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Abstract: The current study aims to explain recent developments in the synthesis of Pb(II)-azido
metal-organic coordination polymers. Coordination polymers are defined as hybrid materials en-
compassing metal-ion-based, organic linkers, vertices, and ligands, serving to link the vertices to
1D, 2D, or 3D periodic configurations. The coordination polymers have many applications and
potential properties in many research fields, primarily dependent on particular host–guest inter-
actions. Metal coordination polymers (CPs) and complexes have fascinating structural topologies.
Therefore, they have found numerous applications in different areas over the past two decades.
Azido-bridged complexes are inorganic coordination ligands with higher fascination that have been
the subject of intense research because of their coordination adaptability and magnetic diversity.
Several sonochemical methods have been developed to synthesize nanostructures. Researchers have
recently been interested in using ultrasound in organic chemistry synthetics, since ultrasonic waves in
liquids accelerate chemical reactions in heterogeneous and homogeneous systems. The sonochemical
synthesis of lead–azide coordination compounds resulted from very fantastic morphologies, and
some of these compounds are used as precursors for preparing nano lead oxide. The ultrasonic
sonochemistry approach has been extensively applied in different research fields, such as medical
imaging, biological cell disruption, thermoplastic welding, food processing, and waste treatment.
CPs serve as appropriate precursors for preparing favorable materials at the nanoscale. Using these
polymers as precursors is beneficial for preparing inorganic nanomaterials such as metal oxides.

Keywords: coordination polymer; lead(II) complex; azide; ultrasonic irradiation; lead oxide;
sonochemical synthesis

1. Introduction
1.1. Coordination Polymer

Metal coordination polymers (CPs) and complexes have fascinating structural topolo-
gies. Therefore, they have found numerous applications in different areas over the past
two decades (Figure 1). CPs are defined as hybrid materials encompassing metal-ion-
based, organic linkers, vertices, and ligands, linking the vertices to 1D, 2D, or 3D periodic
configurations [1]. Researchers from both the material science and chemistry fields have
recently been interested in these polymers. Through the appropriate selection of organic
linker building blocks and metal ions, CP properties and structures can be well-organized.
A broad scope of properties has been observed in these materials that ranges from lu-
minescence [2–5] to magnetism [6], nonlinear optics [7], and electrical conductivity [8]
(Scheme 1). Researchers have shown great attention to polymers having porous structures,
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named porous coordination polymers (PCPs) or metal–organic frameworks (MOFs). They
can obtain different architectures [9,10] because of their inherent porosity, sizeable inner
surface area, and the ability to tune pore topologies and sizes [11–15], converting these
materials into potentially suitable materials for gas storage and adsorption [16–19], drug
delivery [20–22], liquid and gas separation [23–41], sensor technology [42,43] heteroge-
neous catalysis [44–53], hosting nanoparticles or metal colloids [54] or polymerization
reactions [55], water sorption for heat transformation [56–62], photoreactivity and photos-
alient effects, and pollutant sequestration [63]. These potential applications are primarily
dependent on particular host–guest interactions.
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numbers in its complexes. Accordingly, Pb(II) complexes represent coordination numbers 
from 1 to 12, and O, N, S, P, Br, I, and Cl atoms are ordinary donor atoms in their coordi-
nation complex. In many cases, one of the complexities of lead coordination chemistry is 
the considerable distance between lead atoms and ligand donor atoms, making it hard to 
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Waals radii sum to measure the upper limit of the distance related to the metal–ligand 
secondary interaction, higher values of the radius for Pb(II) must be considered. 
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1.2. Lead
1.2.1. Lead Coordination Chemistry

Most lead coordination compounds have been reported as oxidation (II). Meanwhile,
a small number of compounds containing Pb(IV) have been determined so far. Because of
its relatively large ion (radius 1.23 Å to 1.43 Å), Pb(II) has a wide variety of coordination
numbers in its complexes. Accordingly, Pb(II) complexes represent coordination numbers
from 1 to 12, and O, N, S, P, Br, I, and Cl atoms are ordinary donor atoms in their coordi-
nation complex. In many cases, one of the complexities of lead coordination chemistry
is the considerable distance between lead atoms and ligand donor atoms, making it hard
to determine the metal’s precise coordination number. Despite the suitability of the Van
der Waals radii sum to measure the upper limit of the distance related to the metal–ligand
secondary interaction, higher values of the radius for Pb(II) must be considered.

1.2.2. Pb(II) Electron Pair 6s2 in Coordination Structures

The role of unbonded electron pairs of lead(II) in the coordination geometry was
investigated by crystallographic research works and optimizations of molecular orbital
calculations. The structural effects of pairs of single electrons on intermediate heavy
metals such as Bi(III), Ti(I), and Pb(II) have been recently frequently studied [64]. Some
contemporary researchers have studied the effect of single-electron pairs on lead(II) and
have examined their structural effects. Lead(II) has the electronic structure [Xe]4f145d106s2.
Due to relativistic effects, which are maximum at Au(I) and operative in other close 6p
metals such as lead, the 6s orbital is contracted and stabilized. This stabilized 6s pair reduces
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its participation in the chemistry of the element (becoming an “inert-pair”), and this explains
why inorganic Pb forms compounds in a lower oxidation state (less by two) than would be
expected from its group number [65]. The apparent reticence of the 6s electrons to play a
role in the chemistry of the element may also affect the stereochemistry of Pb(II) complexes.
This influence can be understood in simple hybridization or valence-shell electron-pair
repulsion arguments. By using the former approach, it seems that the 6s orbital, despite
its stabilization, can hybridize with the 6p orbitals to give a “stereochemically active” 6s
electron pair (or stereochemically active lone electron pair, SALEP) occupying one position
in the coordination sphere of the metal. Because the pair is not directly detectable, its
presence is normally identified by a void in the distribution of the coordination bonds
(hemidirected coordination, see Scheme 2). If hybridization does not occur and the pair has
only an s character, then it is “stereochemically inactive”, and the complex does not show a
gap or void in the bond distribution (holodirected coordination, see Scheme 2) [65,66].
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1.2.3. Holodirected and Hemidirected Structures

