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Abstract
In this paper we consider Susceptible → Infectious → Recovered (SIR) epidemics
on random graphs with clustering. To incorporate group structure of the underlying
social network, we use a generalized version of the configuration model in which
each node is a member of a specified number of triangles. SIR epidemics on this
type of graph have earlier been investigated under the assumption of homogeneous
infectivity and also under the assumption of Poisson transmission and recovery rates.
We extend known results from literature by relaxing the assumption of homogeneous
infectivity both in individual infectivity and between different kinds of neighbours.
An important special case of the epidemic model analysed in this paper is epidemics
in continuous time with arbitrary infectious period distribution. We use branching
process approximations of the spread of the disease to provide expressions for the
basic reproduction number R0, the probability of a major outbreak and the expected
final size. In addition, the impact of random vaccination with a perfect vaccine on the
final outcome of the epidemic is investigated.Wefind that, for this particularmodel, R0
equals the perfect vaccine-associated reproduction number. Generalizations to groups
larger than three are discussed briefly.

Keywords SIR epidemics · Configuration model · Clustering · Branching processes ·
Vaccination

1 Introduction

One of themost important factors that determine the fate of an outbreak of an infectious
disease is the contact pattern of individuals in the population. The frequency and
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duration of the contacts between individuals typically depend on the nature of their
relationship. For this reason, recent interest has focused on the impact of the underlying
social network on the spread of the disease. The social network is typically represented
by a random graph (Newman et al. 2002), in which the nodes or vertices represent
individuals and the edges represent social contacts between the individuals. Two nodes
that share an edge are called “neighbours”.

A popular choice when generating random graphs with a specified degree distri-
bution is the configuration model (CM). It was introduced by Bollobás (1980) for the
special case where the degree distribution is degenerate (i.e. every node of the graph
has the same degree) and extended to more general degree distributions by Molloy
and Reed (1995, 1998). There is a vast literature on epidemics on configuration model
graphs [see e.g. Andersson (1999), Britton et al. (2007), Janson et al. (2014), Barbour
and Reinert (2013), Bhamidi et al. (2014)].

An important feature of the configuration model is that, under mild regularity con-
ditions on the degrees, this type of graph is asymptotically unclustered. That is to say,
it contains virtually no groups and short circuits. Real world networks do, however,
typically exhibit clustering (Newman 2003), and there are a number of graph models
that do allow for group structure (Bollobás et al. 2011; Karoński et al. 1999; Newman
2002). Epidemics on graphs with group structure were studied by Trapman (2007);
Ball et al. (2009, 2010, 2014); Coupechoux and Lelarge (2015); Britton et al. (2008).

In this paper, we use a generalized version of the configurationmodel to incorporate
clustering of the social network in the analysis of the spread of an infectious disease.
The configuration model with clustering (CMC) was independently introduced by
Miller (2009) and Newman (2009). It is an extension of the CM in the sense that,
for each node u, in addition to the degree of u one also specifies the number of
pairs of neighbours of u that are in turn neighbours of each others. In other words,
one specifies the number of triangles (with non-overlapping edges) of which u is a
member [see Sect. 2.1 for a precise definition of the graph model]. This allows for
graphs with non-negligible clustering and a specified degree distribution. That is to
say, the CMC deviates from the classical Erdős–Rényi graph model (Erdős and Rényi
1959) in two fundamental ways: it allows for for a non-Poissonian degree distributions
and is asymptotically clustered. Epidemics on this type of graph have previously been
studied by Miller (2009) and Volz (2011). Miller (2009) investigated the impact of
clustering on the epidemic threshold, formulated as a bond percolation problem. This
means that the infectivity of infected individuals is assumed to be homogeneous;
an infected individual transmits the disease to each of its neighbours independently
with some fixed probability T . Volz (2011) investigated the time evolution and final
size of epidemics on CMC graphs under the assumption of exponentially distributed
infectious periods during which individuals contact neighbours at a constant rate.

