atpF atpI
RubiscoCO large subunit	rbcL
Ribosomal Proteins (LSU)	rpl14 rpl20 rpl33 rpl36
Ribosomal Proteins (SSU)	rps2 rps4 rps7 rps8 rps11 rps18 rps19
RNA Polymerase	rpoA rpoB rpoC1 rpoC2
Other genes	
Envelop membrane protein	cemA
C-type cytochrome synthesis	ccsA
Hypothetical chloroplast reading frames	ycf2 ycf3 ycf4

3.4 | Evolutionary analysis based on genes entering the IR region

The IR regions of 22 species contained the protein-coding genes 3'rps12 and rps7 (Figure 1). In W. mirabilis, G. parvifolium, and G. gnemon, part of the psbA (3'-psbA) entered the IR region; thus, it was divided into two categories (IR-3 and SC-75). In G. biloba, ycf2 has been left from the IR region; thus, it was divided into two categories (IR-21 and SC-57).

Likelihood ratio test results revealed that the selection pressure differed among categories. For *psbA*, ω_{IR-3} was 0.03474, with IR-3 as the foreground branch, and ω_{SC-75} was 0.0001, with SC-75 as the background branch. For *ycf2*, ω_{IR-21} was 0.76124, with IR-21 as the foreground branch, and ω_{SC-57} was 0.67832, with SC-57 as the background branch. The *trsv*, *ratio*, and ω values of *psbA* were significantly higher ($P_{trsv} = .048$, $P_{ratio} = .003$, and $P_{\omega} = .027$) in the IR region than in the SC region, and the evolutionary rate of *ycf2* was significantly lower (p < .05) in the IR region than in the SC region (Figure 4).

4 | DISCUSSIONS

4.1 | Changes in genome size

Evolution has decreased the gymnosperm genome size. Conifers and non-conifers have genomes of similar sizes, which is related to the large compact genome of gnetophytes (115,022–109,518 bp). This compact genome may increase the gnetophyte survival rate _Ecology and Evolution

in harsh and competitive environments (Wu et al., 2009). After the removal of gnetophytes, a significant difference was detected between groups (p < .01). The shrinkage of the conifer plastome is a result mainly of the loss of the IR region (IRb in Pinaceae and IRa in cupressophytes). In addition, the reduction in the cupressophyte plastome size may be caused by intergenic shrinkage resulting from the mutational burden (Wu & Chaw, 2014). Pinaceae and cupressophytes have lost their typical IRs during evolution, but have acquired one or more short, novel IRs, some of which also exhibit recombination to generate genomic structural diversity (Guo et al., 2014).

Compared with that of ginkgo, the IR region of other nonconifers has expanded. Although the IR region in gnetophytes is smaller than that in cycads, it accounts for a large proportion of the genome and contains more genes. Gnetophytes lost the *ndh* gene and non-coding sequence, resulting in a compact, more economical genome (Wu et al., 2009). In Pinaceae, the IR comprises only the full *trnI-CAU* gene and, in most species, a portion of the *psbA* gene (Lin et al., 2010; Wu, Lin, et al., 2011).

The GC content was increased in non-conifers, which may be related to a GC bias in gene conversion in the IR region. Indeed, the IR region of cycads contains more A/T to GC substitutions (Wu & Chaw, 2015).

4.2 | Phylogenetic location of gnetophytes

The four phylogenetic trees constructed using a tandem dataset of 50 common protein-coding genes were not consistent, and the application of different algorithms yielded different topological structures. Compared with those produced by NJ and MP, the phylogenetic relationships constructed by ML and BI are more accurate (Hall, 2005). The ML and BI trees showed that gnetophytes and *P. neoveitchi* were sister groups with a high degree of support. Although Pinaceae was a non-monophyletic group, it was closest to the gnetophytes, supporting the *Gnepine* hypothesis.

The phylogenetic position of the gnetophytes has been debated (Mathews, 2009; Palmer et al., 2004). Burleigh and Mathews (2004) examined 13 genes in gymnosperms (five plastid, four nuclear, and four mitochondrial) and almost 19 000 nucleotides, providing evidence for the Gnepine hypothesis. Wu and Chaw (2014) analyzed the rearrangement of DNA in the plastome of gymnosperms, and the results supported the Gnepine hypothesis. Li et al. (2017) analyzed single-copy genes from the genome and transcriptome, and the phylogenetic relationships constructed from their different datasets supported two topological structures: a sister relationship between gnetophytes and other gymnosperms and gnetophytes as a sister group to Pinaceae. Ran et al. (2018) constructed a phylogenetic tree with 1308 loci based on transcriptome data, which also supported the Gnepine hypothesis. Ping, Feng, et al. (2021) constructed ML and BI trees using rbcL and matK, which supported the classification of gnetophytes and Pinaceae as sister groups.