Studies have reported two Pb(II) compound structures: holodirected and hemidirected.
In holodirected structures, the ligand atoms bond is scattered throughout the Pb(II) coordi-
nation space. However, in the hemidirected structure, the ligand atoms bond is diffused
only in one part of the Pb(II) coordination space (Scheme 2) [67,68]. In these compounds,
space is found in the distribution of ligands around the cation. Shimoni Livni et al. reported
that all Pb(IV) compounds have a holodirected structure [65]. However, holodirectional
and hemidirectional geometric structures are observed in the case of divalent lead despite
a nonbonded electron pair. All lead Pb(II) compounds by coordination numbers 2 to 5
have a hemidirected geometric structure, while the coordination numbers 9 and 10 of lead
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have a holodirected geometric structure. Both of the structures have been reported for
coordination numbers six to eight. However, the holodirected structure is more suitable
for coordination numbers six to eight when bulky and soft ligands are present. Thus,
with the high number of coordinated ligands near Pb(II), the valence layer’s electron-pair
activity effects diminish [69]. Several factors affect the activity or inactivity of the lead ion
layer electron pair, such as the coordination number, type of ligands in terms of hardness
and softness, attraction or repulsion between ligands, electrical charge, and the size of lig-
ands [70]. Overall, two rules can be extracted using these factors: First, small coordination
numbers, hard ligands (N or O donors), and gravitational interactions among ligands or
multidentate ligands are all suitable for hemidirected structures. Second, large coordination
numbers, soft ligands (Br-, Cl-, and I-), and repulsive interactions among ligands result in
holodirected structures. Although these are not error-free rules, they could be beneficial
in designing Pb(II) complexes or certain structural features [71]. The amount of energy
required to convert a hemidirected structure to a pressurized holodirected one without
strong interactions between ligands is calculated as 8–12 kcal/mol.
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1.3. Azide

Bridge-building ligands are the main factor for preparing CPs and multicore com-
plexes. There are various bridging ligands such as OH−, S2

−, SH−, NH2, NH−, N3
−,

halides, and pseudohalides (N3, NCO, NCS, and NCSe). In coordination chemistry, halide-
like ligands are significant and valuable agents used as bridge-building ligands. Like
other bridge-making ligands, they offer multinucleated complexes with highly diversi-
fied structures and fascinating magnetic characteristics. Schiff base ligands containing
N and O donors are extensively employed for building multinucleated complexes with
fascinating configurations. Azido-bridged complexes are inorganic coordination ligands
with higher fascination that have been the subject of intense research because of their
coordination adaptability and magnetic diversity. In these structures, the azide anion
can present a behavior like a tridentate linking ligand (µ1,1,1-N3 or µ1,1,3-N3) and a biden-
tate linking ligand (end-to-on, µ1,1-N3 “EO”, or end-to-end, µ1,3-N3, “EE”, linking states)
(Scheme 3) [72]. Bidentate coordination can mediate antiferromagnetic and ferromagnetic
interactions among the metallic ions. Furthermore, inorganic azides serve as a significant
category of solid compounds. These modes might be present concurrently in the same
complex in various alternating sequences. In addition to the availability of coligands,
the properties mentioned above have resulted in different 1D and 2D arrangements with
fascinating magnetic properties or polymeric topologies. Some of these topologies have
practical significance as explosives, some are important as industrial chemical materials,
and some could be used as valuable photographic materials at low temperatures. Lead
azide is a principal explosive substance with high sensitivity in primer, fuses, and blasting
caps. Alkali metal azide systems are benign in behavior. It is important to understand the
basic characteristics and electron configuration of alkali metal azides in order to understand
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their behavior. Metal–azo systems with a second linking ligand represent an innovative
approach toward a high-dimensional topology. This strategy provides a growing number
of 2D and 3D systems. The second widely used bridging ligands include pyridyl-based
diatopic ligands such as 4,4′-bipy, pyrazine, and their equivalents [73].
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2. Sonochemical Method

Using sonochemistry, chemical reactions can be studied under an ultrasound fre-
quency radiation influence (10–20 MHz). Compared to conventional energy sources (e.g.,
light, heat, and electric potential), relatively uncommon reaction settings are provided by
ultrasonic sonochemistry. This approach provides a short period of very high pressures
and temperatures in liquids, which would not be provided by other approaches [74]. Sev-
eral sonochemical methods have been developed to synthesize nanostructures; among
these methods, we can mention sonochemical reduction, ultrasound-induced deposition,
sonoelectrochemistry, ultrasonic spray p3yrolysis, etc. Almost all sonochemical techniques
are based on the physical effects of ultrasound. The principle that causes the modification
of nanostructures in the sonochemical process is acoustic cavitation. When the particle
dimensions are much smaller than the applied ultrasonic wavelength, no direct interaction
occurs between them. Therefore, high-energy ultrasound needs to be applied, which leads
to the appearance of a cycle of continuous low pressure (rarefaction) and high pressure
(compression). In the rarefaction, the pressure collapses under the vapor pressure of the
solvents, and prepared holes grow the bubbles to more than tens of micrometers. The
bubbles become unstable and break down when they achieve their most extreme size. This
continuous procedure of bubble preparation, growth, and collapse breakdown is called
cavitation, produces “hot spots”, and it prompts the quick release and gains of energy
with cooling, up to a temperature of ~5000 K and heating rate of >1000 Ks−1, and pressure
of ~1000 bar. At a further distance of 200 nm, profound shear forces occur. So many
parameters such as temperature, viscosity, vapor pressure, acoustic intensity and frequency,
chemical reactivity, and the gas atmosphere affect the preparation of the cavities, and just
a tiny amount of energy is transferred into the holes [75]. These extreme situations could
drive chemical reactions. However, they can cause nanosized structure formation, generally
by the instant development of crystallization nuclei. Moreover, it has been extensively
employed for fabricating various complexes with nanosized constructions [76]. Researchers
have recently been interested in using ultrasound in organic chemistry synthetics since
ultrasonic waves in liquids lead to the acceleration of chemical reactions in heterogeneous
and homogeneous systems [77]. Usually, for sonochemistry reactions, volatile organic
solvents are usually not suitable because the collapse intensity of cavities decreases in high
vapor pressure. These methods can produce different nanostructures and nanoparticles
of different sizes and shapes by controlling the synthesis processes conditions and com-
ponents. These methods are used to synthesize various nanoparticles, including metal
nanoparticles, metal oxide nanostructures, quantum dots, porous nanostructures, hollow
nanostructures, etc. In addition to nanoparticle synthesis, sonochemical methods have been
widely used in the deposition and accumulation of nanoparticles on surfaces and even
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on other nanoparticles, indicating the potential of these nanotechnology methods. The
ultrasonic sonochemistry approach has been extensively applied in different research fields,
such as medical imaging, biological cell disruption, thermoplastic welding, food processing,
and waste treatment. Some studies have focused on ultrasonic sonochemistry applications
to the chemistry of solid materials. Many supramolecular polymer–metal compounds and
organic reactions have been conducted under ultrasonic sonochemistry irradiation during
a short reaction time with large yields [78]. The aspects of room temperature preparation,
energy-efficiency, fast formation, and being environmentally friendly are the initial aim of
utilizing a sonochemical procedure in MOF science. Furthermore, crystalline nanoparticles
that are regularly obtained by the sonochemical approach possess significant advantages
and applications.