The main contribution of our research is that we extend the results of Miller (2009)
and Volz (2011) by allowing for heterogeneous infectivity, i.e. by allowing for some
infected individuals to be more contagious than others or for individuals to exhibit
different contact behaviors for different types of neighbours. Such heterogeneity may,
for instance, reflect variability in the infectious period or contact preferences on the
part of individuals. We provide expressions for the probability of a major outbreak and
the final size of a major outbreak. A key tool in our analysis is the approximation of the
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epidemic seen from a “generation of infection” or “rank” perspective by a multitype
Galton Watson branching process. This approximation, which is interesting in its
own right, gives rise to the rank-based reproduction number R0 [see e.g. Pellis et al.
(2008, 2012)]. We note that especially allowing for heterogeneity in the infectivity of
individuals requires a more intricate branching process approximation than a model
with homogeneous infectivity [as analysed by Miller (2009)]. To see this, consider an
individual v which is infected through a triangle Δ. The “local epidemics” in Δ and
in other triangles v is part of all depend on the infectivity of v and are therefore in
general not independent.

The second contribution of this paper concerns vaccination. We investigate the
impact of uniform vaccination (i.e. vaccinated individuals are selected uniformly at
random) with a perfect vaccine (i.e. a vaccine that provides full and permanent immu-
nity to the disease). We find that it is necessary to vaccinate a fraction 1 − 1/R0 of
the population in order to prevent a major outbreak of the disease, as in the case of
homogeneous mixing. We illustrate our findings with numerical examples.

This paper is structured as follows. In Sect. 2 we provide the preliminaries for the
model. In Sect. 2.1 we give a more detailed description of how graphs are generated in
the CMC and investigate the asymptotic clustering of such graphs and in Sect. 2.2 the
epidemic model is specified. Sections 2.3 and 2.4 contains an overview of the concept
of reproduction numbers and the necessary branching process background. In Sect. 3,
we derive expressions for the probability of a major outbreak and the expected final
size under the assumption of an unvaccinated and fully susceptible population, and
in Sect. 4 the analysis is repeated under the assumption of uniform vaccination with
a perfect vaccine. We illustrate our findings with numerical examples presented in
Sect. 5 and discuss possible extensions in Sect. 6.

2 Preliminaries

2.1 The configurationmodel with clustering

A CMC graph is constructed as follows. Let {p(ks, kΔ)}ks ,kΔ∈N0 be a prescribed joint
degree distribution, where ks denotes the number of single edges attached to a node,
and kΔ denotes the number of pairs of triangle edges. Throughout, (S,Δ) is assumed to
be a generic random vector distributed according to p. Let {(Si ,Δi )}Ni=1 be a sequence
of independent copies of (S,Δ). Analogously to the CM, a graph GN = GN (p) of
size N is constructed by first assigning the single degree Si and the triangle degree Δi

to the node vi , i = 1, 2, . . . , N . One may think of this step in terms of half-edges; to
each node vi , we attach Si single half-edges and Δi pairs of triangle half-edges. The
single half-edges are then matched in pairs and the triangle half-edge pairs in threes
by choosing a matching uniformly at random among all possible such matchings. The
process of joining half-edges is illustrated in Fig. 1. As described in Miller (2009), the
matching may be carried out as follows. Two lists of nodes, one single degree list and
one triangle degree list are created. A node with joint degree (ks, kΔ) appears ks times
in the single list and kΔ times in the triangle list. The lists are then shuffled uniformly,
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Fig. 1 Schematic illustration of the construction of a CMC graph. Triangle half-edges (marked with a
triangle) and single half-edges (marked with a perpendicular line) are assigned to the nodes of the graph
(left). The half-edges are thenmatched uniformly at random (right). Note that two of the half-edges attached
to v3 are paired with each other and so form a self-loop

and the nodes on positions 2m + 1 and 2m + 2 in the single degree list and positions
3m + 1, 3m + 2 and 3m + 3 in the triangle degree list are matched, m ∈ N0.

We define the total single degree as

D(N )
S :=

N∑

i=1

Si

and the total triangle degree as

D(N )
Δ :=

N∑

i=1

Δi .