FIGURE 2 Phylogenetic relationship of sampled species. The tree was obtained through manual adjustment by combining four methods and previous research results. See Appendix S2 for four trees

4.3 | Heterogeneity of evolutionary rates

The change in evolutionary rate was independent of the presence of the IR region, but rather indicates an increased substitution rate of gnetophytes (especially *W. mirabilis*) and a lower evolutionary rate of conifers. The evolutionary rate of four genes was increased in nonconifers. The increased substitution rates of *rps8*, *psbE*, and *psbA* were related to the low evolutionary rate of conifers. The *petG* value was abnormally high. The *dN* or *dS* value for most species branches was 0, resulting in false-positive results. By contrast, the substitution rates of *rps4* and *ycf2* were decreased in non-conifers, which is related to their generally low evolutionary rate. The evolutionary rate of most genes in *W. mirabilis* was high. The phylogenetic tree constructed using 51 common genes showed that the gnetophytes, especially *W. mirabilis* and *Ephedra sinica*, had high evolutionary rates. McCoy et al. (2008) reported that about 75% of plastid protein-coding genes showed high substitution rates in *W. mirabilis*. The substitution rates of most protein-coding genes did not differ significantly between conifers and non-conifers, which may be related to the newly acquired short IR region of conifers (Hirao et al., 2008; Wu & Chaw, 2014; Yi et al., 2013). In *Cephalotaxus oliveri*, the 544-bp IR (repeated *trnQ-UUG* gene) was inferred to have recombination activity (Yi et al., 2013).

TABLE 4 Genes that accepted Model 2 in the Branch Model

JII EV

Gene	InL M0	InL Model 2	2 Δl	P-value	$\omega_{ ext{foreground}}$	$\omega_{ m background}$	$\omega_{ m foreground}/\omega_{ m background}$
atpF	-6580.533	-6587.056	13.046	0	0.367	0.195	1.882
ccsA	-11747.691	-11749.697	4.012	.045	0.268	0.346	0.775
cemA	-10261.516	-10266.192	9.352	.002	0.418	0.272	1.537
petD	-3345.317	-3348.100	5.566	.018	0.066	0.117	0.564
psaA	-16296.555	-16299.080	5.050	.025	0.078	0.057	1.368
psaJ	-1520.374	-1522.340	3.932	.047	0.269	0.132	2.038
psbA	-6124.730	-6133.245	17.029	0	0.026	0.071	0.366
psbC	-9768.612	-9773.699	10.173	.001	0.042	0.073	0.575
psbE	-1676.534	-1681.768	10.468	.001	0.058	0.183	0.317
psbJ	-1229.013	-1231.721	5.416	.020	0.133	0.366	0.363
psbM	-1381.099	-1384.893	7.588	.006	0.479	0.132	3.629
rpoB	-38294.175	-38327.819	67.289	0	0.286	0.156	1.833
rpoC1	-26817.747	-26840.736	45.978	0	0.357	0.191	1.869
rpoC2	-50272.622	-50279.519	13.795	0	0.372	0.294	1.265
rps2	-8506.349	-8508.885	5.071	.024	0.281	0.205	1.371
rps11	-4972.071	-4979.642	15.142	0	0.339	0.152	2.230
rps18	-5208.180	-5212.761	9.163	.002	0.352	0.160	2.200
ycf2	-142683.719	-142688.968	10.499	.001	0.768	0.635	1.209

Note: Foreground is IR-22 and background is SC-56; Bold font indicates that $\omega_{\text{foreground}}$ is less than $\omega_{\text{background}}$.

Gnetophytes have a higher substitution rate than do other gymnosperms (Ran et al., 2018; Wang et al., 2015; Wu et al., 2009), possibly because of higher mutation rates, changes in selective pressure, increased fixation of mutations by genetic drift, and biological characteristics (Fry & Wernegreen, 2005; Lanfear et al., 2010). Wu et al. (2009) proposed that the high frequency of AT-rich codons in gnetophytes leads to a higher substitution rate. Wang et al. (2015) proposed that the generation time and plant height underlie the increased substitution rate of gnetophytes (Lanfear et al., 2010, 2013). Ran et al. (2018) found that gnetophytes and angiosperms have similar rates of molecular evolution, which are higher than those of other gymnosperms, suggesting that gnetophytes and angiosperms experienced similar selection pressure during their evolutionary histories. As conifers are typically taller than non-conifers, the long-term rate of mitosis in the apical meristem is slower, the frequency of DNA replication is lower, and the accumulated errors per unit time are reduced, resulting in low mutation and substitution rates (Lanfear et al., 2013).

4.4 | Negative selection pressure

Genes in the IR region experience strong negative selection (Ping, Feng, et al., 2021; Ping, Li, et al., 2021). The IR region is important for genome structural stability, and genomes lacking an IR region may experience different natural selection effects. However, the selection pressure of most genes did not differ significantly, indicating that they are not affected by the IR region. When $\omega < 1$, smaller ω values reflect stronger negative selection pressure (Yang, 2006).

The selection pressure of 18 genes differed between conifers and non-conifers, and their ω values were <1 (Table 4). Compared with conifers, six genes (four PSII genes, one cytochrome gene, and one c-type cytochrome synthesis gene) showed lower ω values in non-conifers, and 12 genes (three PSI genes, one PSII gene, six genetic system genes, and two other genes) showed higher ω values in non-conifers. The lower ω values of these genes indicates the greater the negative selection effect, which may be more conducive to their function in various groups. The differences in selection pressure between conifers and non-conifers may be related to plant height; non-conifers are typically shorter than conifers. Efficient photosynthesis is required to obtain enough sunlight, necessitating negative selection pressure on the genes encoding the photosynthetic machinery. However, some such genes in conifers experienced negative selection pressure, which may be related to their structure or function or to habitat differences. The negative selection exerted by the habitats of gnetophytes leads to genespecific reductions in dN/dS in their plastomes and genomes (Wang et al., 2015).