Several methods can be employed to synthesize lead–azide nanoparticles, such as
sonochemistry, hydrothermal, solvothermal, etc. Researchers’ results reveal that ultra-
sonic synthesis can be employed successfully as a simple, efficient, low-cost, environmen-
tally friendly, and very promising method for the fabrication of lead–azide coordination
polymers with tunable size and morphology by varying the reaction conditions [79,80].
Moreover, the results show that particle size decreases with increasing ultrasound power.
Interestingly, the sizes and morphologies of the nanostructures depend on the concentration
of the initial reagents and the power of the ultrasound irradiation used [81,82]. Scheme 4
provides application of ultrasonic sonochemistry method in different research fields.
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3. Synthesis of Lead Azide Coordination Polymers

Fun et al. (2012) synthesized sonochemically a nanostructure of a novel polymeric
Pb(II) compound possessing azide anions [Pb(baea)(N3).(N3)]n (baea: bis(2-aminoethyl
amine) [83]. Single-crystal XRD demonstrated that the coordination number of lead(II)
ions was five (PbN5), and it held a hemidirected coordination structure. Each lead atom
was chelated by three nitrogen atoms of the “baea” ligand with Pb-N distances of 2.457(6),
2.465(6), 2.465(6) Å, and two nitrogen atoms of azide anions with a Pb-N distance of
2.905(8), 2.905(8) Å. The coordination modes of the azide anions were µ1,1,3,3. Furthermore,
they showed that the 1D CPs interacted in supramolecular way and had weak Pb—N
interactions for creating 2D supramolecular structures (Figure 2).

Soltanian Fard et al. (2013) developed a novel 2D double-chain Pb(II) CP [Pb2(µ-N3)(µ-
NO3)L2]n sonochemically [79]. The polymer’s coordination number was 5, and Pb atoms
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had coordination with one N atom of the ligand, one O atom of the NO3
− anion, two O

atoms of the ligand’s OH group, and one N atom of the azide anion (Figure 3). Calcination
of the CP under an air atmosphere at 400 ◦C resulted in PbO nanoparticles identified by
XRD and SEM.
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Morsali and Aboutorabi (2016) reported a simple protocol for the preparation of two
novel Pb(II) mixed-ligand coordination compounds [Pb(PNO)(SCN)]n and [Pb(PNO)(N3)]n
(PNO: picolinic acid N-oxide) using the sonochemical technique (Scheme 5) [82]. As shown
by evaluating the structural transformation of [Pb(PNO)(SCN)]n, [Pb(PNO)(N3)]n and
converting [Pb(PNO)(N3)]n to [Pb(PNO)(SCN)]n, there was a phase conversion from mono-
clinic P21/n to orthorhombic P21212. This conversion can be considered as an irretrievable
transformation from 3D to 2D. This manner’s remarkable advantages are the need for
shorter reaction times and the CP production by better nanosized outcomes.
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A simple procedure was proposed by Chattopadhyay et al. (2010) for the syn-
thesis of two pentacoordinated dinuclear Pb(II) complexes, namely [Pb2(pbap)(NCS)4]
and [Pb2(pbap)(N3)4] (pbap: N-((1-pyridine-2-yl)benzylidene)-N-[2-(4-{2-[((1-pyridine-2-
yl)benylidene)amino]ethyl}pipera-zin-1-yl]amine] [84]. Each Pb(II) center on centrosym-
metric dimers [Pb2(pbap)(NCS)4] and [Pb2(pbap)(N3)4] takes a partial square pyramidal
shapes with ligating PbN5 chromophore with (Np, Ni, Na) donor sets of pbap and two
nitrogen atoms of the terminal pseudohalides (Figure 4).

Mirtamizdoust (2007) designed a simple manner for the preparation of two new 1D
polymeric lead(II) coordination compounds containing the Pb2-(µ-N3)2 elements, namely
[Pb(phen)(N3)2]n (phen: 1,10-phenanthroline) and [Pb(deta)(N3).(N3)]n (deta: diethylene-
triamine) [85]. The coordination number in [Pb(phen)(N3)2]n was six, and each lead atom
was chelated by two nitrogen atoms of the phen ligand with Pb-N distances of 2.506(6) and
2.514(5) Å, and four nitrogen atoms of the azide anions with Pb-N distances of 2.418(6),
2.611(6), 2.706(5), and 2.816(5) Å. The coordination number in [Pb(deta)(N3).(N3)]n was
five, and each lead atom was chelated by three nitrogen atoms of the “deta” ligand with
Pb-N distances of 2.457(6), 2.465(6), and 2.65(6) Å, and two nitrogen atoms of the azide
anions with Pb-N distances of 2.905(8) and 2.905(8) Å. They were both assumed to have a
hemidirected coordination geometry. Furthermore, these 1D CPs were the new Pb2-(µ-N3)2
elements of Pb(II) complexes and interreacted with each other through pi . . . pi stacking
and weak Pb_ _ _N relations for creating 2D and 3D structures.