If the total single degree (that is, the length of the single degree list) is not even or
if the total triangle edge degree (the length of the triangle degree list) is not a multiple
of three we erase a single half-edge and/or one or two triangle half-edge pairs chosen
uniformly at random. Similarly, we erase self-loops and merge multiple edges, so that
the resulting graph is simple. Under assumption A1 (stated below) on p it holds that
the number of single self-loops and single double edges converge in distribution to
independent Poisson random variables with finite means [cf. Van der Hofstad (2016,
prop. 7.13)].

For this reason, self-loops andmultiple edges are negligible in the limit as N → ∞.
In the remainder of this paper, we ignore the small differences in the topology of the
graph that arise from erasing multiple edges or self-loops. In addition, we ignore the
small differences in effective degree distribution that arise from erasing half-edges
so that the number of single and triangle half-edges are multiples of two and three,
respectively.

We make the following assumptions on p.

(A1) E(Δ2) < ∞ and E(S2) < ∞.

(A2) P(max(Δ, S) ≥ 2) > 0 and E(ΔS) > 0.

Note that the assumption A1 implies E(ΔS) < ∞. Assumption A2 ensures that
the mean matrices of the approximating branching processes (presented below) are
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positively regular (we say that an r × r matrix M is positively regular if it has finite
non-negative entries and for some n ∈ N all entries of Mn are strictly positive).

2.1.1 Clustering coefficient of GN

For any undirected graphwe canmeasure the amount of clustering in the network using
the so-called clustering coefficient, which is defined as follows. Let G = (V , E) be
an undirected graph with node set V and edge set E . Define

WG∧ = {(u, v, w) ∈ V 3 : (u, v), (v,w) ∈ E}

the set of all ordered wedges (i.e. directed paths consisting of precisely two edges) of
G and

WG
Δ = {(u, v, w) ∈ V 3 : (u, v), (v,w), (w, u) ∈ E} ⊂ WG∧

the set of all ordered triangles of G. The clustering coefficient C(G) of G is a measure
of the degree of clustering of G and is defined as the fraction of the ordered wedges
of G that are also triangles:

C(G) = |WG
Δ |

|WG∧ | .

Here | · | denotes the cardinality of a set.
As stated in the following proposition, CMC graphs have asymptotically non-zero

clustering as N → ∞. An analogous result for fixed degree sequences was presented

in Newman (2009). Let
P−→ denote convergence in probability.

Proposition 1 Let {GN }N be a sequence of CMC graphs with independent degrees
drawn from p. If p satisfies assumption A1 then

C(GN )
P−→ E(2Δ)

E((2Δ + S)2) − E(2Δ + S)
. (1)

The proof is presented in the Appendix.

2.1.2 Downshifted size-biased degrees

The graph GN may be constructed by joining the half-edges in a random order. In
particular, GN may be constructed as the epidemic progresses; starting with the initial
infected casewe sequentiallymatch the half-edges alongwhich the disease is transmit-
ted. Since half-edges are chosen uniformly at random in the matching procedure, the
probability to choose a specific node is proportional to the number of free half-edges
attached to the node in question. That is, if we pair a single half-edge, the probability
of choosing a specific node with ks unpaired single half-edges is proportional to ks .
For this reason, the degree distribution of a node explored by joining a single half-edge
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in the early phase of the epidemic can be approximated by the single size biased [cf.
the concept of excess degree in Meyers (2007)] degree distribution p(s)

p(s)(ks, kΔ) = ks p(ks, kΔ)

E(S)
. (2)

Similarly, the degree distribution of the nodes explored by joining three triangle
half-edge pairs in the early phase of the epidemic can be approximated by the triangle
size biased degree distribution p(Δ)

p(Δ)(ks, kΔ) = kΔ p(ks, kΔ)

E(Δ)
. (3)

In the epidemic process, we need to account for the fact that an infected individual
has at least one non-susceptible neighbour (namely the direct source of its infection).
For this reason, we introduce the downshifted size biased degree distributions p(s)• and
p(Δ)• , given by

p(s)• (ks, kΔ) = p(s)(ks + 1, kΔ)

p(Δ)• (ks, kΔ) = p(Δ)(ks, kΔ + 1). (4)