4.5 | Reduced substitution rate in the IR region

Genes in the IR region tend to have a low substitution rate (Li, Kuo, et al., 2016; Li, Gao, et al., 2016; Ping, Feng, et al., 2021; Ping, Li, et al., 2021). In this study, *ycf2* in the IR region showed a reduced substitution rate (Figure 4) but weak selection pressure ($\omega_{IR-21} = 0.76124$, $\omega_{SC-57} = 0.67832$), indicating the lack of correlation between these factors. However, Lin et al. (2012) showed that the substitution

FIGURE 3 Nine of fifty common genes with significantly different evolutionary rates between IR-22 (non-conifers) and SC-56 (conifers). (a) Transversion rate. (b) Transition rate. (c) Ratio. (d) Non-synonymous substitution rate. (e) Synonymous substitution rate. (f) ω . *: Rank sum test, p < .05. Compared with SC-56, the genes with a higher evolution rate in IR-22 were trst, trsv, ratio, dN, dS, and ω of *psbA*; *trst*, *dN*, *dS*, and ω of *rps8*; dN of psbE; and ω of petG. Compared with IR-22, the genes with higher evolution rates in the SC-56 were trsv, ratio, dN, dS, and ω of ycf2; trsv of rps4; and ratios of rpoC1, rbcL, and cemA

FIGURE 4 The evolutionary rate of *psbA* and *ycf2* in the different categories. (a) For *psbA*, the mean evolutionary rate of IR-3 and SC-75. B: For *ycf2*, the mean evolutionary rate of IR-21 and SC-57. *Rank sum test, p < .05. The *trsv*, *ratio*, and ω values of *psbA* were significantly higher in the IR region than in the SC region, and the evolutionary rate of *ycf2* was significantly lower in the IR region than in the SC region than in the SC region.

rate of *ycf2* in the SC region of *G. biloba* was not significantly higher than that in the IR region in seven other species. These discrepancies in results are attributable to differences in sample size. In gymnosperms, 3'-*rps12* (exons 2–3) shows a reduced substitution rate and negative selection pressure when present in the IR region (Ping, Feng, et al., 2021).

The substitution rate and selection pressure of *rps7* in the IR region did not change, indicating high stability during gymnosperm evolution. The other gene, *psbA*, encodes the D1 protein in the PSII core complex. In ferns, *psbA*, *ycf2*, *rps7*, and 3'-*rps12* (exons 2–3) showed reduced substitution rates when present in the IR region (Li, Kuo, et al., 2016; Li, Gao, et al., 2016). *psbA* only partially enters the

WILEY

IR region in three gymnosperm species and shows increased substitution rates (Figure 4) and weak selection pressure. These characteristics differ from those of other genes; the most reasonable explanation is that this gene is undergoing dynamic changes in gymnosperms, resulting in changes in its substitution rate and selection pressure.

IR regions may play an important role in the maintenance of genomic stability (Maréchal & Brisson, 2010), such as by replication initiation (Heinhorst & Cannon, 1993), genome stabilization (Palmer & Thompson, 1982), and gene conservation (Palmer & Thompson, 1982; Wolfe et al., 1987). IR loss is related to structural recombination. In some taxa lacking an IR region, plastids underwent significant structural changes, including gene and intron loss, multiple inversion, and translocation and duplication of plastome segments (Jin et al., 2020; Hirao et al., 2008; Mower & Vickrey, 2018). Sequences in the IR region often have a reduced substitution rate, which is related to the region's characteristics. Due to its double-copy nature, the frequency of gene conversion is higher, and some mutation sites are repaired, resulting in a low substitution rate (Birky & Walsh, 1992; Khakhlova & Bock, 2006).

ACKNOWLEDGEMENTS

We thank the National Natural Science Foundation for its support (31670200, 31770587, 31872670, and 32071781).

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTION

Jingyao Ping: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Writing – original draft (equal). Jing Hao: Data curation (equal); Formal analysis (equal); Methodology (equal). Jinye Li: Data curation (equal); Formal analysis (equal); Resources (equal). Yiqing Yang: Formal analysis (equal); Methodology (equal). Yingjuan Su: Funding acquisition (equal); Writing – original draft (equal); Writing – review & editing (equal). Ting Wang: Funding acquisition (equal); Writing – original draft (equal); Writing – review & editing (equal).

DATA AVAILABILITY STATEMENT

Data source is NCBI database:

https://www.ncbi.nlm.nih.gov/nuccore/NC_020319 https://www.ncbi.nlm.nih.gov/nuccore/NC_031413 https://www.ncbi.nlm.nih.gov/nuccore/NC_042668 https://www.ncbi.nlm.nih.gov/nuccore/NC_009618 https://www.ncbi.nlm.nih.gov/nuccore/NC_026036 https://www.ncbi.nlm.nih.gov/nuccore/NC_026041 https://www.ncbi.nlm.nih.gov/nuccore/NC_026047 https://www.ncbi.nlm.nih.gov/nuccore/NC_026040 https://www.ncbi.nlm.nih.gov/nuccore/NC_027512 https://www.ncbi.nlm.nih.gov/nuccore/NC_027514 https://www.ncbi.nlm.nih.gov/nuccore/NC_027513 https://www.ncbi.nlm.nih.gov/nuccore/NC_027513 https://www.ncbi.nlm.nih.gov/nuccore/NC_016986 https://www.ncbi.nlm.nih.gov/nuccore/NC_021438 https://www.ncbi.nlm.nih.gov/nuccore/NC_011942 https://www.ncbi.nlm.nih.gov/nuccore/NC_028734 https://www.ncbi.nlm.nih.gov/nuccore/NC_026301 https://www.ncbi.nlm.nih.gov/nuccore/NC_011954 https://www.ncbi.nlm.nih.gov/nuccore/NC_029347 https://www.ncbi.nlm.nih.gov/nuccore/NC_044772 https://www.ncbi.nlm.nih.gov/nuccore/NC_044773 https://www.ncbi.nlm.nih.gov/nuccore/EU342371 https://www.ncbi.nlm.nih.gov/nuccore/NC_010548 https://www.ncbi.nlm.nih.gov/nuccore/NC_016065 https://www.ncbi.nlm.nih.gov/nuccore/NC_021441 https://www.ncbi.nlm.nih.gov/nuccore/NC_021437 https://www.ncbi.nlm.nih.gov/nuccore/NC_024022 https://www.ncbi.nlm.nih.gov/nuccore/NC_042763 https://www.ncbi.nlm.nih.gov/nuccore/NC_034941 https://www.ncbi.nlm.nih.gov/nuccore/NC_045277 https://www.ncbi.nlm.nih.gov/nuccore/NC_023121 https://www.ncbi.nlm.nih.gov/nuccore/NC 039562 https://www.ncbi.nlm.nih.gov/nuccore/NC_028155 https://www.ncbi.nlm.nih.gov/nuccore/NC_026296 https://www.ncbi.nlm.nih.gov/nuccore/MT227813 https://www.ncbi.nlm.nih.gov/nuccore/KP099642 https://www.ncbi.nlm.nih.gov/nuccore/KX832629 https://www.ncbi.nlm.nih.gov/nuccore/MH121051 https://www.ncbi.nlm.nih.gov/nuccore/NC_034943 https://www.ncbi.nlm.nih.gov/nuccore/NC 036996 https://www.ncbi.nlm.nih.gov/nuccore/NC 031354 https://www.ncbi.nlm.nih.gov/nuccore/NC 027423 https://www.ncbi.nlm.nih.gov/nuccore/NC_042176 https://www.ncbi.nlm.nih.gov/nuccore/NC 042177 https://www.ncbi.nlm.nih.gov/nuccore/NC_034940 https://www.ncbi.nlm.nih.gov/nuccore/MF977938 https://www.ncbi.nlm.nih.gov/nuccore/NC 021110 https://www.ncbi.nlm.nih.gov/nuccore/NC_027581 https://www.ncbi.nlm.nih.gov/nuccore/NC 024945 https://www.ncbi.nlm.nih.gov/nuccore/NC_038099 https://www.ncbi.nlm.nih.gov/nuccore/NC_041503 https://www.ncbi.nlm.nih.gov/nuccore/NC 029398 https://www.ncbi.nlm.nih.gov/nuccore/NC_029734 https://www.ncbi.nlm.nih.gov/nuccore/NC_014575 https://www.ncbi.nlm.nih.gov/nuccore/MF564195 https://www.ncbi.nlm.nih.gov/nuccore/NC_043856 https://www.ncbi.nlm.nih.gov/nuccore/NC_030631 https://www.ncbi.nlm.nih.gov/nuccore/NC_016064 https://www.ncbi.nlm.nih.gov/nuccore/NC_043913 https://www.ncbi.nlm.nih.gov/nuccore/NC_011930 https://www.ncbi.nlm.nih.gov/nuccore/NC_030630 https://www.ncbi.nlm.nih.gov/nuccore/NC_036811 https://www.ncbi.nlm.nih.gov/nuccore/NC_016058 https://www.ncbi.nlm.nih.gov/nuccore/NC_042775 https://www.ncbi.nlm.nih.gov/nuccore/NC_042777

I FY_Ecology and Evolution

https://www.ncbi.nlm.nih.gov/nuccore/NC_023120 https://www.ncbi.nlm.nih.gov/nuccore/NC_023805 https://www.ncbi.nlm.nih.gov/nuccore/NC_034942 https://www.ncbi.nlm.nih.gov/nuccore/NC_024827 https://www.ncbi.nlm.nih.gov/nuccore/NC_044893 https://www.ncbi.nlm.nih.gov/nuccore/NC_023119 https://www.ncbi.nlm.nih.gov/nuccore/NC_023119 https://www.ncbi.nlm.nih.gov/nuccore/NC_023119 https://www.ncbi.nlm.nih.gov/nuccore/NC_039155 https://www.ncbi.nlm.nih.gov/nuccore/NC_026450 https://www.ncbi.nlm.nih.gov/nuccore/NC_045394 https://www.ncbi.nlm.nih.gov/nuccore/NC_045395 https://www.ncbi.nlm.nih.gov/nuccore/NC_045395 https://www.ncbi.nlm.nih.gov/nuccore/NC_035739 https://www.ncbi.nlm.nih.gov/nuccore/NC_035738

ORCID

Jingyao Ping https://orcid.org/0000-0003-2579-2561 Yingjuan Su https://orcid.org/0000-0001-6110-2869 Ting Wang https://orcid.org/0000-0001-5025-4584