Mirtamizdoust et al. (2016) reported a simple route for the preparation of Pb(II)
CP with a terminal azide ion [Pb(µ-2-pinh)N3H2O]n (2-pinh: 2-pyridinecarbaldehyde
isonicotionoyhydrazone) using an ultrasonic method [86]. As shown in Figure 5, the
complex crystal structure formed a 1D zig-zag polymer in solid state. The coordination
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number of Pb(II) ion was six (PbN4O2). This coordination contained one oxygen atom
and three N atoms from two organic linker ligands, one oxygen atom from coordinated
water, and one nitrogen atom from a terminal coordinated azide anion. The prepared
[Pb(µ-2-pinh)N3H2O]n was applied to the synthesis of PbO NPs by thermolysis of the
nanocomplex with oleic acid (OA) as a surfactant at 180 ◦C.
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In a study conducted by Shaabani’s group, a new 1D Pb(II) CP containing Pb2-(µ-N3)2
element [Pb(dmp)(N3)2]n (dmp: 2,9-dimethyl-1,10-phenanthroline) was synthesized and
identified [87]. According to single-crystal XRD, the coordination number of Pb(II) ions
was six (PbN6), and it had the hemidirected coordination space (Figure 6). The lead atoms
were linked by two nitrogen atoms of the “dmp” ligands with Pb-N distances of 2.699(2)
and 2.673(1) Å, and four nitrogen atoms of the azide anions with Pb-N distances of 2.502(2),
2.529(2), 2.841(2), and 2.803(2) Å. Azide ions showed the coordination states as a µ1,1 end-
to-on mode. They showed that the title complex’s HOMO was mainly restricted between
two N atoms of one azide anion. Simultaneously, the LUMO was delocalized almost on all
“dmp” ligand atoms having azide anions and Pb(II).
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Joo et al. (2012) developed a simple manner for the preparation of micro-hexagonal
bars of a novel 1D polymeric Pb(II) coordination polymer containing Pb2-(µ-N3)2 pattern
([Pb(dmp)(N3)2]n) (dmp: 2,9-dimethyl-1,10-phenanthroline) by the sonochemical method
(Figure 7) [88]. According to Figure 7, Species 1 contains rods with a diameter of 90 nm.
There is a need for a further investigation of how this structure forms and whether or not
it is influenced by the crystal structure of the compound, which has a one-dimensional
rod-like structure. A heat gradient was imposed on a reagent solution, and it was used to
obtain a single crystalline material. As demonstrated by the XRD results, the coordination
number of lead(II) ions was six (PbN6) and had stereochemically active electron lone pairs.
These results also showed a hemidirected coordination space. The azide ions’ coordination
states were µ1,1 end-to-on. Moreover, it was observed that the chains had interactions via
pi . . . pi stacking relations, which led to the creation of a 3D structure (Figure 8).

Shin and Min (2013) reported a straightforward method for the preparation of the
first nanostructure lead(II) coordination complex, [Pb(pcih)N3MeOH]n (pcih: 2-pyridine-
carbaldehyde) with a sonochemical process [89]. Single-crystal X-ray crystallography was
used to determine the geometry of this structure. According to the obtained results, the
compound had a shape of a zig-zag 1D polymer with a Pb(II) ions’ coordination number of
six, (PbN4O2) in the solid-state, with one O donor, three N donor, atoms from one O donors,
two “pcih” from MeOH, and one nitrogen atom from the terminal azide anion (Figure 9).
Then, thermolysis of CP by OA at 180 ◦C led to the production of a pure-phase nanosized
PbO. SEM was used to determine the size and morphology of the synthesized Pb(II) oxide
samples (Figure 10). As shown in Figure 10, [Pb(pcih)N3MeOH]n was calcined to produce
PbO nanopowders. The bulk powder of [Pb(pcih)N3MeOH]n produced regularly shaped
Pb(II) oxide nanoparticles with a diameter of about 35 nm.
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Shahverdizadeh (2015) reported an efficient approach for the synthesis of a novel
Pb(II) CP [Pb3(p-2ma)3(N3)3(NO3)3]n (p-2ma: pyridine-2-ylmethanamine) using the sono-
chemical process [90]. The coordination complex was a polymer in the solid-state in the
form of a 1D coordination (Figure 11). Three lead(II) centers were present by various
coordination numbers. Moreover, three attractive coordination states of azide anions (µ2-
1,1, µ3-1,1,3, and terminal azide anions) were found in the configuration. Each Pb1 atom
was coordinated by two nitrogen atoms of two “p-2ma” ligands with Pb-N distances of
2.660(18) and 2.450(20) Å, one oxygen atom of a nitrate-bridged anion with a Pb-O distance
of 2.699(14), one oxygen atom of the terminal nitrate anion with a Pb-N distance of 2.997(6)
and two nitrogen atoms of two azide bridged anions with Pb-N distances of 2.415(19) and
2.516(18) Å, with a PbN4O2 donor set. Each Pb2 atom was coordinated by two nitrogen
atoms of two “p-2ma” ligands with Pb-N distances of 2.585(19) and 2.460(20) Å, three
oxygen atoms of nitrate-bridged anions with Pb-O distances of 2.732(14), 2.711(16), and
2.998(14), one nitrogen atom of the terminal azide anion with a Pb-N distance of 2.363(18)
and one nitrogen atom of two azide-bridged anion with Pb-N distances of 2.942(18) Å,
with a PbN4O3 donor set. Each Pb3 atom was coordinated by two nitrogen atoms of two
“p-2ma” ligands with Pb-N distances of 2.626(18) and 2.430(20) Å, two oxygen atoms of
nitrate-bridged anion with Pb-N distances of 2.711(14) and 2.908(12), two nitrogen atoms of
two azide-bridged anions with Pb-N distances of 2.496(19) and 2.559(16) Å, with a PbN4O2
donor set. The synthesized [Pb3(p-2ma)3(N3)3(NO3)3]n was used in the preparation of PbO
NPs by thermolysis of a nanocomplex with OA as a surfactant at 180 ◦C.