Throughout, we will make frequent reference to the following random vectors

(S(s)• ,Δ
(s)• ) ∼ p(s)•

(S(Δ)• ,Δ
(Δ)• ) ∼ p(Δ)•

(5)

and the expected values

E(S(s)• ) = E(S2)

E(S)
− 1 E(Δ(s)• ) = E(SΔ)

E(S)

E(S(Δ)• ) = E(SΔ)

E(Δ)
. E(Δ(Δ)• ) = E(Δ2)

E(Δ)
− 1 (6)

2.2 The epidemic model

We use an SIR model to investigate the dynamics of the spread of the disease. At any
given time point, the population is divided into three groups, depending on health sta-
tus. The groups are susceptible (S), infectious (I) and recovered (R) [see e.g. Britton
(2010), Diekmann et al. (2013)]. Individuals of the populationmake contact with other
individuals at (possibly random) points in time. If, at some time point, an infectious
individual contacts a susceptible individual then the susceptible individual instanta-
neously becomes infectious. An infectious individual will cease to be contagious after
a period of time, which we call the infectious period of the individual in question, and
is then transferred to the recovered group. Recovered individuals are those that are
immune to the disease. Individuals belonging to this group play no further role in the
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spread of the disease. Because of this last observation, we can treat individuals that
die because of the disease as “recovered”. In summary, we allow only the transitions
S → I and I → R. Note that the population is assumed to be closed; we ignore births,
deaths and migration.

More specifically, we consider an SIR epidemic in a generation framework on
the clustered static graph GN and assume possible heterogeneity in infectivity, both
between different individuals (individual heterogeneity) and between different kinds
of edges (edge heterogeneity). Individual heterogeneitymeans that some infected indi-
viduals are more contagious than others. Such heterogeneity may, for instance, arise
from variability in the infectious period. Edge heterogeneity reflects that individuals
may exhibit different contact behaviors for different types of neighbours ; an individual
may for instance prefer to spend more time with its triangle neighbours at the expense
of spending less time with its single neighbours.

To construct a model that captures such heterogeneities, let T = (Ts, TΔ) be a
random variable with support in [0, 1]2, and let {Ti }Ni=1 = {(T (i)

s , T (i)
Δ )}i be a sequence

of independent copies of T . We allow for any dependence structure between Ts and
TΔ. Each node vi of GN is equipped with a two-dimensional transmission weight
Ti . If vi gets infected, then each susceptible single neighbour (neighbour by virtue
of a single edge) of vi gets infected by vi independently in the next generation with
probability T (i)

s , and each susceptible triangle neighbour (neighbour by virtue of a
triangle edge) of vi gets infected by vi independently in the next generation with
probability T (i)

Δ (conditioned on {Ti }i ). Node vi thereafter becomes recovered, playing
no further role in the epidemic. An infected node transmits the disease independently
of the transmissions from other infected nodes. An infected node does not, however,
transmit the disease to its neighbours independently, unless the distribution of T is
degenerate. Conditioned on the transmissionweights {Ti }i and the structure ofGN , the
number of single and triangle neighbours that an infected node vi makes (infectious)
contact with while infectious has a binomial distribution with parameters (Si , T

(i)
s )

and (Δi , T
(i)
Δ ), respectively.

The spread of this epidemic can be fully captured by a directed graph [see e.g.
Pellis et al. (2012), Kenah and Miller (2011)]. To construct such directed graph from
an undirected CMC graphGN , we replace each undirected edge ofGN by two parallel
directed edges, pointing in the opposite direction. The weight of an edge (vi , v j ),
which represents the (potential) transmission time from vi to v j , is taken to be 1 if vi
would make infectious contact with v j if infected, and ∞ otherwise. The individuals
ultimately infected are then the individuals that can be reached from an initial case by
following a path consisting of directed edges with finite edge weights.

2.3 Reproduction numbers

A key quantity in the study of epidemics is the basic reproduction number, often
denoted by R0. It is usually defined as the expected number of infected cases caused by
a “typical” infected individual in an otherwise susceptible population (Diekmann et al.
1990). Formost stochastic epidemicmodels [includingSIRepidemics in homogeneous
mixing populations (Britton 2010), populations with households (Ball et al. 2016) and
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epidemics on networks (Britton et al. 2007)] it has the threshold property that a major
outbreak is possible if and only if R0 > 1.

