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Abstract: Proteomics studies based on mass spectrometry (MS) are gaining popular applications in biomedical research 
for protein identification/quantification and biomarker discovery, especially for potential early diagnosis and prognosis of 
severe disease before the occurrence of symptoms. However, MS data collected using current technologies are very noisy 
and appropriate data preprocessing is critical for successful applications of MS-based approaches. Among various data 
preprocessing steps, peak alignment from multiple spectra based on detected peak sample locations presents special statis-
tical challenges when effective experimental calibration is not feasible due to relatively large peak location variation. To 
avoid intensive tuning parameter optimization, we propose a simple novel Bayesian algorithm “random grafting-pruning 
Markov chain Monte Carlo (RGPMCMC)” that can be applied to global MS peak alignment and to follow certain model-
based sample classification criterion for using aligned peaks to classify spectrum samples. The usefulness of our approach 
is demonstrated through simulation study by making extensive comparison with other algorithms in the literature. Its ap-
plication to an ovarian cancer MALDI-MS data set achieves a smaller 10-fold cross validation error rate than other current 
large scale methodologies.
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1. Introduction
Genomics and proteomics technologies offer much promise in our understanding of fundamental 
biological processes by allowing us to simultaneously monitor the expression levels of tens of 
thousands of genes and proteins. Since proteins are the basic functioning units in the cells, there is 
a great interest to characterize individual molecular profiles based on proteomics for reliable 
biomarker discovery and effective disease diagnosis/prognosis/treatment. In proteomics research, 
mass spectrometry (MS) is the most widely used instrument to allow for the mass measurement of 
molecules, where a mass spectrometer determines chemical compounds’ molecular weight by 
ionizing, separating, and measuring molecular ions according to their mass-to-charge ratio (m/z: 
unit Da) and a mass spectrum is the standard data output for analysis and interpretation (Link et al. 
1999), where the x-axis represents m/z value (Da) and the y-axis represents intensity (enrichment 
of particles with certain m/z). Recently, Yu et al. (2005) reviewed current approaches on the extrac-
tion of the most relevant information from the raw mass spectra to identify disease biomarkers. A 
standard MS data analysis usually involves background noise removal, smoothing, intensity normal-
ization, peak identification and alignment, and biomarker identification. The false positive and false 
negative peaks may exist in taking local maxima as peaks (Coombes et al. 2003) and peak location 
variation may be due to differences in sample preparation, chemical noise, co-crystallization, depo-
sition of the matrix-sample onto the target, and laser position on the target among others. Several 
statistical methods have been proposed to reduce the background noise (Coombes et al. 2003; Satten 
et al. 2004; Coombes et al. 2005a and Randolph and Yasui, 2006). Morris et al. (2005) applied 
translation-invariant wavelet transformations to the raw spectra and performed peak detection using 
the mean spectrum derived from a group of spectra, where they assumed calibration can be done in 
advance experimentally or by interpolation to make common peaks stay closely together, and only 
false negatives are possible. However, Coombes et al. (2005b) pointed out that, peak location 
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variation, caused by a spread of initial particle 
velocities at the starting end of mass spectrometer 
tube, makes calibration more diffi cult. Compared 
to background noise removal, peak identification 
and alignment is more challenging and critical 
by providing the links of underlying peptides 
across all spectra. However, existing algorithms 
for peak alignment are mostly ad hoc and based 
on heuristic arguments (Nielsen et al. 1998; 
Johnson et al. 2003; Torgrip et al. 2003; Eilers, 
2004; Tibshirani et al. 2004 and Randolph and 
Yasui 2006), where some parameters need to be 
optimized empirically and/or subjectively. In this 
paper, we work on the detected peak samples 
(possibly with associated intensities) coming 
from certain protocol. In view of hundreds of 
features (peaks) in each spectrum, due to complex 
chemical and physical mechanisms undergoing 
the mass spectrometry, throughout this paper, we 
assume that substantial individual peak location 
variation is existent, say up to one half of the 
interval between neighboring peaks, thus calibra-
tion may be in lack of power. Moreover, we 
consider statistically false positives and negatives 
to make our model more accountable. Overall, 
we will assume that each set of potential peak 
samples corresponding to the true peak follows 
an individual composite distribution regulated 
by true peak location, peak sample location 
variation, false positive and false negative rates. 
An effective simple Bayesian MCMC algorithm 
is proposed to do peak alignment (biomarker 
ident ificat ion)  and downstream sample 
classification, where all individual sets of param-
eters for each true potential peak are able to be 
estimated in a universal modeling framework 
without intensive tuning parameter optimization. 
Our algorithm is much computationally simpler 
than other available MCMC algorithms which 
could be applied to MS alignment while retaining 
competing performance.

The rest of this article is organized as follows: 
Section 2 introduces Bayesian dimension 
matching problem and proposes our simplified 
approach; Section 3 summarizes simulation 
results to demonstrate the effi ciency and reli-
ability of our algorithm; Section 4 illustrates the 
applications of our approach to a real MS data 
set; Section 5 considers joint analysis of peak 
alignment and sample classification; Section 6 
concludes with discussions; and some technical 
details are given in the appendix.

2. Methods

2.1. Dimension-matching 
statistical model 
We now develop a simple novel MCMC algorithm, 
random grafting-pruning Markov chain Monte 
Carlo (RGPMCMC) which can be applied to MS 
peak alignment from mass charge ratio informa-
tion. Within Bayesian framework, we are often 
interested in the posterior distribution of the 
dimension-varying parameter θ. The prior distribu-
tion π(θ)is represented as ∑K∈N π(θK|K)π(K), where 
N is positive integer set and π(θK |K) is the indi-
vidual prior distribution within the K-dimensional 
space and π(K)is the mixture probability for dimen-
sion K. Since π(K,θK) =  π(K)π(θK|K), the posterior 
distribution of (K,θK) 
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where the denominator is the normalization 
constant not needed for posterior sampling. Change 
point model usually involves dimension-matching 
in two typical cases: one single ordered series 
where change points are taken as those separating 
successive discrete points, and multiple ordered 
series where change points correspond to physical 
locations in the continuous space. For the discrete 
case, the partitioning and wrapping up the segments 
leads to an exponentially increasing computational 
cost as the model space grows (Denison et al. 
2002), and frequentist’s approaches only either 
work on very few change points or special algo-
rithms (Guan, 2004; Olshen and Venkatraman, 
2004). Recently, Fearnhead (2005) proposed an 
exact non-MCMC sampler by recursive partition, 
and Loschi, Cruz and Arellano-Valle (2005) intro-
duced the product partition model based Bayesian 
algorithm which stems from Yao (1984) and Barry 
and Hartigan (1992, 1993). For the continuous 
case, the readers are referred to sampling-based 
algorithms: the reversible jump MCMC (RJMCMC) 
by Green (1995), the birth-and-death process 
MCMC (BDMCMC) and continuous time process 
MCMC (CTMCMC) by Stephens (2000a, 2000b), 
Bayesian cluster detection in maps (Knorr-Held 
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and Raßer, 2000) and others. Cappé, Robert and 
Rydén (2003) showed that, the acceptance prob-
ability of the usual MCMC methods is replaced by 
differential holding times in BDMCMC, and 
RJMCMC converges to a limiting continuous time 
birth-and-death process on an appropriate rescaling 
of time. They also demonstrated that, RJMCMC 
and CTMCMC have similar computational perfor-
mance while the latter demands expensive death 
rate computation.Obviously, discretization is 
neither always suitable nor effi cient for sophisti-
cated change point identification in the continuous 
space. The present work introduces a simple 
MCMC algorithm in the context of multiple MS 
peak alignment by considering all uncertainties 
including peak number, peak locations, peak 
sample location variations, false negative and false 
positive rates. Neither the error-prone Jacobian 
terms in RJMCMC, the intensive death rate calcu-
lation in CTMCMC, nor the computationally 
expensive recursive partition in other algorithms 
is needed by our method.