Shaabani et al. (2011) proposed a straightforward manner for the synthesis of the Pb(II)
coordination compound [Pb(dmp)(µ-N3)(µ-NO3)]n (dmp: 2,9-dimethyl-1,10-phenanthroline)
utilizing a sonochemical procedure [91]. The single-crystal analysis showed that the
coordination number of lead(II) was seven (PbN4O3), having an electron lone pair with
stereochemical activity, and the coordination sphere was hemidirected. Each lead atom was
chelated by two nitrogen atoms of “dmp” with Pb-N distances of 2.647(3) and 2.636(4) Å,
two azide anions with Pb-N distances of 2.413(4) and 2.554(4) Å, and three nitrate oxygen
atoms with Pb-O distances of 2.975(5), 2.761(4), and 2.761(4) Å (Figure 12). Single-crystal
X-ray analysis showed that the complex crystallized in the triclinic system with space group
P1, taking the form of a one-dimensional polymer in the solid-state. The Scherrer formula
was used for estimating the particle average size, which was obtained as 65 nm.
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Gutierrez et al. (2017) developed a facile procedure for the preparation of NPs of one
novel Pb and K coordination compound {[Pb6(pyc)6(N3)7K].1/2H2O}n (pyc: 2-picolinate,
C6H4NO2

−) using the sonochemical method [92]. The polymer’s crystal structure consisted
of a 1D CP complex, in which the lead ion had a coordination number of seven (Figure 13).
All the picolinate groups bridged two adjacent lead atoms in a double chelating way.
The picolinate was bonded through the pyridine nitrogen and one carboxylate oxygen
atom to the first lead, while also chelating the second lead atom through the bidentate
carboxylate group. The bond distances between 2.41 and 2.78 Å were in the range typical
for Pb-O and Pb-N bonds and the angles between Pb-O-Pb and Pb-N-Pb were 145.88◦ and
109.94◦, respectively.
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Sadeghzadeh and Morsali (2010) reported a facile and straightforward approach for
the synthesis of nanostructures of three novel Pb(II) CPs, [Pb(3-pyc)I]n, [Pb(3-pyc)Br]n,
and [Pb(3-pyc)(N3)(H2O)]n, (3-pyc: 3-pyridine carboxylic acid) with a sonochemical pro-
cess (Figure 14) [93]. [Pb(3-pyc)I]n was composed of rods with sizes of about 60 nm,
with all rods arranged to form a hedge ball network (Figure 14a). The morphologies of
compounds [Pb(3-pyc)Br]n and [Pb(3-pyc)(N3)(H2O)]n were nanoparticles and nanofibers,
respectively (Figure 14c,d). Differences between these morphologies may be because of
different packing structures and their diverse ligands. Although a further study is needed
into how these network structures formed, they were likely caused by the crystal structure
of the compounds, which may have influenced the morphology of the nanostructures of
compounds 1–3. The single-crystal XRD results revealed compounds [Pb(3-pyc)I]n and
[Pb(3-pyc)Br]n, which contained 2D and 3D CPs, respectively. However, the analysis did
not provide an appropriate single crystal in the complex [Pb(3-pyc)(N3)(H2O)]n. The crystal
structures of these coordination complexes showed that the coordination number of lead
(II) ions in compounds [Pb(3-pyc)I]n and[Pb(3-pyc)Br]n was seven. This route’s significant
advantages were the need for shorter reaction times and CP production by better outcomes
and nano sizes.

Morsali et al. (2010) reported a straightforward manner for the preparation of the
nanostructure of a novel Pb(II) 2D coordination compound [Pb(2-pyc)(N3)(H2O)]n (2-pyc:
2-pyridine carboxylic acid) with sonochemical irradiation [81]. The [Pb(2-pyc)(N3)(H2O)]n
crystal structure had a 2D polymer and showed that Pb(II) ions had a coordination number
of seven. In the [Pb(2-pyc)(N3)(H2O)]n compound, the building blocks of [Pb2(µ-H2O)2]
were bridged by the azide anion and 2-pyc− ligands, and each lead atom was coordinated
by three oxygen atoms of the 2-pyc− ligands, two oxygen atoms of the water molecules and
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three nitrogen atoms of the azide anions, as demonstrated in Figure 15. A PbO nanopowder
was obtained by calcinating the nanostructure of CP at 400 ◦C (Scheme 6).

Nanomaterials 2022, 12, x FOR PEER REVIEW 15 of 29 
 

 

Figure 13. C axis indicates the lead atoms’ coordination. Reprinted with permission from [92]. Cop-
yright 2010, Elsevier Ltd., Amsterdam, The Netherlands. 

Sadeghzadeh and Morsali (2010) reported a facile and straightforward approach for 
the synthesis of nanostructures of three novel Pb(II) CPs, [Pb(3-pyc)I]n, [Pb(3-pyc)Br]n, and 
[Pb(3-pyc)(N3)(H2O)]n, (3-pyc: 3-pyridine carboxylic acid) with a sonochemical process 
(Figure 14) [93]. [Pb(3-pyc)I]n was composed of rods with sizes of about 60 nm, with all 
rods arranged to form a hedge ball network (Figure 14a). The morphologies of compounds 
[Pb(3-pyc)Br]n and [Pb(3-pyc)(N3)(H2O)]n were nanoparticles and nanofibers, respectively 
(Figure 14c,d). Differences between these morphologies may be because of different pack-
ing structures and their diverse ligands. Although a further study is needed into how 
these network structures formed, they were likely caused by the crystal structure of the 
compounds, which may have influenced the morphology of the nanostructures of com-
pounds 1–3. The single-crystal XRD results revealed compounds [Pb(3-pyc)I]n and [Pb(3-
pyc)Br]n, which contained 2D and 3D CPs, respectively. However, the analysis did not 
provide an appropriate single crystal in the complex [Pb(3-pyc)(N3)(H2O)]n. The crystal 
structures of these coordination complexes showed that the coordination number of lead 
(II) ions in compounds [Pb(3-pyc)I]n and[Pb(3-pyc)Br]n was seven. This route’s significant 
advantages were the need for shorter reaction times and CP production by better out-
comes and nano sizes. 

 
Figure 14. SEM images of (a) [Pb(3-pyc)(N3)(H2O)]n (1) nanostructure balls in aqua solution, (b) 
[Pb(3-pyc)(N3)(H2O)]n (1) nanoplates inethanolic solution, (c) [Pb(3-pyc)I]n (2) NPs, and (d) [Pb(3-
pyc)Br]n (3) nanofibers. Reprinted with permission from [93]. Copyright 2010, Elsevier Ltd., 
Amsterdam, The Netherlands. 