REFERENCES

- Barrett, C. F., Baker, W. J., Comer, J. R., Conran, J. G., Lahmeyer, S. C., Leebens-Mack, J. H., Li, J., Lim, G. S., Mayfield-Jones, D. R., Perez, L., Medina, J., Pires, J. C., Santos, C., Wm. Stevenson, D., Zomlefer, W. B., & Davis, J. I. (2016). Plastid genomes reveal support for deep phylogenetic relationships and extensive rate variation among palms and other commelinid monocots. *New Phytologist*, 209(2), 855–870. https://doi.org/10.1111/nph.13617
- Birky, C. W. Jr, & Walsh, J. B. (1992). Biased gene conversion, copy number, and apparent mutation rate differences within chloroplast and bacterial genomes. *Genetics*, 130(3), 677–683. https://doi. org/10.1093/genetics/130.3.677
- Blazier, J. C., Jansen, R. K., Mower, J. P., Govindu, M., Zhang, J., Weng, M.-L., & Ruhlman, T. A. (2016). Variable presence of the inverted repeat and plastome stability in *Erodium. Annals of Botany*, 117(7), 1209–1220. https://doi.org/10.1093/aob/mcw065
- Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. *Bioinformatics*, 30(15), 2114– 2120. https://doi.org/10.1093/bioinformatics/btu170
- Burleigh, J. G., & Mathews, S. (2004). Phylogenetic signal in nucleotide data from seed plants: Implications for resolving the seed plant tree of life. American Journal of Botany, 91(10), 1599–1613. https://doi. org/10.3732/ajb.91.10.1599
- Cai, C., Wang, L., Zhou, L., & Jiao, B. (2017). Complete chloroplast genome of green tide algae Ulva fexuosa (Ulvophyceae, Chlorophyta) with comparative analysis. PLoS One, 12(9), e0184196. https://doi. org/10.1371/journal.pone.0184196
- Chumley, T. W., Palmer, J. D., Mower, J. P., Fourcade, H. M., Calie, P. J., Boore, J. L., & Jansen, R. K. (2006). The complete chloroplast genome sequence of *Pelargonium x hortorum*: Organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. *Molecular Biology and Evolution*, 23(11), 2175–2190. https://doi.org/10.1093/molbev/msl089
- Downie, S. R., & Jansen, R. K. (2015). A comparative analysis of whole plastid genomes from the Apiales: Expansion and contraction of the inverted repeat, mitochondrial to plastid transfer of DNA, and identification of highly divergent noncoding regions. *Systematic Botany*, 40(1), 336–351. https://doi.org/10.1600/036364415X 686620

- Fry, A. J., & Wernegreen, J. J. (2005). The roles of positive and negative selection in the molecular evolution of insect endosymbionts. *Gene*, 355, 1–10. https://doi.org/10.1016/j.gene.2005.05.021
- Greiner, S., Lehwark, P., & Bock, R. (2019). Organellar Genome DRAW (OGDRAW) version 1.3.1: Expanded toolkit for the graphical visualization of organellar genomes. *Nucleic Acids Research*, 47(W1), W59-W64. https://doi.org/10.1093/nar/gkz238
- Grewe, F., Guo, W., Gubbels, E. A., Hansen, A. K., & Mower, J. P. (2013). Complete plastid genomes from Ophioglossum californicum, Psilotum nudum, and Equisetum hyemale reveal an ancestral land plant genome structure and resolve the position of Equisetales among monilophytes. BMC Evolutionary Biology, 13, 8. https://doi. org/10.1186/1471-2148-13-8
- Guisinger, M. M., Kuehl, J. V., Boore, J. L., & Jansen, R. K. (2011). Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: Rearrangements, repeats, and codon usage. *Molecular Biology and Evolution*, 28(1), 583–600. https://doi.org/10.1093/ molbev/msq229
- Guo, W.-H., Grewe, F., Cobo-Clark, A., Fan, W.-S., Duan, Z.-L., Adams, R. P., Schwarzbach, A., & Mower, J. P. (2014). Predominant and substoichiometric isomers of the plastid genome coexist within *juniperus* plants and have shifted multiple times during Cupressophyte evolution. *Genome Biology and Evolution*, 6(3), 580–590. https://doi. org/10.1093/gbe/evu046
- Hall, B. G. (2005). Comparison of the accuracies of several phylogenetic methods using protein and DNA sequences. *Molecular Biology and Evolution*, 22(3), 792–802. https://doi.org/10.1093/molbev/msi066
- Heinhorst, S., & Cannon, G. C. (1993). DNA replication in chloroplasts. Journal of Cell Science, 104(1), 1–9. https://doi.org/10.1083/ jcb.120.2.557
- Hirao, T., Watanabe, A., Kurita, M., Kondo, T., & Takata, K. (2008). Complete nucleotide sequence of the Cryptomeria japonica D. Don. chloroplast genome and comparative chloroplast genomics: diversified genomic structure of coniferous species. *BMC Plant Biology*, 8(1), 70. https://doi.org/10.1186/1471-2229-8-70
- Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. *Bioinformatics*, 17, 754–755. https://doi. org/10.1093/bioinformatics/17.8.754
- IBM Corporation (2014). SPSS Statistics (version 22). IBM Corporation.
- Jin, D.-M., Wicke, S., Gan, L., Yang, J.-B., Jin, J.-J., & Yi, T.-S. (2020). The loss of the inverted repeat in the putranjivoid clade of Malpighiales. *Frontiers in Plant Science*, 11, 942. https://doi.org/10.3389/ fpls.2020.00942
- Julian, T. F., Nevill, P. G., Dixon, K., & Small, I. (2017). What can we do with 1000 plastid genomes? *Plant Journal*, 90(4), 801–818. https:// doi.org/10.1111/tpj.13491
- Karnkowska, A., Bennett, M. S., & Triemer, R. E. (2018). Dynamic evolution of inverted repeats in Euglenophyta plastid genomes. *Scientific Reports*, 8, 16071. https://doi.org/10.1038/s41598-018-34457-w
- Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., & Drummond, A. (2012). Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics*, 28(12), 1647–1649. https://doi.org/10.1093/bioinformatics/bts199
- Khakhlova, O., & Bock, R. (2006). Elimination of deleterious mutations in plastid genomes by gene conversion. *The Plant Journal*, 46(1), 85– 94. https://doi.org/10.1111/j.1365-313X.2006.02673.x
- Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. *Molecular Biology and Evolution*, 35(6), 1547–1549. https:// doi.org/10.1093/molbev/msy096
- Kwon, E. C., Kim, J. H., & Kim, N. S. (2020). Comprehensive genomic analyses with 115 plastomes from algae to seed plants: Structure, gene contents, GC contents, and introns. *Genes and Genomics*, 42(5), 553–570. https://doi.org/10.1007/s13258-020-00923-x