Before starting with our statistical model, we 
assume local maxima (discrete locations) have 
been detected as peak samples for each raw mass 
spectrum. In MS peak alignment, peak sample 
location variation may linearly depend on m/z 
magnitude (Yasui et al. 2003), and log-transforma-
tion of m/z achieves peak sample location variation 
homogeneity, this observation will justify the 
identical prior specification for peak sample loca-
tion variations across true peaks (details later). For 
notational simplicity, we use m/z instead of log 
(m/z) in the following discussions and assume that 
the m/z domain is [(m/z)min, (m/z)max]. The under-
lying K-dimensional true peak location vector is 
�SK

 = (s1, s2, ..., sK), where the peak locations are 
generally separated by at least a distance threshold, 
say no less than d. The data to be analyzed from 
multiple spectra are the detected peak sample loca-
tions yij (j = 1, ..., ni, i = 1, ..., I ), where i is the 
index for spectra, j is the peak sample index within 
each spectrum (with increasing m/z), and ni is the 
number of detected peak samples in the i-th spec-
trum. The peak samples are assumed to be normally 
distributed around their true peak sk with standard 
deviation σk (k = 1, ..., K ) for locations. For the 
putative true peak set �SK  = (s1, s2, ..., sK), each 
detected peak sample j in i-th spectrum is assigned 
to its nearest putative true peak among �SK , say 
ny (i, j) (with possible multiple assignments to the 
same putative peak from a given spectrum). For 

certain true peak k, (1) when there is no peak 
sample assignment to it from a given spectrum, 
we consider it as a false negative case for this 
spectrum with probability fnk ; (2) when there are 
multiple peak sample assignments to it from a 
given spectrum, we consider it as a false positive 
case for this spectrum with probability fpk ; (3) 
otherwise we consider it as a non-false positive 
or negative case for this spectrum with probability 
1 − fnk − fpk. Our prior hypothesis is that, each true 
peak shows these three types of cases proportion-
ally under the homogeneity assumption for the 
spectra and identical peak sample detection 
protocol for each local m/z region, say for each 
true peak, on average 90% spectra will contribute 
single peak sample, 5% will contribute multiple 
peak samples and 5% will contribute no peak 
sample to the putative true peak. For these three 
cases, we assume an independent trinomial distri-
bution Tri(I; fnk , fpk , 1 − fnk − fpk ) for each true 
peak k in the context of numbers of grabbed peak 
samples from I spectra. Now we restate the 
following notations for model set-up: Y stands for 
the peak sample locations for all I spectra, which 
need not be a I-row matrix since the numbers of 
peak samples are not necessarily equal because of 
false negatives and/or false positives; �SK  is a K-
dimensional vector of putative true peak locations 
(m/z’s); �σ K  is a K-dimensional vector of peak 
sample location variations at putative true peaks; 
�f n K  and �f p K are K-dimensional vectors of false 

negative and false positive rates at putative true 
peaks; ny (i, j ) is putative true peak assignment to 
peak sample j in the i-th spectrum; nfn, k is the 
number of spectra without peak samples assigned 
to putative true peak k ; nfp, k is the number of 
spectra with multiple peak samples assigned to 
putative true peak k, and nfnp k,  is the number of 
spectra with single peak sample assigned to puta-
tive true peak k (Figure 1). The likelihood for the 
observed peak samples across all spectra is
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We now describe the motivation for such a 
likelihood function which is crucial for Bayesian 
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inference. The matching by minimum distance 
(sny (i, j)) is to capture important clustering informa-
tion. We believe that, this objective construction 
is reasonable compared to some alternatives, e.g. 
non-model based clustering algorithms, or piece-
wise binning method where each bin is assumed 
to hold exactly those peak samples for the indi-
vidual putative true peak. The other part incorpo-
rating false positives and false negatives is mainly 
a technical statistical consideration, since it is 
very hard to accurately claim which peak sample 
is a true false positive or false negative. To sum 
up, in spite of substantial measurement errors 
underlying high-throughput mass spectra, we 
pursue a reasonable eclectic theme to tackle 
biomarker profile estimation. For notational 
convenience, “peak” represents putative true peak 
for the biomarker profile hereafter, other than 
detected peak sample from each spectrum. On the 
prior part, we assume that K follows a truncated 
Poisson or discrete uniform distribution on {Kmin, 
..., Kmax}. As Green (1995) suggested, the peak 
locations are taken as even-numbered order statis-
tics from 2K + 1 points uniformly distributed on 
an L-length interval [(m/z)min, (m/z)max] (for 
convenience, s0 = (m/z)min, sK+1 = (m/z)max) to 
avoid too many short steps, which has density 
Πk

K
k k

Ks s L=
+

−
+−1

1
1

2 1( ) /  as suggested by Green 
(1995). To make use of conjugate prior, π(σ2) is 
taken as  Inverse-Gamma (ν,η )  densi ty 
( ) / ( )( ) /( )σ2 1 1 2− + − −ν σ η νη νe Γ ; the joint prior distribu-
tion for (fn, fp,1 − fn − fp) is a 3-dimensional 
Dirichlet distribution with density D ( fn, fp, 1 − 
fn − fp|α1, α2, α3) = ( fn)α1−1( fp)α2−1(1 − fn − 
fp)α

3
−1Γ(α1)Γ(α2)Γ(α3)/Γ(α1 + α2 + α3). The 

posterior distribution is
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2.2. Random Grafting-pruning Markov 
chain Monte Carlo (RGPMCMC)
Motivated by Green (1995), our algorithm is based 
on a redesigned universal “naively informative” 
parameter proposal involving peaks and the other 
parameters concurrently without the need for Jaco-
bian terms. We also propose four move types 
(+, –, H, S), where “+” means peak birth proposal, 
“–” means peak death proposal, “H” means param-
eter (σ 2, fn and fp) proposal excluding peaks 
and “S” means peak location mutation with 
peak number unchanged. We specify (+, –, H, S) 
probabilities as (π(+), π(−), π(H), π(S)). 

Parameter sampling process 

1) First we choose one of these four move types 
based on move type probabilities (π(+), π(−), 
π(H ), π(S )), where π(+) = π(−). 