Morsali et al. (2010) reported a straightforward manner for the preparation of the 
nanostructure of a novel Pb(II) 2D coordination compound [Pb(2-pyc)(N3)(H2O)]n (2-pyc: 
2-pyridine carboxylic acid) with sonochemical irradiation [81]. The [Pb(2-pyc)(N3)(H2O)]n 
crystal structure had a 2D polymer and showed that Pb(II) ions had a coordination num-
ber of seven. In the [Pb(2-pyc)(N3)(H2O)]n compound, the building blocks of [Pb2(μ-H2O)2] 
were bridged by the azide anion and 2-pyc- ligands, and each lead atom was coordinated 

Figure 14. SEM images of (a) [Pb(3-pyc)(N3)(H2O)]n (1) nanostructure balls in aqua solution, (b) [Pb(3-
pyc)(N3)(H2O)]n (1) nanoplates inethanolic solution, (c) [Pb(3-pyc)I]n (2) NPs, and (d) [Pb(3-pyc)Br]n

(3) nanofibers. Reprinted with permission from [93]. Copyright 2010, Elsevier Ltd., Amsterdam,
The Netherlands.

Nanomaterials 2022, 12, x FOR PEER REVIEW 16 of 29 
 

 

by three oxygen atoms of the 2-pyc- ligands, two oxygen atoms of the water molecules 
and three nitrogen atoms of the azide anions, as demonstrated in Figure 15. A PbO na-
nopowder was obtained by calcinating the nanostructure of CP at 400 °C (Scheme 6). 

 
Figure 15. ORTEP image of complex [Pb(2-pyc)(N3)(H2O)]n. i: -x, y + 1/2, -z + 1/2; ii: -x, -y, -z; iii: -x, 
-y + 1/2, z + 1/2. Reprinted with permission from [81]. Copyright 2010, Springer Nature. 

 
Scheme 6. Materials produced and synthetic manners. 

Mirtamizdoust (2014) designed a simple procedure for the synthesis of the novel nat-
ural binuclear Pb(II) azido CP ([Pb2(tmph)2(μ-N3)2(CH3COO)2]n) (tmph: 3,4,7,8-tetrame-
thyl-1,10-phenanthroline) by sonochemical irradiation [94]. The coordination complex 
had a bridging azido path and end-to-end linking azides among a pair of Pb(II) centers 
(Figure 16). The coordination number of Pb(II) ions was seven (PbN4O3), by three O do-
nors from the acetate anions, two N donor atoms from the tmph ligands, and two N-do-
nors from two azide anions (Figure 17). Thermolyzing 1 with OA as a surfactant at 180 °C 
resulted in obtaining the Pb(II) oxide NPs. 

Figure 15. ORTEP image of complex [Pb(2-pyc)(N3)(H2O)]n. i: −x, y + 1/2, −z + 1/2; ii: −x, −y, −z;
iii: −x, −y + 1/2, z + 1/2. Reprinted with permission from [81]. Copyright 2010, Springer Nature.



Nanomaterials 2022, 12, 2257 16 of 28

Nanomaterials 2022, 12, x FOR PEER REVIEW 16 of 29 
 

 

by three oxygen atoms of the 2-pyc- ligands, two oxygen atoms of the water molecules 
and three nitrogen atoms of the azide anions, as demonstrated in Figure 15. A PbO na-
nopowder was obtained by calcinating the nanostructure of CP at 400 °C (Scheme 6). 

 
Figure 15. ORTEP image of complex [Pb(2-pyc)(N3)(H2O)]n. i: -x, y + 1/2, -z + 1/2; ii: -x, -y, -z; iii: -x, 
-y + 1/2, z + 1/2. Reprinted with permission from [81]. Copyright 2010, Springer Nature. 

 
Scheme 6. Materials produced and synthetic manners. 

Mirtamizdoust (2014) designed a simple procedure for the synthesis of the novel nat-
ural binuclear Pb(II) azido CP ([Pb2(tmph)2(μ-N3)2(CH3COO)2]n) (tmph: 3,4,7,8-tetrame-
thyl-1,10-phenanthroline) by sonochemical irradiation [94]. The coordination complex 
had a bridging azido path and end-to-end linking azides among a pair of Pb(II) centers 
(Figure 16). The coordination number of Pb(II) ions was seven (PbN4O3), by three O do-
nors from the acetate anions, two N donor atoms from the tmph ligands, and two N-do-
nors from two azide anions (Figure 17). Thermolyzing 1 with OA as a surfactant at 180 °C 
resulted in obtaining the Pb(II) oxide NPs. 
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Mirtamizdoust (2014) designed a simple procedure for the synthesis of the novel natu-
ral binuclear Pb(II) azido CP ([Pb2(tmph)2(µ-N3)2(CH3COO)2]n) (tmph: 3,4,7,8-tetramethyl-
1,10-phenanthroline) by sonochemical irradiation [94]. The coordination complex had a
bridging azido path and end-to-end linking azides among a pair of Pb(II) centers (Figure 16).
The coordination number of Pb(II) ions was seven (PbN4O3), by three O donors from the
acetate anions, two N donor atoms from the tmph ligands, and two N-donors from two
azide anions (Figure 17). Thermolyzing 1 with OA as a surfactant at 180 ◦C resulted in
obtaining the Pb(II) oxide NPs.
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Hanifehpour et al. (2015) reported a practical approach for the sonochemical synthesis
of the rod-formed nanostructure of a novel 1D Pb(II) trinuclear coordination compound that
contained Pb2-(µ-N3)(NO3) and Pb2-(µ-N3) motifs [Pb3(tmph)4(µ-N3)5(µ-NO3)]n (tmph:
3,4,7,8-tetramethyl-1,10-phenanthroline) [95]. As shown by a single-crystal XRD analysis,
three Pb(II) centers were observed by coordination numbers eight and seven with hemidi-
rected and holodirected coordination geometries (Figure 18). As shown in Figure 18, there
were three different lead(II) centers in the structure. The Pb1 atom was coordinated by
two oxygen atoms of the bridged nitrate anions with the Pb-O distances of 2.845(2) and
2.894(2) Å, two nitrogen atoms of the µ-1,1 bridged azide anions with the Pb-N distances
of 2.545(9) and 2.523(11) Å, one nitrogen atoms of the µ-1,3 bridged azide anion with the
Pb-N distance of 2.764(12) and two nitrogen atoms of the “tmph” ligands with the Pb-N
distances of 2.483(8) and 2.461(8) Å, in a seven fashion, with a PbN5O2 donor set. The
Pb2 atom was coordinated by four nitrogen atoms of four µ-1,1 bridged azide anions with
the Pb-N distances of 2.635(11), 2.682(10), 2.698(10), and 2.684(9) Å, and four nitrogen
atoms of two “tmph” ligands with the Pb-N distances of 2.869(8), 2.702(8), 2.736(8), and
2.766(8) Å, in an eight fashion, with a PbN8 donor set. The Pb3 atom was coordinated by
two oxygen atoms of the bridged nitrate anions with the Pb-O distances of 2.885(12) and
2.891(12) Å, two nitrogen atoms of two µ-1,1 bridged azide anions with the Pb-N distances
of 2.601(10) and 2.500(10) Å, one nitrogen atoms of the µ-1,3 bridged azide anions with the
Pb-N distance of 2.710(12), and two nitrogen atoms of the “tmph” ligands with the Pb-N
distances of 2.474(8) and 2.533(8)Å, in a seven fashion, with a PbN5O2 donor set. Moreover,
these authors illustrated that a 3D framework was created through pi . . . pi stacking the
chains’ interactions. They used the developed CP to prepare PbO NPs by thermolysis of
the nanocomplex with OA as a surfactant at 180 ◦C.