VILEY

- Lanfear, R., Ho, S. Y. W., Davies, T. J., Moles, A. T., Aarssen, L., Swenson, N. G., Warman, L., Zanne, A. E., & Allen, A. P. (2013). Taller plants have lower rates of molecular evolution. *Nature Communications*, 4, 1879. https://doi.org/10.1038/ncomms2836
- Lanfear, R., Welch, J. J., & Bromham, L. (2010). Watching the clock: Studying variation in rates of molecular evolution between species. *Trends in Ecology & Evolution*, 25(9), 495–503. https://doi. org/10.1016/j.tree.2010.06.007
- Lemieux, C., Otis, C., & Turmel, M. (2014). Six newly sequenced chloroplast genomes from prasinophyte green algae provide insights into the relationships among prasinophyte lineages and the diversity of streamlined genome architecture in picoplanktonic species. BMC Genomics, 15, 857. https://doi.org/10.1186/1471-2164-15-857
- Lemieux, C., Otis, C., & Turmel, M. (2016). Comparative chloroplast genome analyses of streptophyte green algae uncover major structural alterations in the Klebsormidiophyceae, Coleochaetophyceae and Zygnematophyceae. *Frontiers in Plant Science*, 7, 697. https:// doi.org/10.3389/fpls.2016.0069
- Li, F.-W., Kuo, L. Y., Pryer, K. M., & Rothfels, C. J. (2016). Genes translocated into the plastid inverted repeat show decelerated substitution rates and elevated GC content. *Genome Biology and Evolution*, 8(8), 2452–2458. https://doi.org/10.1093/gbe/evw167
- Li, J., Gao, L., Chen, S., Tao, K., Su, Y.-J., & Wang, T. (2016). Evolution of short ionverted repeat in Cupressophytes, transfer of AccD to njucleus in Sciadopitys vertcillata and phylogenetic position of Sciadopityaceae. Scientific Reports, 6, 20934. https://doi. org/10.1038/srep20934
- Li, Z., De La Torre, A. R., Sterck, L., Cánovas, F. M., Avila, C., Merino, I., Cabezas, J. A., Cervera, M. T., Ingvarsson, P. K., & Van de Peer, Y. (2017). Single-copy genes as molecular markers for phylogenomic studies in seed plants. *Genome Biology and Evolution*, 9(5), 1130– 1147. https://doi.org/10.1093/gbe/evx070
- Lin, C. P., Huang, J. P., Wu, C. S., Hsu, C. Y., & Chaw, S. M. (2010). Comparative chloroplast genomics reveals the evolution of Pinaceae genera and subfamilies. *Genome Biology and Evolution*, 2, 504–517. https://doi.org/10.1093/gbe/evq036
- Lin, C. P., Wu, C. S., Huang, Y. Y., & Chaw, S. M. (2012). The complete chloroplast genome of *Ginkgo biloba* reveals the mechanism of inverted repeat contraction. *Genome Biology and Evolution*, 4(3), 374– 381. https://doi.org/10.1093/gbe/evs021
- Maréchal, A., & Brisson, N. (2010). Recombination and the maintenance of plant organelle genome stability. *New Phytologistogist*, 186(2), 299–317. https://doi.org/10.1111/j.1469-8137.2010.03195.x
- Mathews, S. (2009). Phylogenetic relationships among seed plants: Persistent questions and the limits of molecular data. American Journal of Botany, 96(1), 228–236. https://doi. org/10.2307/27793085
- McCoy, S. R., Kuehl, J. V., Boore, J. L., & Raubeson, L. A. (2008). The complete plastid genome sequence of *Welwitschia mirabilis*: An unusually compact plastome with accelerated divergence rates. *BMC Evolutionary Biology*, 8(1), 130. https://doi. org/10.1186/1471-2148-8-130
- Moore, M. J., Dhingra, A., Soltis, P. S., Shaw, R., Farmerie, W. G., Folta, K. M., & Soltis, D. E. (2006). Rapid and accurate pyrosequencing of angiosperm plastid genomes. *BMC Plant Biology*, *6*, 17. https://doi. org/10.1186/1471-2229-6-17
- Mower, J. P., & Vickrey, T. L. (2018). Chapter nine–structural diversity among plastid genomes of land plants. S. M. Chaw, & R. K. Jansen (eds), *Plastid genome evolution* (pp. 263–292). Academic Press.
- Pacheco, T. G., Lopes, A. S., Viana, G. D. M., Silva, O. N., Silva, G. M., Vieira, L. N., Guerra, M. P., Nodari, R. O., Souza, E. M., Pedrosa, F. O., Otoni, W. C., & Rogalski, M. (2019). Genetic, evolutionary and phylogenetic aspects of the plastome of annatto (*Bixa orellana L.*), the Amazonian commercial species of natural dyes. *Planta*, 249(2), 563–582. https://doi.org/10.1007/s00425-018-3023-6