2) For the “+” move type, we describe the parameter 
proposal process: If Kold = Kmax, we go to 1) since 
the upper threshold is reached; if Kold < Kmax, we 

Figure 1. Mass Spectrum Biomarker Model. (The left column is spectrum index, the vertical lines are putative true peaks, the horizontal 
circle lines are peak samples of each spectrum. The lower left dash rectangle represents a false negative case and the upper right dash 
rectangle represents a false positive case.) 
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randomly sample one of the Kold + 1 intervals 
formed by current Kold peaks, say (sj, sj+1), with 
equal probability 1/(Kold + 1). We may assign
 j + 1 to this new peak index ∗ and the following 
indexes increase by one accordingly. Within this 
sampled interval, we propose (s∗, σ∗

2,  fn∗ and fp∗) 
for peak candidate ∗ as follows:
i. True peak location proposal for peak birth:

 s∗ = gs∗
(U1; sj, sj+1) ∈ (sj, sj+1),  

where gs∗(U1; sj, sj+1) is a one-to-one mapping 
from random variable U1 to peak location s∗ 
given sj and sj+1. We take gs∗

(U1; sj, sj+1) to 
be (sj + sj+1g1(U1))/(1 + g1(U1)), or (s∗ − sj)/
(sj+1 − s∗) = g1(U1), where g1(·) is any mono-
tonic function with domain [0, 1] and range 
[0, ∞), and U1 ∼ U [0, 1]. It can be seen that, 
s∗ is a monotonically increasing function of 
U1. We simply use g1(u) = u/(1 − u), thus 
s∗ = sj + (sj+1 − sj) U1, a uniform random 
variable ∈ (sj, sj+1).

ii. Peak sample location variance proposal 
for peak birth:

 σ σ σ
σ*

*
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2 2+  or (σ∗/σj)/(σj+1/σ∗)

 = g2(U2), where g2(·) is any monotonic func-
tion with domain [0, 1] and range [0, ∞), and 
U2 ∼ U [0, 1]. It can be seen that, σ2

*  is a 
monotonically increasing function of U2. We 
simply use g2(u) = u/(1 − u), thus σ2

*  = (σ2
j  

σ2
j +1)1/2 U2 /(1−U2).

iii. Peak sample false negative and false posi-
tive rate proposal for peak birth:

 ( , ) ( , ; , , , ),* * ,* *
fn fp g U U fn fp fn fpfn fp j j j j= + +� 3 4 1 1  

where �g fn fp* *,  (U3, U4; fnj, fpj, fnj+1, fpj+1), is a 
one-to-one mapping from (U3, U4) to (fn∗, fp∗) 
given (fnj, fpj) and (fnj+1, fpj+1). Specifically, 
for peak ∗, we use O∗ to represent “false nega-
tive or positive” odds and R∗ to represent 
“false negative vs. positive” ratio, i.e.

 O∗ =   (fn∗  + fp∗)/(1 − fn∗ − fp∗) and R∗ =  fn∗/fp∗,(4) 

the false negative and false positive rate 
proposal is realized in two sequential 
steps:

1) O∗ proposal:

 O∗= (OjOj+1)1/2 g3(U3),  (5)

i.e. (O∗/Oj)1/2/(Oj+1/O∗)1/2 = g3(U3), where 
g3(·) is any monotonic function with domain 
[0, 1] and range [0, ∞), and U3 ∼U [0, 1]. It 
can be seen that, O∗ is a monotonically 
increasing function of U3, we simply use 
g3(u) = u/(1 − u). 

2) R∗ proposal:

 R∗ = (Rj Rj+1)1/2g4(U4), (6)

i.e. (R∗/Rj)1/2/(Rj+1/R∗)1/2 = g4(U4), where g4(·) 
is any monotonic function with domain 
[0, 1] and range [0, ∞), and U4 ∼ U [0, 1]. It 
can be seen that, R∗ is a monotonically 
increasing function of U4, we simply use 
g4(u) = u/(1 − u). 

Note that the constraint 0 ≤ fn∗ + fp∗ ≤ 1 holds 
under this proposal. The �g fn fp* *,  (U3, U4; fnj, fpj, 
fnj+1, fpj+1) function is a combination of O∗ pro-
posal and R∗ proposal in this case. fn∗ and fp∗ 
are jointly proposed to meet the constraint. The 
Jacobian of transforming (fnj, fpj, fnj+1, fpj+1, u3, 
u4) into ((fnj, fpj, fn∗, fp∗, fnj+1, fpj+1) is calcu-
lated by chain rule (see appendix). 
When the insertion of the peak birth candidate 
is before the first peak or after the last peak, 
there are no real double neighbors. In this 
case, we take the duplicates of peak birth 
candidate’s unique succeeding or preceding 
neighbor as two virtual neighbors for pro-
posal implementation. In this move type, we 
realize the sequential uniform lift for fn∗+ fp∗ 
and subsequent conditional uniform lift for 
fn∗ within fn∗ + fp∗. We claim that, the peak 
birth proposal by “+” move type, along with 
the peak death proposal by the following “–” 
move type, constructs a symmetric transition, 
i.e. equally probable events (Proposition 3). 
So the acceptance probability in the Me-
tropolis-Hastings algorithm within Gibbs 
sampler is simply
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3) For the “–” move type, the parameter pro-
posal process is: If Kold = Kmin, we go to 1) 
since the lower threshold is reached; if Kold 
> Kmin, we randomly sample one from current 
Kold peaks with equal probability 1/Kold, say 
index ∗, to delete. Then we simply abandon 
the associated s∗, σ*

2 , fn∗ and fp∗ for likelihood 
reconstruction. The acceptance probability 
in the Metropolis-Hastings algorithm within 
Gibbs sampler is simply

 
min , ( , , , ,

( ,
[ ]| )1 f K S fn fp

f K
K K K K� � � �

�
σ after peak death proposal Y

SS fn fpK K K K, , , [ ]| )
.

� � �σ before peak death proposal Y{ }
The “+/–” move type is demonstrated in 
Figure 2 for only peak location model.

4) For the “S” move type, the parameter pro-
posal process is: We randomly sample one 
of current peaks, say ∗, with equal probabil-
ity 1/Kold, and take the two neighboring peak 
intervals which peak ∗ separates as a fused 
interval. A peak location is uniformly ran-
domly drawn within this fused interval for a 
new candidate peak to replace s∗. The other 
parameters associated with this peak location 
mutation is kept unchanged, or they could 
be changed as a set within the uniformity 
framework.This is also a symmetric transi-
tion (Proposition 2). So the acceptance prob-
ability in the Metropolis-Hastings algorithm 
within Gibbs sampler is simply

 min , ( , , , ,
(

[ ]| )1 f K S fn fp
f

K K K K
� � � �σ after peak mutation proposal Y

KK S fn fpK K K K, , , , [ ]| )
.� � � �σ before peak mutation proposal Y{ }  

5) For the “H” move type, the posterior distribu-
tion of each σ2

k   is Inverse-Gamma (ν′, η′), 
where ν′ = ν + (∑yij ∈ peak k1)/2, η′ = 1/(1/
η+∑yij ∈ peak k (yij − sk)2/2). The joint posterior 
distribution of each (fnk, fnk,1 − fnk − fpk) is 
Dirichlet (α1 +  nfn,k, α2 + nfp,k, α3 + nfnp k,

). 
We sample the whole set of these parameters 
once.

Remark: This algorithm is a random scan (by 
move type probabilities) version of Gibbs sampler 
introduced by Gelfand and Smith (1990) with 
generalized parameter components: 

1) peak (described by location, peak sample loca-
tion variance, false negative and positive rates) 
birth or death changes the number of parameter 
sets by move type “+” or “–” in the aforemen-
tioned parameter sampling proposal; 

2) peak location mutation does not change the num-
ber of parameter sets by move type “S” in the 
aforementioned parameter sampling proposal; 

3) peak sample location variance or false nega-
tive/positive rate sampling does not change the 
number of parameter sets by move type “H” in 
the aforementioned parameter sampling pro-
posal. 