For models where a suitable generation based branching process approximation is
available, R0 is usually defined as the Perron root (the dominant eigenvalue, which
exists and is real-valued by assumptions A1 and A2, see for instance Varga (2009,
Chapter 2) of the meanmatrix of the approximating GaltonWatson branching process.
This is the definition used in this article. By standard branching process theory, the
interpretation of R0 as the expected number of cases caused by the typical individual
in the early phase of the epidemic and its threshold properties are retained by this
definition. The threshold property of R0 is made precise in Theorem 1 below.

In Sect. 4, we investigate the spread of an epidemic in a populationwith vaccination.
To this end, in addition to the basic reproduction number R0, we consider the perfect
vaccine-associated reproduction number RV (Goldstein et al. 2009). A vaccine is
perfect if it provides full and permanent immunity. That is, an individual vaccinated
with a perfect vaccine cannot contract the disease. The perfect vaccine-associated
reproduction number RV is defined as (Ball et al. 2016)

RV = 1

1 − f (c)
v

, (7)

where the critical vaccination coverage f (c)
v is the fraction of the population that has

to be vaccinated with a perfect vaccine in order to reduce R0 to unity, if the vaccinated
individuals are chosen uniformly at random. That is to say, f (c)

v = 1 − 1/RV is the
fraction necessary to vaccinate in order to be guaranteed to prevent a major outbreak
(Britton 2010). Note that if R0 ≤ 1 then f (c)

v = 0.
For many models, including epidemics on graphs generated by the CM (Britton

et al. 2007) and the standard stochastic SIR epidemic model [i.e. individuals mix
homogeneously, see for instance Britton (2010)], RV = R0. That is, vaccinating a
fraction 1−1/R0 of the population with a perfect vaccine is sufficient to surely prevent
a major outbreak. On the other hand, for the households and households-workplaces
model with uniform vaccination, RV ≥ R0 (Ball et al. 2016) with strict inequality
possible. In Sect. 4.1 we show that for the model analysed in this report, RV = R0.

2.3.1 Epidemics in continuous time: the rank-based approach

Asmentioned above, heterogeneity in infectivity might arise from heterogeneity in the
infectious period; an important special case of the above described model is epidemics
in continuous timewith random infectious periods where contacts between individuals
take place according to point processes on R≥0. Ignoring the real time-dynamics of
an epidemic does not impact results that concern the final outcome of the epidemic.
This result was first presented by Ludwig (1975), see also Pellis et al. (2008) or Kiss et
al. (2017, section 6.2.3) for a more recent discussion. This leads us to the often more
tractable rank-based approach.
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Fig. 2 The difference between rank-based generations and true generations. Left: The length of the path
v1 → v3 (i.e. the transmission time from v1 to v3) is 4.89 and exceeds the length 2.22 + 1.64 of the path
v1 → v2 → v3. Therefore, the true path of transmission is u → w → v1 → v2 → v3. In the rank-based
approach, however, v3 is attributed to v1. Right: The resulting rank generation tree

In order to define the rank of a vertex, denote the initial case by v∗. The rank of
a node v in GN is the distance from v∗ to v, if every edge along which the disease
would be transmitted is assigned the edge weight 1, and every other edge is assigned
the edge weight ∞. That is, the rank of v is the smallest number of directed edges
that have to be traversed in order to follow a path of (potential) transmission from v∗
to v. We may then analyse the spread of the disease by letting generation n of the
epidemic process consist of the individuals of rank n. If, for instance, v1 is the first
node in a triangle consisting of the nodes v1, v2, v3 to be infected, and v1 infects v2
and thereafter attempts to infect v3, then v3 is attributed to v1 regardless of whether
v1 or v2 infected v3. This is illustrated in Fig. 2.