- Palmer, J. D., Soltis, D. E., & Chase, M. W. (2004). The plant tree of life: An overview and some points of view. American Journal of Botany, 91(10), 1437–1445. https://doi.org/10.3732/ajb.91.10.1437
- Palmer, J. D., & Thompson, W. F. (1981). Rearrangements in the chloroplast genomes of mung bean and pea. Proceedings of the National Academy of Sciences, 78(9), 5533–5537. https://doi.org/10.1073/ pnas.78.9.5533
- Palmer, J. D., & Thompson, W. F. (1982). Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost. *Cell*, *29*(2), 537–550. https://doi.org/10.1016/0092-8674(82)90170 -2
- Perry, A. S., & Wolfe, K. H. (2002). Nucleotide substitution rates in legume chloroplast DNA depend on the presence of the inverted repeat. *Journal of Molecular Evolution*, 55(5), 501–508. https://doi. org/10.1007/PL00020998
- Ping, J.-Y., Feng, P.-P., Hao, J., Li, J.-Y., Su, Y.-J., & Wang, T. (2021). The molecular evolution pattern of *rps12* gene in gymnosperms (in Chinese). *Chin Science Bulletin*, *66*(24), 3182–3193. https://doi. org/10.1360/TB-2020-1528
- Ping, J.-Y., Li, A.-M., Feng, P.-P., Zhu, M., Su, Y. J., & Wang, T. (2021). The highly conserved *rps12* gene in ferns provides strong evidence for decreased substitution rates in the inverted repeat region. *Plant Systematics and Evolution*, 307(2), 26. https://doi.org/10.1007/ s00606-021-01750-7
- Pond, S. L., Frost, S. D., & Muse, S. V. (2005). HyPhy: Hypothesis testing using phylogenies. *Bioinformatics*, 21, 676-679. https://doi. org/10.1093/bioinformatics/bti079
- Ran, J.-H., Shen, T.-T., Wang, M.-M., & Wang, X.-Q. (2018). Phylogenomics resolves the deep phylogeny of seed plants and indicates partial convergent or homoplastic evolution between Gnetales and angiosperms. Proceedings of the Royal Society B-Biological Sciences, 285, 20181012. https://doi.org/10.1098/rspb.2018.1012
- Ruhlman, T. A., & Jansen, R. K. (2014). The plastid genomes of flowering plants. In P. Maliga (Ed.), *Chloroplast biotechnology: Methods and protocols* (pp. 3–38). Humana Press.
- Ruhlman, T. A., Zhang, J., Blazier, J. C., Sabir, J. S. M., & Jansen, R. K. (2017). Recombination-dependent replication and gene conversion homogenize repeat sequences and diversify plastid genome structure. American Journal of Botany, 104(4), 559–572. https://doi. org/10.3732/ajb.1600453
- Sanderson, M. J., Copetti, D., Burquez, A., Bustamante, E., Charboneau, J. L. M., Eguiarte, L. E., Kumar, S., Lee, H. O., Lee, J., McMahon, M., Steele, K., Wing, R., Yang, T.-J., Zwickl, D., & Wojciechowski, M. F. (2015). Exceptional reduction of the plastid genome of *saguaro* cactus (Carnegiea gigantea): Loss of the ndh gene suite and inverted repeat. American Journal of Botany, 102(7), 1115–1127. https://doi. org/10.3732/ajb.1500184
- Shaw, J., Shafer, H. L., Leonard, O. R., Kovach, M. J., Schorr, M., & Morris, A. B. (2014). Chloroplast DNA sequence utility for the lowest phylogenetic and phylogeographic inferences in angiosperms: The tortoise and the hare IV. American Journal of Botany, 101, 1987–2004. https://doi.org/10.3732/ajb.1400398
- Stamatakis, A. (2014). RaxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogeies. *Bioinformatics*, 30(9), 1312–1313.
- Sun, Y.-X., Moore, M. J., Meng, A.-P., Soltis, P. S., Soltis, D. E., Li, J.-Q., & Wang, H.-C. (2013). Complete plastid genome sequencing of Trochodendraceae reveals a significant expansion of the inverted repeat and suggests a Paleogene divergence between the two extant species. *PLoS One*, 8(4), e60429. https://doi.org/10.1371/journ al.pone.0060429
- Swofford, D. L. (2002). PAUP*: Phylogenetic analysis using parsimony (and other methods), version 4. Sinauer Associates.
- Turmel, M., Otis, C., & Lemieux, C. (2015). Dynamic evolution of the chloroplast genome in the green algal classes Pedinophyceae and

Trebouxiophyceae. Genome Biology and Evolution, 7, 2062–2082. https://doi.org/10.1093/gbe/evv130