A simple procedure was reported by Morsali and Soltanian (2010) to synthesize
nanostructures of two novels Pb(II) 2D CPs [Pb(µ-4-pyc)(µ-NCS)-(µ-H2O)]n and [Pb(µ-
4-pyc)(µ-N3)(µ-H2O)]n (4pyc: 4-pyridine carboxylic acid) based on a thermal gradient
method using a sonochemical approach (Scheme 7) [80]. The structure of [Pb(µ-4-pyc)(µ-
NCS)-(µ-H2O)] may also be considered as a coordination polymer of lead(II) consisting of
units with a building block of [Pb2(µ-H2O)2] where the SCN− and 4-pyc− anions bridge
two lead(II) ions via the N and O atoms. The coordination number in [Pb(µ-4-pyc)(µ-
NCS)-(µ-H2O)]n was seven, and each lead atom was coordinated by two oxygen atoms
of the 4-pyc− ligands with Pb-O distances of 2.467(3) and 2.711(3) Å, two oxygen atoms
of the water molecules with Pb-O distances of 2.578(3) and 2.905(3) Å, and two nitrogen
atoms of the thiocyanate anion with Pb-N distances of 2.695(4) and 2.850(4) Å. In [Pb(µ-4-
pyc)(µ-N3)(µ-H2O)]n, the building block of [Pb2(µ-H2O)2] was bridged by the azide and
4-pyc− anions. The coordination number in [Pb(µ-4-pyc)(µ-N3)(µ-H2O)]n was eight, and
each lead atom was coordinated by two oxygen atoms of the 4-pyc− ligands with Pb-O
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distances of 2.518(3) and 2.672(3) Å, two oxygen atoms of the water molecules with Pb-O
distances of 2.629(3) and 2.672(3) Å, and four nitrogen atoms of the azide anions with
Pb-N distances of 2.751(4), 2.754(4), 2.779(4), and 3.029(5) Å. Single-crystal XRD was used
for the characterization of complexes [Pb(µ-4-pyc)(µ-NCS)-(µ-H2O)]n and [Pb(µ-4-pyc)(µ-
N3)(µ-H2O)]n, which contained 2D polymeric elements. PbO and Pb2(SO4)O NPs were
obtained by calcinating nanostructures of complexes [Pb(µ-4-pyc)(µ-NCS)-(µ-H2O)]n and
[Pb(µ-4-pyc)(µ-N3)(µ-H2O)]n at 600 ◦C.
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Hanifehpour (2010) offered a simple procedure for the synthesis of nanorods of a
new 1D polymeric Pb(II) coordination complex with Pb2-(µ-N3)2 pattern ([Pb(phen)(µ-
N3)(µ-NO3)]n) (phen: 1,10-phenanthroline) using a sonochemical manner [96]. The sono-
chemically prepared compound (Figure 19) had a rod-like morphology with a thickness
of about 58 nm. The formation mechanism of this structure may be influenced by the
compound’s one-dimensional rod-like crystal structure, which requires further study. A
heat gradient was imposed on a reagent solution and used to obtain a single crystalline
material (Scheme 8). According to the single-crystal XRD results, the coordination number
of the lead(II) ions was eight (PbN4O4) by the Pb(II) ions containing “stereochemically
active” electron lone pairs. Each lead atom was chelated by two nitrogen atoms of phen
with Pb-N distances 2.53(1) and 2.50(1) Å; two azide anions with Pb-N distances of 2.44(1)
and 2.74(1) Å; and four nitrate oxygen atoms with Pb-O distances of 2.75(1), 2.86(7), 2.87(9),
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and 2.98(1) Å. The structure showed a hemidirected coordination space. Thermolyzing
([Pb(phen)(µ-N3)(µ-NO3)]n with OA as a surfactant at 180 ◦C yielded PbO NPs.
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Marandi et al. (2016) proposed a facile route for the synthesis of a new 1D polymeric
Pb(II) compound having the Pb2-(µ-N3)2 pattern of [Pb(phen)(µ-N3)(µ-NO3)]n (phen: 1,10-
phenanthroline) [97]. As illustrated by the single crystal XRD results, the coordination
number of lead(II) ions was eight (PbN4O4), and the Pb(II) ions contained “stereochemically
active” electron lone pairs. The results also showed a hemidirected coordination space
(Figure 20). Each lead atom was chelated by two nitrogen atoms of phen with Pb-N
distances of 2.53(1), 2.5(1) Å, two azide anions with Pb-N distances of 2.44(1), 2.74(1) Å,
and four nitrate oxygen atoms with Pb-O distances of 2.75(1), 2.86(7), 2.87(9), and 2.98(1) Å.
Table 1 provides other reports for the synthesis of lead–azide coordination polymer.
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Table 1. Other reports for the synthesis of lead–azide coordination polymer.