Consider a continuous time epidemic formulated as follows. Suppose that each
infected individual remains infectious for a (random) period of time. The infec-
tious periods are distributed as the random variable τ , τ ∼ F , and independent
(but identically distributed) for different nodes. Suppose further that a node makes
contact with each neighbour independently at a Poisson rate while infected, and
that susceptible individuals are fully susceptible, so that each infectious-susceptible
contact results in transmission. If the contact rate is given by βs for single edge
neighbours and βΔ for triangle edge neighbours then the transmission weights Ts
and TΔ are distributed as 1 − e−βsτ and 1 − e−βΔτ , respectively. We then have
E(Ts) = 1 − L(βs), E(TΔ) = 1 − L(βΔ) and E(TΔ(1 − TΔ)) = L(βΔ) − L(2βΔ)

where L(z) = ∫
R+ e−zxdF(x) is the Laplace transform of the infectious period.

2.4 Branching process approximations

To analyse the spread of the disease in the early stages of the epidemic, we employ
a multi-type branching process approximation. The graph GN may be constructed
by joining the half-edges in any (possibly random) order, provided that the uniform
matching is not violated. In particular, the graph GN may be constructed (or explored)
as the epidemic progresses; starting with the initial infected case u∗ we sequentially
match the half-edges along which the disease is transmitted. In the early phase of the
epidemic, short cycles (except for the triangles formed by triangle edges) are unlikely
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Fig. 3 Graph representation of an epidemic in a small (N = 9) population. The gray dashed and black solid
edges have infinite and finite edge weights (transmission times), respectively. The nodes in the susceptibility
set of v5, S(v5) = {v1.v2, v3, v5, v7}, are enclosed by the blue dotted line. The nodes that v5 would infect
if infected, directly or through other nodes, are enclosed by the orange dashed line (colour figure online)

to appear. For these reasons, the early spread of the disease is well approximated by
a suitably chosen branching process.

Similarly, a branching process approximation can be used to approximate the
expected final size of the epidemic (Ball et al. 2009, 2010, 2014). In the graph rep-
resentation of an epidemic, an individual contracts the disease if and only if there is
a path of directed edges with finite edge weights from the initial case to the node
representing the individual in question.

Define the susceptibility set S(v) = SN (v) of a node v as the collection of nodes of
GN that can be reached from v by tracing a path of finite length backwards. That is, the
individuals that contract the disease are precisely the individuals with susceptibility
sets that contain an initial case. Hence, if the initial case is chosen uniformly at random
then the probability that a node v contracts the disease is proportional to the size of its
susceptibility set S(v) and this probability can be approximated by exploring S(v).
Figure 3 shows a schematic illustration of a susceptibility set.

By reversing the direction of the edges of the graph representation of an epidemic,
but keeping the weights, the expected final fraction of the population infected in a
major outbreak and the probability of amajor outbreak are interchanged (Miller 2008),
provided that the initial case is chosen uniformly at random. The process so obtained
is called the backward epidemic process of the node v. If the underlying epidemic
model is such that the backward epidemic process can be well approximated by a
branching process, then we can use this branching process to compute the asymptotic
distribution of the proportion of the population that ultimately escapes infection. This
is made precise in the following theorem, due to Ball et al. (2014, Theorem 3.5),
who proved the theorem for the related model of random intersection graphs. The
statement of Theorem 1 carries over to the forward and backward branching processes
considered in this paper. We omit the proof, which is analogous to the proof presented
in Ball et al. (2014), see also Ball et al. (2009).
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Theorem 1 Let q and qb be the extinction probabilities of the forward and backward
approximating branching processes respectively, and let SN be the proportion of the
population that ultimately escapes an epidemic in a population of size N. Then

SN → S (8)

as N → ∞where the convergence in (8) is in distribution and P(S = 1) = 1−P(S =
qb) = q.

In other words, in the limit of large population sizes, the epidemic “takes off” with
probability 1− q, and if this happens a fraction 1− qb of the population is ultimately
infected (with probability converging to 1 as N → ∞). Note that since R0 is defined
as the Perron root of the mean matrix of the forward branching process, q < 1 if and
only if R0 > 1.

3 An epidemic in a fully susceptible population

We now have the tools to analyse the spread of an infectious disease on a graph
generated by the CMC. In the present section, the population is assumed to be fully
susceptible to the disease, apart from the initially infectious individual.