- Wang, B., Jiang, B., Zhou, Y., Su, Y.-J., & Wang, T. (2015). Higher substitution rates and lower dN/dS for the plastid genes in Gnetales than other gymnosperms. *Biochemical Systematics and Ecology*, 59, 278– 287. https://doi.org/10.1016/j.bse.2015.02.009
- Wang, J.-H., Moore, M. J., Wang, H., Zhu, Z.-X., & Wang, H.-F. (2020). Plastome evolution and phylogenetic relationships among malvaceae subfamilies. *Gene*, 765, 145103. https://doi.org/10.1016/j. gene.2020.145103
- Wicke, S., Schaferhoff, B., de Pamphilis, C. W., & Muller, K. F. (2014). Disproportional plastome-wide increase of substitution rates and relaxed purifying selection in genes of carnivorous Lentibulariaceae. *Molecular Biology and Evolution*, 31(3), 529–545. https://doi. org/10.1093/molbev/mst261
- Wicke, S., Schneeweiss, G. M., de Pamphilis, C. W., Muller, K. F., & Quandt, D. (2011). The evolution of the plastid chromosome in land plants: Gene content, gene order, gene function. *Plant Molecular Biology*, *76*, 273–297. https://doi.org/10.1007/s11103-011-9762-4
- Wolfe, K. H., Li, W. H., & Sharp, P. M. (1987). Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proceedings of the National Academy of Sciences, 84, 9054–9058. https://doi.org/10.1073/pnas.84.24.9054
- Wu, C. S., & Chaw, S. M. (2014). Highly rearranged and size-variable chloroplast genomes in conifers II clade (cupressophytes): Evolution towards shorter intergenic spacers. *Plant Biotechnology Journal*, 12(3), 344–353. https://doi.org/10.1111/pbi.12141
- Wu, C. S., & Chaw, S. M. (2015). Evolutionary stasis in Cycad plastomes and the first case of plastome GC-biased gene conversion. *Genome Biology and Evolution*, 7, 2000–2009. https://doi.org/10.1093/gbe/ evv125
- Wu, C. S., Lai, Y. T., Lin, C. P., Wang, Y. N., & Chaw, S. M. (2009). Evolution of reduced and compact chloroplast genomes (cpD-NAs) in gnetophytes: Selection toward a lower-cost strategy. *Molecular Phylogenetics and Evolution*, 52(1), 115–124. https://doi. org/10.1016/j.ympev.2008.12.026
- Wu, C. S., Lin, C. P., Hsu, C. Y., Wang, R. J., & Chaw, S. M. (2011). Comparative chloroplast genomes of Pinaceae: Insights into themechanism of diversified genomic organizations. *Genome Biology* and Evolution, 3, 309–319. https://doi.org/10.1093/gbe/evr026
- Wu, C. S., Wang, Y. N., Hsu, C. Y., Lin, C. P., & Chaw, S. M. (2011). Loss of different repeat copies from chloroplast genome of Pinaceae and Cupressophytes and infuence of heterotachy on the evaluation of Gymnosperm phylogeny. *Genome Biology and Evolution*, 3(6), 1284– 1295. https://doi.org/10.1093/gbe/evr095

- Wyman, S. K., Jansen, R. K., & Boore, J. L. (2004). Automatic annotation of organellar genomes with DOGMA. *Bioinformatics*, 20(17), 3252– 3255. https://doi.org/10.1093/bioinformatics/bth352
- Yang, Z. (2004). PAML 4: Phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24(8), 1586–1591. https://doi. org/10.1093/molbev/msm088
- Yang, Z. (2006). Computational molecular evolution. Oxford University Press.
- Yi, X., Gao, L., Wang, B., Su, Y.-J., & Wang, T. (2013). The complete chloroplast genome sequence of *Cephalotaxus oliveri* (Cephalotaxaceae): Evolutionary comparison of *Cephalotaxus* chloroplast DNAs and insights into the loss of inverted repeat copies in gymnosperms. *Genome Biology and Evolution*, 5(4), 688–698. https://doi. org/10.1093/gbe/evt042
- Zerbino, D. R., & Birney, E. (2008). Velvet: Algorithms for *de novo* short read assembly using *de Bruijn graphs*. *Genome Research*, 18(5), 821– 829. https://doi.org/10.1101/gr.074492.107
- Zhang, Y.-Z., Ma, J., Yang, B.-X., Li, R.-Y., Zhu, W., Sun, L.-L., Tian, J.-K., & Zhang, L. (2014). The complete chloroplast genome sequence of *Taxus* chinense var mairei (Taxaceae): Loss of an invert repeat region and comparative analysis with related species. *Gene*, 540(2), 201–209. https://doi.org/10.1016/j.gene.2014.02.037
- Zheng, W.-J., & Fu, L.-G. (1978). Cupressaceae. In Z.-Y. Wu (Ed.), Flora of China, Vol. 7. Science Press (in Chinses).
- Zhu, A.-D., Guo, W.-H., Gupta, S., Fan, W.-S., & Mower, J. P. (2016). Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates. New Phytologistogist, 209(4), 1747–1756. https://doi.org/10.1111/ nph.13743

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of the article at the publisher's website.

How to cite this article: Ping, J., Hao, J., Li, J., Yang, Y., Su, Y., & Wang, T. (2022). Loss of the IR region in conifer plastomes: Changes in the selection pressure and substitution rate of protein-coding genes. *Ecology and Evolution*, 12, e8499. https://doi.org/10.1002/ece3.8499