The associated propositions and the detailed 
description of RGPMCMC are given in the 
appendix. The following proposition justifies the 
correct convergence. 

Figure 2. Symmetric Transition for Peak Birth/death Proposal. (Each rectangle represents a uniform peak birth proposal domain, each 
internal vertical boundary represents a possible peak death proposal location.) 
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Proposition: The induced Markov chain is irreduc-
ible, aperiodic, and ergodic. 
Interpretation: In view of independent uniform 
proposals for non-peak parameter set and diverse 
move types, given any arbitrarily small neighbor-
hood of a current state there is a positive probability 
that the chain lies in that neighborhood after one 
sampling iteration, thus the aperiodicity is verified; 
the irreducibility is established since the chain can 
move from any state to any other state one step at 
a time. 

3. Simulation Study 
In this section, we study the RGPMCMC perfor-
mance under diverse circumstances and make 
comparison with other approaches in the 
literature. 

3.1. Prior sensitivity analysis 
for RGPMCMC 
We consider different priors and study the discrep-
ancy between the specified true peak locations 
and the estimated peak locations.Compaq Fortran 
90 is our development package and we use IMSL 
Fortran Numerical Library to generate random 
numbers. 200 spectra are simulated for each of 
the six simulations, the set-ups and priors are 
listed in Table 1, where four true peaks are consid-
ered, the peak location vectors specify the true 
peak locations, the σ vectors specify the peak 
sample location variations at true peaks, the fn 

and fp vectors jointly specify the probabilities for 
us to simulate no peak sample (with probability 
fn), multiple peak samples (with probability fp), 
or single peak sample (with probability 1 – fn – fp) 
for each true peak from individual spectrum. The 
Inverse-Gamma and Dirichlet priors are for peak 
sample location variances and false negative and 
positive rates at putative true peaks. The peak 
number prior is K ∼ U [1, 20], the starting peak 
number is 11, and move type probabilities are: 
π(+) = 0.45, π(−) = 0.45, π(H) = 0.05, and 
π(S) = 0.05. With burn-in 10,000 and thinning 
1,000, each collection of 1,000 posterior samples 
takes several minutes on a PC powered by Celeron 
CPU. The results are given in Figure 3. In simu-
lation 1, the true peaks are clearly clustered and 
the peak estimation is good. In simulation 2 with 
larger peak sample location variations and false 
positive/negative rates, the same number of peaks 
are identified as the true peak number under 
highly informative priors. By modifying peak 
sample location variation priors, we observe that, 
under large true variations, the peak estimation 
under less informative variation priors is worse 
than that under more informative variation priors. 
More uncertainties are introduced in simulation 3, 
and fewer peaks are identified than the true peak 
number. By modifying peak sample location 
variation priors, we observe that, when the varia-
tion priors are consistent with the true variation 
in terms of mean value, the peak number estima-
tion seems to be better than inconsistent variation 
priors. Simulation 4 shows that, the informative 

Table 1. Simulation Configurations (IG: Inverse-Gamma prior for σ2, D: Dirichlet prior for (fn, fp,1 – fn – fp)).

Peak location (s1, s2, s3, s4) = (1/5, 2/5, 3/5, 4/5)

 (1) σ 0.05 0.05 0.05 0.05 (2) σ 0.10 0.10 0.10 0.10
  fn 0.10 0.10 0.10 0.10  fn 0.20 0.20 0.20 0.20
  fp 0.10 0.10 0.10 0.10  fp 0.20 0.20 0.20 0.20
 IG(5, 100), D(1, 1, 8)  IG(26, 4), D(40, 40, 120)
 (3) σ 0.20 0.20 0.20 0.20 (4) σ 0.02 0.08 0.08 0.02
  fn 0.30 0.30 0.30 0.30  fn 0.10 0.20 0.30 0.40
  fp 0.40 0.40 0.40 0.40  fp 0.10 0.20 0.30 0.40
 IG(6, 5), D(5, 5, 5) IG(20, 6), D(5, 5, 10)

Peak location (s1, s2, s3, s4) = (1/16, 3/16, 7/16, 15/16)

 (5) σ 0.02 0.08 0.08 0.02 (6) σ 0.02 0.02 0.02 0.02
  fn 0.10 0.20 0.30 0.40  fn 0.10 0.10 0.10 0.10
  fp 0.10 0.20 0.30 0.40  fp 0.10 0.10 0.10 0.10
 IG(20, 6), D(5, 5, 10) IG(3, 2), D(2, 2, 2)
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peak sample location variation priors may lead to 
good estimation even when the peaks’ associated 
parameters are different, so does simulation 5, 
where unevenly distributed peaks are considered. 
In simulation 6, even when the parameter priors 
become much less informative, the peak estimation 
performs well, since the true peaks are sharply 
surrounded by corresponding peak samples. These 

observations show that, informative a priori 
knowledge is desirable for reliable estimation. 

3.2. Comparison with some 
non-MCMC approaches 
We first make comparisons with other non-MCMC 
algorithms represented by the recently developed 

Figure 3. Simulations and Estimations ( The simulation directly produces the peak samples for 200 patients which are plotted in each odd 
row of panels without the need for peak sample detection by data preprocessing, the y-axis is patient index and the x-axis is log(m/z). The 
alignments are compared by gridded walls given in each even row of panels.From top to bottom: true peaks,aligned peaks by RGPMCMC, 
aligned peaks by RJMCMC, aligned peaks by scale-space approach, aligned peaks by super-set approach and aligned peaks by PAM 
clustering algorithm.)
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scale-space approach (Yu et al. 2006a), super-set 
approach (Yu et al. 2006b), and Partitioning around 
Medoids (PAM) approach (Kaufman and Rous-
seeuw, 1990). For the six simulations in Section 3.1, 
the combined peak sample locations from 200 
spectra along with the optimal cluster number 
minimizing the “median split silhouette” (Pollard 
and van der Laan, 2002) are taken as PAM inputs, 
S-plus function pam offers the medoid (cluster 
center) locations. These results are also included 
in Figure 3. Overall, RGPMCMC performs better 
than non-MCMC methods; the scale-space result 
is little better than the super-set result in terms of 
robustness; the PAM algorithm is not specifically 
designed for peak alignment, so it may perform 
poorly under certain circumstances, say simula-
tions 2 and 3, where RGPMCMC can not recover 
all true peaks either. 

3.3. Comparison with reversible jump 
Markov chain Monte Carlo 
We apply the same simulated data in Section 3.1 
and make comparison with reversible jump 
Markov chain Monte Carlo (RJMCMC) algorithm 
by Green (1995). RGPMCMC and RJMCMC 
differ in the method for proposing move type “+” 
and/or “–” (peak birth and/or death), where the 
former conditions on the active Markov chain by 
making use of equally probable peak birth and 
death proposals, while the latter makes use of 
additional variables to construct a one-to-one 

matching for dimension changing (details are 
given in the appendix).  The same prior 
specifications for RGPMCMC in Section 3.1 are 
applied to RJMCMC. We consider two starting 
peak numbers, 11 and 1, both equally partitions 
the m/z range. 