3.1 Forward process

Before analysing the forward process, we need to set some terminology. For a given
triangle u, v, w, where u is the first individual to be infected in the triangle u, v, w,
we refer to v and w as twins. We approximate the spread of the disease during the
early phase by a multi-type branching process consisting of the following three types
(except for the initial case):

Type 1: A node infected along a triangle edge whose twin (in the same triangle) is
infected at the same time step or earlier

Type 2: A node infected along a triangle edge that is not of type 1
Type 3: A node infected along a single edge

Figure 4 shows three examples of possible paths of transmission within a triangle
giving rise to type 1 and 2 individuals in the approximating branching process.

Denote by

M f = (mi, j )
3
i, j=1 =

⎛

⎝
m1,1 m1,2 m1,3
m2,1 m2,2 m2,3
m3,1 m3,2 m3,3

⎞

⎠

the mean matrix of the above described branching process. Suppose that v1 is the first
individual to be infected in the triangle v1, v2, v3. The probability that v1 transmits
the disease both to v2 and v3 is E(T 2). Similarly, the probability that v1 transmits the
disease to either v2 or v3, but not to both, is 2E(T (1 − T )).
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Fig. 4 Three examples of possible paths of transmission in a triangle v1, v2, v3, where v1 is the first node
to be infected. Left: v1 infects both v2 and v3. Both v2 and v3 are represented by type 1 individuals in the
approximating branching process. Center: v1 infects v2 and v2 infects v3. Then v3 and v2 are represented
by type 1 and type 2 individuals, respectively. Right: v1 infects v2. Then v2 is represented by a type 2
individual

Thus, by linearity of expectation and because the distribution of the susceptible
neighbours of infected nodes in the early phase of the epidemic is given by the down-
shifted degree distributions in (4), we obtain

M f =
⎛

⎜⎝
2E(T 2

Δ)E(Δ
(Δ)• ) 2E(TΔ(1 − TΔ))E(Δ

(Δ)• ) E(Ts)E(S(Δ)• )

2E(T 2
Δ)E(Δ

(Δ)• ) + E(TΔ) 2E(TΔ(1 − TΔ))E(Δ
(Δ)• ) E(Ts)E(S(Δ)• )

2E(T 2
Δ)E(Δ

(S)• ) 2E(TΔ(1 − TΔ))E(Δ
(S)• ) E(Ts)E(S(S)• )

⎞

⎟⎠ .

(9)
(Recall that the random variables Δ

(Δ)• , Δ(s)• , S(Δ)• and S(s)• defined in (5) have the
downshifted size biased distributions). Note that all entries of M f are finite and that
S and Δ both have finite second moments by assumption A1.

IfM f is positively regular (see the last paragraph before Sect. 2.1.1) then R0 is given
by the Perron root of M f . With little effort, one can use the expected values provided
in (6) to show that necessary and sufficient conditions for M f to be positively regular
are that assumptions A1-A2 hold and that 0 < E(Ts) < 1 and 0 < E(TΔ) < 1. If
some of these conditions are not satisfied, we may analyse the spread of the disease
by reducing the number of types of the approximating forward branching process. It
is worth pointing out that R0 only depends on the marginal distributions of Ts and TΔ

(via their moments), not on the dependence structure between them.

3.1.1 Probability of a major outbreak

For two s-dimensional vectors ā = (a1, . . . , as)T and b̄ = (b1, . . . , bs)T, we define

ā b̄ := ab11 · . . . · abss .

Let f : [0, 1]3 → R
3 be the probability generating function of the offspring dis-

tribution of the three types in the approximating branching process. That is, for
z̄ = (z1, z2, z3)T ∈ [0, 1]3 the i th component of f (z̄) is given by

f (z̄)i = E
(
z̄ ξ̄i

)
(10)

where ξ̄i = (ξi,1, ξi,2, ξi,3) is distributed as the offspring of a type i individual, i =
1, 2, 3.
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Similarly, let f∗ : [0, 1]3 → R be the probability generating function of the off-
spring distribution of the initial case. If ξ̄ = (ξ∗,1, ξ∗,2, ξ∗,3)

T is distributed as the
offspring of the initial case, then f∗ is given by

f∗(z̄) = E
(
z̄ ξ̄

)
.