Molecular Formula Coordination
Number of Pb Geometry of Pb Modes Of

Azide Ion
Structure

of Polymer Ref

[Pb(INO)(N3)(H2O)]n seven hemidirected End to end 3D [98]
[Pb2(phen)2(N3)3(ClO4)]n eight hemidirected bridging 2D [99]

[Pb(3-pyc)(N3)H2O]n seven - bridging 2D [100]
[Pb2(N3)3(NO2)(C12H8-N2)2]n - - bridging - [101]

[Pb(PNO)(N3)]n eight hemidirected End to end 2D [102]
[Pb2(C2H3O2)2(N3)2(C18H12N6)2] seven hemidirected bridging - [103]

[Pb(C6H4NO2)(N3)(H2O)]n seven - bridging 2D [104]

4. Use of Lead Azide CPs as Precursors for PbO Preparation

Lead-azido CPs serve as appropriate precursors for preparing favorable materials
at the nanoscale. Using these polymers as precursors is a beneficial approach for prepar-
ing lead oxides. Some advantages of this approach include simple processing, no need
for specific tools, the relation between raw materials and the target products’ structures,
higher suitability for products’ phase control; higher control of purity, particle size, process
situations, and particle crystal; decreasing the possibility of interparticle collisions, straight-
forwardness, being economical, and the large-scale production potential [105]. Additionally,
the capping ligand presence can avoid the unfavorable accumulation of nano products.
Another advantage of this approach is the desired controllability of elemental components
achieved by combining the suitable organic linking ligands and the designated metal
ions. The ultimate morphology mechanism in nanomaterials probably depends on some
intermediates controlled by external and internal forces within the formation procedure.
MOCP interactions and crystal structure (e.g., covalence, hydrogen, van der Waals forces,
and coordination) are internal forces that affect solvent-MOCP. Moreover, intermediates
interactions, dipolar and electrostatic fields, and hydrophilic or hydrophobic interactions
cause exterior forces to control the system’s morphology [106–109]. Subsequently, the size
and morphology of inorganic nanomaterials depend on different factors, including the
preparation approach [110,111], the relation between the morphology of favorite materials
and MOCP crystalline structure [112–116], surfactant impact [117–120], the temperature of
thermolysis [121–125], size of initial MOCP precursors [126,127], and impact of the MOCP
precursors’ initial morphology [128–134]. The major challenge is the precise and explicit
mechanisms for the MOCPs transformation to needed nanomaterials. Future studies should
focus on describing and explaining nano-materials formation mechanisms and discovering
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rules governing the relations among affecting factors and ultimate morphologies. It can be
realized using different MOCPs with varying structural varieties and compositions (e.g.,
1D, 2D, and 3D compositions) and porous and nonporous constructions. Table 2 indicates
various examples of lead azide polymer compounds from which lead oxide is developed.

Table 2. Various examples of lead–azide polymers from which PbO is synthesized.

Molecular Formula Coordination
Number of Pb Geometry of Pb Modes of

Azide Ion
Structure

of Polymer Ref

[Pb2(µ-N3)(µ-NO3)L2]n Five Hemidirected Bridging 2D [79]
[Pb(µ-2-pinh)N3H2O]n Six Hemidirected End to end 1D [86]
[Pb(pcih)N3MeOH]n Six Hemidirected Bridging 1D [89]

[Pb3(p-2ma)3(N3)3(NO3)3]n Six Hemidirected Bridging 1D [90]
[Pb(3-pyc)(N3)(H2O)]n Seven - End to end 3D [100]
[Pb(2-pyc)(N3)(H2O)]n Seven Holodirected End to end 2D [93]

[Pb2(tmph)2(µ-N3)2(CH3COO)2]n Seven Hemidirected Bridging 1D [95]
[Pb3(tmph)4(µ-N3)5(µ-NO3)]n Eight Hemidirected Bridging 1D [96]
[Pb(µ-4-pyc)(µ-N3)(µ-H2O)]n Eight Hemidirected Bridging 2D [80]

[Pb(phen)(µ-N3)(µ-NO3)]n Eight Hemidirected Bridging 1D [97]

As shown in Section 3, the nanopowders of PbO were obtained from the decompo-
sition of the precursor [Pb2(tmph)2(µ-N3)2(CH3COO)2]n in oleic acid as a surfactant at
180 ◦C, under an air atmosphere [93]. Figure 21 shows the XRD pattern of orthorhombic
PbO with α = 5.8931 Å and z = 4. The morphology and size of the as-prepared PbO
samples were further investigated using scanning electron microscopy (SEM). This pro-
cess produced a regular shape of lead(II) oxide nanoparticles with a diameter of about
35–50 nm (Figure 22). Moreover, the nanopowders of PbO synthesized by decomposition
of the precursor [Pb3(tmph)4(µ-N3)5(µ-NO3)]n in oleic acid as a surfactant at 180 ◦C, under
an air atmosphere [94]. The morphology and size of the as-prepared PbO samples were
investigated using a transmission electron microscope (TEM). This process produced a
regular shape of lead(II) oxide nanoparticles with a diameter of about 10–20 nm (Figure 23).
The final products obtained by decomposing the compound [Pb3(tmph)4(µ-N3)5(µ-NO3)]n,
based on their XRD patterns (Figure 24), match with the standard pattern of tetragonal PbO
with α = 3.947 Å, c = 4.988 Å, and Z = 2.
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5. Conclusions

The purpose of the current study was to explain recent developments in the synthesis
of Pb(II)-azido metal–organic coordination polymers. The first significant finding was
that the coordination polymers have many applications and potential properties in many
research fields, primarily dependent on particular host–guest interactions. The second
finding was that the azido-bridged complexes are inorganic coordination ligands with
higher fascination, which have been the subject of intense research because of their co-
ordination adaptability and magnetic diversity. The other conclusions drawn from the
present study are that Pb (II) has a wide variety of coordination numbers existing in its
complexes because of its relatively large ion. One of the principal findings from this study
was that in holodirected structures, the ligand atoms bond was scattered throughout the
Pb(II) coordination space. However, in a hemidirected structure, the ligand atoms bond
was diffused only in one part of the Pb(II) coordination space. The most obvious conclu-
sion from this study is that CPs serve as appropriate precursors for preparing favorable
materials at the nanoscale. Using these polymers as precursors is a beneficial approach for
preparing inorganic nanomaterials such as metal oxides.
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