Initial peak number = 11 
1) Figure 3 also compares the alignments by 

RGPMCMC and RJMCMC, where no differ-
ence between RGPMCMC and RJMCMC 
exists. 

2) The peak number iteration comparison is given 
in Figure 4, where the burn-in = thinning = 
1,000. The third row of dual panels pinpoint 3 
or 4 peaks, the 4:3 ratios are 0.124 and 0.122 
for RGPMCMC and RJMCMC respectively, 
which is close to each other. The acceptance 
rate for peak birth and/or death proposals should 
be almost identical for these two algorithms. 

3) The peak number iteration comparison before 
reaching reasonable peak number (1,000th it-
eration) can be seen from Figure 5. For these 
six simulations, peak birth and/or death, and 
peak mutation acceptance rates are compared in 
Table 2, which are close to each other. 

4) The reasonable peak number is reached after 
almost the same number of iterations (∼1,000) 
by GPMCMC and RJMCMC, which have 
s imi la r  e ff i c iency  fo r  peak  number 
identification. 

Table 2. Acceptance Rate Comparison between RGPMCMC and RJMCMC.

Simulation 1 2 3 4 5 6

First 1,000 iterations (the initial peak number = 11)
peak birth (RGP) 0.00E-4 0.00E-4 0.00E-4 0.00E-4 0.00E-4 0.00E-4
peak birth (RJ) 0.00E-4 0.00E-4 0.00E-4 0.00E-4 0.00E-4 0.00E-4
peak death (RGP) 6.70E-3 1.55E-2 1.55E-2 1.33E-2 1.55E-2 1.55E-2
peak death (RJ) 6.70E-3 1.55E-2 1.55E-2 1.33E-2 1.55E-2 1.55E-2
peak mutation (RGP) 1.72E-2 3.53E-2 3.94E-2 1.30E-2 5.90E-3 2.73E-2
peak mutation (RJ) 1.93E-2 3.33E-2 4.42E-2 1.30E-2 5.90E-3 2.17E-2

First 50,000 iterations (the initial peak number = 1)
peak birth (RGP) 1.70E-4 1.26E-4 1.26E-4 1.70E-4 1.27E-4 8.50E-5
peak birth (RJ) 1.27E-4 1.26E-4 8.44E-5 1.28E-4 1.27E-4 8.43E-5
peak death (RGP) 0.00E-4 4.26E-5 2.12E-4 4.20E-5 2.53E-4 7.59E-4
peak death (RJ) 1.26E-4 4.25E-5 2.54E-4 4.20E-5 4.21E-5 7.21E-4
peak mutation (RGP) 1.71E-2 4.27E-2 4.08E-2 1.21E-2 8.96E-3 1.02E-2
peak mutation (RJ) 1.56E-2 3.04E-2 4.90E-2 8.51E-3 6.38E-3 1.41E-2
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Figure 4. Peak Number Sampling Series by RGPMCMC and RJMCMC from Simulation Study (burn in = thinning = 1,000,
the initial peak number = 11.)
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Figure 5. Peak Number Sampling Series by RGPMCMC and RJMCMC from Simulation Study (fi rst 1,000 iterations with initial peak number 11)
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Initial peak number = 1 
1) The peak number iteration comparison is given 

in Figure 6, where the burn-in = thinning = 
1,000. The third row of dual panels pinpoint 3 
or 4 peaks, the 4:3 ratios are 0.131 and 0.079 
for RGPMCMC and RJMCMC respectively, 
where the ratio by RGPMCMC (0.131) is very 
close to peak number 11 case (0.124). Except 
for simulation 5, both RGPMCMC and RJM-
CMC identify the same number of peaks. For 
simulation 6, they all identify 3 peaks other than 
the true 4 peaks. 

2) The peak number iteration comparison before 
50,000th iteration can be seen from Figure 7. 
For these six simulations, peak birth and/or 
death, and peak mutation acceptance rates are 
also compared in Table 2. The rates are still 
close to each other. 
We find that, starting from a relatively large 

peak number is more capable of identifying true 
peaks by RGPMCMC and RJMCMC. 

3.4. Mimic-MS simulation study 
We mimic the mass spectra using the R package 
developed by Coombes et al. (2005b), where 
wide-ranging factors are considered to create the 
uncertainty, including the acquisition time resolu-
tion of the detector, the distribution of initial 
particle velocities, isotope distribution and others. 
Ideally, our six simulated mass spectrum groups 
have 5, 10, 20, 40, 80 and 160 peaks without 
incorporating any uncertainty and the R simulator 
produces six mean spectra, where the particles 
with large mass value (>20,000 Da) have broader 
hills due to more isotopes (Figure 8). Each mean 
spectrum leads to 100 uncertainty involved 
random replicative spectra subject to peak sample 
detection. For them we smooth spectrum with a 
predefined Gaussian function (window size of 15), 
search local maxima in the local neighborhood of 
15 data points as peak samples, the minimal 
intensity value of peaks should be not smaller 
than 100. The RGPMCMC pinpoints 5, 9, 18, 35, 
62 and 112 peaks (Inverse-Gamma (6,500) is peak 
sample location variance prior, Dirichlet (5,5,90) 
is false negative and positive rate prior, the 
starting peak numbers are 10, 20, 40, 80, 160 and 
320); the clustering method in Tibshirani et al. 
(2004) pinpoints 5, 9, 19, 36, 69 and 174 peaks 
(the tuning parameters are selected as suggested 
in Tibshirani et al. (2004)). The alignment compar-

ison is also given in Figure 8, where the clustering 
method tends to identify redundant peaks at large 
masses (the arrows in the bottom panels of Figure 
8), while RGPMCMC performs better in this 
region; both methods identify less peaks in certain 
dense regions (bottom panels in Figure 8), while 
RGPMCMC sometimes combine too concentrated 
peaks into one peak (the arrows in the middle 
panels of Figure 8). Overall, these two approaches 
have similar performance in this simulation 
scenario.

4. Application to Real Data 
We model the same ovarian cancer data source as 
used by Wu et al. (2003) (available on-line at 
http://bioinformatics.med.yale.edu/MSDATA), 
where the healthy group has 77 patients and the 
cancer group has 93 patients. The individual spec-
trum has tens of thousands of (m/z, intensity) pairs 
and looks like a more complicated and error-
involving version of those simulated profiles in 
Section 3.4 (Figure 8). The data preprocessing on 
original spectra involves baseline subtraction, 
smoothing, intensity normalization and peak 
sample detection by local maxima as described in 
Section 3.4. The median of the original peak 
sample numbers after pre-processing is 249 for the 
healthy group and 241 for the cancer group. The 
values of log(m/z) range from 6.565 to 8.200. We 
use move type probabilities (π(+) = 0.45, π(−) = 
0.45, π(H) = 0.05, π(S) = 0.05) and the interval 
constraint d = 10−5. If this constraint is not met at 
one iteration, we simply resample the parameters. 
Richardson and Green (1997) observed that,
proper posterior distributions may be not possible 
under fully noninformative priors, so we apply 
(α1 = 5, α2 = 5, α3 = 90) to Dirichlet priors, and
(ν = 3, η = 26) to Inverse-Gamma priors. Different 
peak number priors, either truncated Poisson [100, 
600|λ] or Uniform [100, 600] lead to similar 
results. The starting peak number is K = (Kmin + 
Kmax)/2, the initial peak locations are equal K- parti-
tion of log(m/z) range, burn-in is 10,000, and thin-
ning is 1,000. We recommend to start with a 
relatively large peak number. The sampler 
approaches the reasonable peak number very 
quickly and usually sticks around and mostly does 
effective single peak mutations once approaching 
the true peak number. Occasional peak number 
jump ups are highly effi cient for joint peak number 
and location estimation. The alignment results are 
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Figure 6. Peak Number Sampling Series by RGPMCMC and RJMCMC from Simulation Study (burn in = thining = 1,000 the initial peak 
number = 1.)
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Figure 7. Peak Number Sampling Series by RGPMCMC and RJMCMC from Simulation Study (first 50,000 interations with
initial peak number 1)



Cancer Informatics 2008:6 231

Bayesian Mass Spectra Peak Alignment from Mass Charge Ratios

given in Figure 9. The sampling series of peak 
number are given in Figure 10, where we empiri-
cally identify the modes of the posterior peak 
number distribution as 274 (healthy group) and 
260 (cancer group). The false negative rate and 
false positive rate estimations are given in Figure 
11 with a significant negative correlation. The 
posterior peak sample location variation medians 
are given in Figure 12, where the inconsistency of 

the first point possibly arises from edge effect, so 
do false negative and positive rate median plots 
(Figure 11). The average peak distance (∼(8.200 – 
6.565)/290 = 0.0058) dominates the estimated peak 
sample location variation (∼0.001). The sampler 
takes several thousand iterations to approach the 
reasonable peak number, thus an adaptive strategy 
with varying move type probabilities may be more 
effi cient than the brute birth/death dominating 

Figure 8. Mimic-MS Simulations and Estimations (The R simulator produces the spectrum profi les given in each odd row of panels, 100 
random spectra were simulated for each of them for peak sample detection. The y-axis is intensity and the x-axis is m/z. After peak sample 
detection by data preprocessing, the alignments are compared by gridded walls given in each even row of panels. From top to bottom: true 
peaks, aligned peaks by RGPMCMC and aligned peaks by clustering algorithm.)
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proposal after that time point. The collection of the 
posterior samples in Figure 10 takes several days 
on a PC powered by Celeron CPU. 

5. Sample Classification 
Effective sample classification is as important as 
biomarker profile estimation. Wu et al. (2003) 
compared a number of sample classification 
methods without cross-validation and Tibshirani 
et al. (2004) reached error rates no less than 35%.
Since the peak number is biologically variable 
between healthy and cancer groups, the current 
equal-peak-number based classifications may not 
be very suitable. Without considering cross-valida-
tion, we simply calculate the two log-likelihood 
functions for each preprocessed spectrum given 
fitted model (healthy group or cancer group) from 

Section 4, where the estimated parameters are 
taken from posterior medians. The histograms of 
log-likelihoods of all spectra from both healthy 
group and cancer group along with the log-likeli-
hood difference histograms are given in Figure 13. 
From the log-likelihood difference empirical distri-
butions in the bottom panels of Figure 13, we 
simply take the proportions of negative values as 
type I error rates: 28.6% for testing: Healthy vs. 
Cancer and 10.8% for testing: Cancer vs. Healthy, 
which are overly optimistic. Denote ỹ = (y1, y2, ..., 
yN) as the spectrum peak sample location vector to 
be classified,  s̃H = (sh1, sh2, ..., shKH

) is the esti-
mated true peak location vector for the healthy 
population, and s̃C = (sc1, sc2, ..., scKc

) is the esti-
mated true peak location vector for the cancer 
population (usually KH ≠ KC). We propose a 

Figure 9. Aligned Peaks with Peak Sample Background (y-axis: patient index, x-axis: log(m/z). The vertical lines represent aligned peaks 
(biomarker profi le) for each group, the dots in the  background are the deteced peak samples for all patients by data preprocessing.)

Figure 10. Sampling Series of Peak Number (y-axis: peak number, x-axis: iteration index. The healthy group seems to have more peaks 
than cancer group.)
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minimum L1 distance sample classification rule. 
For each shk (1 ≤ k ≤ KH), we identify its nearest 
neighbor ynhk

 from ~y and form a L1 distance 
summand  |shk − ynhk |, the same rule applies to each 
sck (1 ≤ k ≤ KC). To be conservative, we only use 
those deviations less than 0.003 (∼half of the 
average peak interval) followed by arithmetic 

average over these selected estimated true peaks. 
The L1  distances between the new spectrum ~y 
from healthy population and cancer population 
are

 L y H
K
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H

selected k n
k

K

hk

H

1
1

1 1( , ) | |� =
′

−
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Figure 11.  False Negative Rate and False Positive Rate Estimation (The left panel of fi rst row is the histogram of false negatives at aligned 
peaks from healthy group, the right panel of fi rst row is the histogram of false negatives at aligned peaks from cancer group; the left panel of 
second row shows the false negative medians at aligned peaks (represented by log(m/z)) from healthy group, the right panel of second row 
shows the false negative medians at aligned peaks ( represented by log (m/z)) from cancer group; the next two rows are for false positives; the 
bottom row of panels show (false positive rate [x-axis], false negative rate [y-axis]) at aligned peaks for healthy group and cancer group.)
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and
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where ′KH is the number of selected true peaks from 
�sH  based on 0.003 threshold, and ′KC  is the 

number of selected true peaks from �sC , 1selected is 
the indicator function of selection. The class  
leading to smaller L1 would be predicted. Our 10 
fold cross-validation is implemented as follows: 
we equally divide both the healthy and the cancer 
groups into ten disjoint pairs of testing set (Hi,Ci), 
(i = 1, ..., 10). For each of these pairs, we combine 

Table 3. Sample Classification Error Rates from 10 fold Cross-validation (The error rates represent the 
proportions of the healthy or cancer patients in the testing set which are misclassified.)

 Health group Cancer group
  Identifi ed peak number Error rate Identifi ed peak number Error rate
 Cross-Validation (Training set) (Testing set) (Training set) (Testing set)

 1 256 3/8 261 1/10
 2 264 5/8 257 3/10
 3 269 2/8 258 4/10
 4 260 3/8 254 4/10
 5 263 4/8 257 0/10
 6 265 2/8 263 5/10
 7 263 3/8 252 4/10
 8 265 3/8 264 3/10
 9 262 2/8 270 1/10
 10 264 3/5 252 1/3

 Overall  30/77  26/93

Figure 12. Posterior Medians of Peak Sample Location Variation (The upper left panel is the histogram of peak sample location variation 
medians from healthy group, the upper right panel is the histogram of peak sample location variation medians from cancer group; the lower 
left panel shows peak sample location variation medians (healthy group) at aligned peaks represented by log (m/z), the lower right panel 
shows peak sample location variation medians (cancer group) at aligned peaks represented by log(m/z).)
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the complementary nine sets as the corresponding 
healthy and cancer group training sets ( , )′ ′H Ci i , 
(i = 1, ..., 10), i.e. ′Hi  = ∪1≤ k ≤ 10, k≠i Hk and
′Ci  =   ∪1 ≤ k ≤ 10, k ≠ iCk. The exact 10 fold cross-vali-

dation would be done for each of these testing pairs 
(Hi, Ci) from fitting ( , ),′ ′H Ci i  (i = 1, ..., 10). The 
results are given in Table 3. The type I error rate 
for hypothesis test: H0: Healthy vs. H1: Cancer is 
around 38.97%, and the type I error rate for hypoth-
esis test: H0: Cancer vs. H1: Healthy is around 
27.96%, and the overall sample misclassification 
rate from 10 fold cross-validation is around 

32.94%. Our strict 10-fold cross validation error 
rate is less than that of Tibshirani et al. (2004), 
which is actually not coming from a complete cross 
validation by observing that all spectra took part 
in the initial clustering. Comparing Table 3 and 
Figure 13, we conclude that, overlapping training 
and testing sets may favor individual spectrum with 
a bonus around 10% in terms of classification error 
rate. The conclusion drawn by Yasui et al. (2003) 
also holds here: an appreciable proportion of 
healthy samples may be incorrectly classified as 
cancer.

Figure 13.  Hypothesis Test by Log-likelihood (The upper left panel is the log-likelihood histogram for healthy individuals with healthy group 
model, the upper right panel is the log-likelihood histogram for healthy individuals with cancer group model; the middle left panel is the log-
likelihood histogram for cancer individuals with cancer group model, the middle right panel is the log-likelihood histogram for cancer indi-
viduals with healthy group model; the lower left panel is the log-likelihood difference histogram for ‘‘healthy individuals with healthy group 
model—healthy individuals with cancer group model’’, the lower right panel is the log-likelihood difference histogram for ‘‘cancer individuals 
with cancer group model—cancer individuals with healthy group model’’.)
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6. Discussion 
In this article, we take a global viewpoint to avoid 
multiple edge effects under piecewise processing 
and incorporate flexible biomarker numbers to 
make our Bayesian model more accountable. The 
Jacobian term derivation, intensive death rate 
calculation, or lengthy recursive partition required 
by RJMCMC, CTMCMC and others in the litera-
ture may impede convenient application of 
Bayesian algorithm to change point identification 
(see the RJMCMC computational procedure in the 
appendix for example). For multiple change point 
identification problems where each segment has 
the same set of regulating parameters, we can see 
that, the superiority of RGPMCMC algorithm over 
other available algorithms is the most computa-
tional effi ciency and simplicity by minor local 
adjustment of likelihood function and prior 
set armed with “naively informative”global treat-
ment as introduced by the parameter sampling 
process in Section 2.2. Its competing computa-
tional performance has been demonstrated in this 
article by intensive comparison with others. More-
over, RGPMCMC can be easily modified to apply 
to multiple change point identification in circular 
domain (Liu et al. 2006) and others. Although our 
mass charge ratio (m/z) model already leads to 
promising sample classification, how to make use 
of relative intensity information beyond m/z value 
is a more challenging statistical problem, since 
peak samples in close proximity with disparate 
intensities are less likely to belong to the same 
putative true peak. Under the assumption of repro-
ducibility and homogeneity of mass spectra, this 
algorithm is designed to be applied to each pheno-
type group separately (disease and control) at this 
point, leading to likely different peak location 
vectors for different phenotypes. Wu et al. (2006) 
observed that, a protein subset with considerable 
size, say 20∼40 m/z features, may pose as signa-
ture between phenotypes, thus separate global 
statistical models are still desirable. Any peak 
sample detection protocol will cause inevitable 
peak sample location variation, false negative and 
false positive peak samples, which is obviously 
subject to statistical modeling. From algorithmic 
aspects, Green (1995) emphasized the importance 
of proposing parameter effi ciently. Because the 
independent proposal from joint prior distribution 
of (K, θK) is not very effi cient, our proposal works 
on the joint infinitesimal space to achieve more 
efficiency by a more fair birth/death move. 

Although the RGPMCMC does not need intensive 
tuning parameter optimization, running MCMC 
properly is never a simple automatic task, since 
from simulation study we find that, highly infor-
mative prior specification consistent with the truth 
is desirable, for which a solution could be a local 
small scale study out of the whole spectra picture. 
The mass spectra’s quality and characteristics vary 
greatly depending on the platform, e.g. MALDI-
TOF or SELDI-TOF, and certain experimental 
settings used for the measurements. This is not 
our concern here since it is not diffi cult to apply 
this global profile estimation algorithm to those 
spectra coming from the same source and enjoying 
high reproducibility and homogeneity. We antici-
pate that, the RGPMCMC developed in this article 
will shed light on a broad class of Bayesian 
multiple change point identification problems, not 
only MS data analysis. Lastly we emphasize that, 
diverse alignment problems arise from compli-
cated scenarios in modern bioinformatics research. 
Beyond this m/z based mass spectra peak align-
ment which greatly benefits from Green (1995)’s 
seminal paper, Green and Mardia (2006) recently 
developed a novel Bayesian approach for simul-
taneous inference about the matching and the 
transformation between two protein 2D-gel 
images, and aligning active sites of proteins in 
three dimensions.
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Appendix: Proofs and Remark 

Proposition 1
Consider the order statistics (U(1), ..., U(n)) of n uniformly distributed random variables 
Ui ∼ U[0, L], then conditionally U(k) is uniformly distributed on [U(k−1),U(k+1)].

Proof of Proposition 1
From fU U n( ), ... , ( )1

(u(1), ... , u(n)) = n
Ln

!  1(0<u(1)< ... <u(n)). we get
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∫
1
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Thus, f(u(i)|u(−i)) = 1
1 1u ui i( ) ( )+ −− . This proposition is a statistical prototype for only peak birth location 

proposal.

Proposition 2 
Random single peak location mutation within its interval is a symmetric transition kernel.

Proof of Proposition 2
Assume two non-zero measured sets ds and ds′ are located within the interval of length L, we have 

 
P ds ds P s ds ds

L
ds
L

ds
L

ds
L

P s
ds
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∫
 

Random Grafting-pruning Markov Chain Monte Carlo (RGPMCMC) 
Proposition 3
Peak birth and death proposals introduced in “+” and “–” move types could be taken as a symmetric 
transition, and Jacobian terms is not needed by RGPMCMC for these two move types. 

Illustration of Proposition 3
We look at the simple case for only peak location birth. Under Proposition 1, 

1) For the move type “+”, if Kold < Kmax, then Pr (Kold → K sKold old
+ ∈+1 1,  A) = 

1
1K

old+  × A
L ; Pr(sKold +1  ∈ A, 

Kold+1 → Kold) = A
L  × 1

1K
old+ . A

L  comes from probability measure integration of the new state for peak 
birth proposal. 

2) For the move type “–”, if Kold > Kmin, then Pr ( sKold
 ∈A, Kold → Kold −1) = A

L  × 1
Kold ; Pr(Kold − 1 → 

Kold, sKold
∈A) = 1

Kold
× 

A
L        ; where L is the length of the selected peak  interval and A is a Borel set 

within it. A
L  comes from probability measure integration of the old state for peak death proposal. 

The peak birth/death proposal prescribed by the parameter sampling process in Section 2.2 takes 
account of current peak density information (Figure 2), e.g. dense peaks attract more attention. Green (1995) 
proposed the change point number and locations separately with birth/death proposal ratio Kold+ 1, thus 
peak death gets more favorable as the peak number grows.When all true peaks are concentrated at one 
end, the peak birth proposal effi ciency by a random draw within the whole domain may be low in view 
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of the lack of peaks on the majority part of peak location domain. To illustrate that, Jacobian terms are 
unnecessary in RGPMCMC, and peak birth and death proposal could be taken as equally probable, or 
symmetric proposals, we map the individual parameter set (s∗, σ∗

2, fn∗, fp∗) back onto the generating 
spaces of variables U1, U2 and (U3, U4). See “+” move type. The probability is only considered in the 
latter spaces. The product probability of certain measurable balls around the observed parameter set 

 B(s∗) × B(σ∗
2) × B(fn∗, fp∗), (8) 

is corresponding to 

 B′(U1) × B′(U2) × B′(U3,U4), (9) 

where the B′(·)s are the mapped generating sets for observed parameter sets B(·)s. For peak birth, 
1/(Kold + 1) is the probability of randomly selecting a peak interval ∗ out of current Kold + 1 ones, on 
which a new candidate peak grows up with a certain shape (Borel set (8)) specified by associated 
parameter set (s∗, σ∗

2 , fn∗, fp∗). Hereafter we work on two parts of interested parameters: peak interval 
index ∗ (I) and describing set (s∗, σ∗

2 , fn∗, fp∗) (D). “+” move type realized “I ”and “D” parts sequen-
tially. If we try to propose the reverse process (peak death) by tracing the presumed peak birth proposal: 
a current “I”, say ∗, is selected with probability 1/Kold (Kold equals the preceding Kold + 1 below (9) in 
peak birth case) with “D”, say (s∗,σ∗

2 , fn∗, fp∗). The presumed birth proposal for this peak is to be 
replayed blindly and independently. Any non-exact overlap with the original peak birth parameters 
represents an ineffective peak death proposal/no proposal and only an exact overlap represents an effec-
tive peak death proposal, with the same probability as random peak birth. The ineffective peak death 
proposal/no proposal leads to proposal-freezing Markov chain, which is useless for Metropolis-Hastings 
algorithm based inference. In this sense, we claim that the proposed peak birth/death move type is a 
symmetric transition without the need for Jacobian terms since we physically work on the generating 
parameter spaces with identical dimensions. In other words, conditioning on choosing one candidate 
peak interval for birth proposal, we imagine a target is randomly hit somewhere on the local E equal-
partition within this interval, with landing (active peak birth proposal, the proposal takes effect) prob-
ability 1

E , each shoot accounts for one active proposal; conditioning on choosing one candidate peak 
for death proposal, we imagine a random shoot on this fused peak interval holding the peak (see “S” 
move type in the aforementioned parameter sampling process, Section 2.2) with hit (active peak death 
proposal, the proposal takes effect) probability 1

E , where E equal-partition is done within this fused 
interval. The peak birth/death proposal is statistically equivalent to: take no action with probability 
π ( ) ,− −E

E
1  or propose a random peak birth or death with probability π π( ) ( )+ −1 1

E Eor . The proposal in 
Section 2.2 discards unnecessary proposal freezing during Markov chain inference. Step 2) and step 3) 
realize one type of symmetric transitions (equally probable random landing and hit); step 5) realizes 
another type of symmetric transitions (equally probable landings within an interval). Random grafting-
pruning Markov chain Monte Carlo (RGPMCMC) comes from the birth/death proposal which acts like 
randomly grafting or pruning a plant: node (peak for MS data) birth/death proposal is applied to the 
plant stem, the set of sub-branches, i.e. the describing parameters (s∗, σ∗

2, fn∗ and fp∗), are lifted inde-
pendently from the randomly selected stem interval; the random hit probability is identical to birth 
probability by imagining independent random shootings at each sub-branch within the same generating 
space for sub-branch birth. The peak birth and death proposals should be applied alternatively in a 
probabilistic manner. If we happen to choose to randomly delete one branch, then we may randomly 
add this very branch in the same place in the preceding birth proposal; on the other hand, if we happen 
to choose to randomly add one branch, then we may randomly delete this very branch in the succeeding 
death proposal, the equally probable branch birth/death is realized physically. The balance could also 
be justified by MS data analysis: among clearly clustered peaks, it is equally diffi cult to add another 
peak into any blank interval, or to delete any peak already well established. The grafting step 2) is quite 
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flexible by requiring randomly harvesting a branch from the garden, which could be done by designing 
any convenient one-to-one mapping peak birth proposal function as discussed by the parameter sampling 
process in Section 2.2. Compared with CTMCMC, we simplifies the acceptance rate as only a local 
adjustment, e.g. for peak birth we only reassign the local peak samples to three true peaks (one is peak 
birth in between and the other two are its neighbors) plus an additional prior set for this new peak with 
all others unchanged, and vice versa for peak death. Adaptive move type probabilities may decrease 
possible high autocorrelation after the reasonable peak number is approached. The informative Dirichlet 
prior is to leash the number of putative peaks. Possible hyperparameters in hierarchical Bayesian 
analysis may induce another move type. To sum up, RGPMCMC has mathematical rigor and intuitive 
justification. The split/combine move by Richardson and Green (1997) may be designed to satisfy 
symmetric transition in terms of triple-integration, while Cappé, Robert and Rydén (2003) illustrated 
that, the difference between birth/death move and split/combine move is minor. 

Reversible Jump Markov chain Monte Carlo (RJMCMC) 
Formulation in MS Peak Alignment 
For peak birth proposal, we randomly select a location within m/z domain, the subsequent σ∗

2, O∗ and 
R∗ proposal follows the parameter sampling process prescribed in Section 2.2, the acceptance probability 
of peak birth is

  min{1, (likelihood ratio) × (prior ratio) × (proposal ratio) × (Jacobian)}. 

The likelihood ratio is calculated from (2). The prior ratio becomes

 p K
p K

K K
m z m z
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the proposal ratio is
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note that we have bK = dK+1. For peak sample location variance proposal: σ σ σ σ σj j j ju2
1

2
1

2 2
1

2, , , ,+ +( ) → ( )∗
the Jacobian is
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We now derive the Jacobian for proposing new false negative rate fn∗ and false positive rate fp∗ from 
(5) and (6). By notation (4), we have

 fn O
O R

fp O R
O R∗

∗

∗ ∗
∗

∗ ∗

∗ ∗(1+ (1+
=

+
=

+)( ) )( )
,

1 1
and  (11)

where both O∗ and R∗ are functions of (fnj, fpj, fnj+1, fpj+1, u3, u4). For transformation
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 ( , , , , , ) ( , , , , , ),fn fp fn fp u u fn fp fn fp fn fpj j j j j j j j+ + + +→1 1 3 4 1 1∗ ∗  (12) 

we only need work on ∂fn∗ /∂(fnj, fpj, fnj+1, fpj+1, u3, u4) and ∂fp∗/∂(fnj, fpj, fnj+1, fpj+1, u3, u4) by chain 
rules, since others are simple identities. For example,
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Omitting tedious algebraic derivation, we get the following partial derivatives
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and
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Where, O fn fp fn fp R fn fpj j j j j j j j= + − − =( )/( ), / .1  After simplifications, we get the Jacobian
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