For i = 1, 2, 3, let (S(i), Δ(i)) be the joint degree of a type i case with offspring
(ξi,1, ξi,2, ξi,3) and transmission weight T = (Ts, TΔ). That is,

(S(1), Δ(1))
d= (S(2), Δ(2))

d= (S(Δ),Δ(Δ))

and

(S(3), Δ(3))
d= (S(s), Δ(s)).

Here
d= denotes equality in distribution. By conditional independence we have

E(z
ξi,1
1 z

ξi,2
2 z

ξi,3
3 ) = E

(
E(z

ξi,3
3 |T , S(i), Δ(i))E(z

ξi,1
1 z

ξi,2
2 |T , S(i), Δ(i))

)
.

Conditioned on the transmission weight T and the single degree S(1), ξ1,3 has a
binomial distribution with parameters S(1) and Ts . Thus

E(z
ξ1,3
3 |T , S(1), Δ(1)) =

∑

k0+k1=S(1)

(
S(1)

k1

)
(Tsz3)

k1(1 − Ts)
k0

= (Tsz3 + 1 − Ts)
S(1)

.

Similarly

E(z
ξ1,1
1 z

ξ1,2
2 |T , S(1), Δ(1))

=
∑

k0+k1+k2=Δ(1)−1

(
Δ(1) − 1

k0, k1, k2

)
(1 − TΔ)2k0(2(1 − TΔ)TΔz2)

k1(TΔz1)
2k2

= ((1 − TΔ)2 + 2TΔ(1 − TΔ)z2 + TΔ2z
2
1)

Δ(1)−1.

Thus

E(z
ξ1,1
1 z

ξ1,2
2 z

ξ1,3
3 )

= E((Tsz3 + 1 − Ts)
S(Δ)• ((1 − TΔ)2 + 2TΔ(1 − TΔ)z2 + T 2

Δz
2
1)

Δ
(Δ)• ) (11)

where (Δ
(Δ)• , S(Δ)• ) is independent of T .
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Since the conditional offspring distribution of a type 2 individual is identical to the
offspring distribution of a type 1 individual except that a type 2 individual may give
birth to one additional type 1 individual with probability TΔ, we have

E(z
ξ2,1
1 z

ξ2,2
2 z

ξ2,3
3 )

= E((Tsz3 + 1 − Ts)
S(Δ)• ((1 − TΔ)2

+ 2TΔ(1 − TΔ)z2 + T 2
Δz

2
1)

Δ
(Δ)• (TΔz1 + 1 − TΔ)). (12)

Similarly,

E(z
ξ3,1
1 z

ξ3,2
2 z

ξ3,3
3 )

= E((Tsz3 + 1 − Ts)
S(s)• ((1 − TΔ)2 + 2TΔ(1 − TΔ)z2 + T 2

Δz
2
1)

Δ
(s)• ). (13)

Substituting (11)–(13) into (10) gives an expression for f .
By standard branching process theory, if R0 > 1 the extinction probability of

a process descending from a type i individual, i = 1, 2, 3, is given by qi , where
q̄ = (q1, q2, q3)T is the unique solution of q̄ = f (q̄) in [0, 1)3. We also have

q̄ = lim
n→∞ f ◦n(0̄), (14)

where f ◦n is the composition of f with itself n times.
Since the approximating branching process dies out if and only if each of the

processes started by the children of the initial case die out, the probability of extinction
is given by f ∗(q̄). After some calculations, analogous to the calculations that led to
(11)–(13), we find that the probability of extinction is given by

f ∗(q̄) = E
(
(Tsq3 + 1 − Ts)

S((1 − TΔ)2 + 2TΔ(1 − TΔ)q2 + T 2
Δq

2
1 )

Δ
)

where (S,Δ) is independent of T . We conclude that, by Theorem 1, the probability
of a major outbreak is given by 1 − f ∗(q̄), where q̄ is the limit in (14) and also the
fixed point of f in [0, 1)3.

3.2 Backward process

Let w be a given node of GN , chosen uniformly at random. We use a backward
branching process to approximate the probability that w contracts the disease, which
by an exchangeability argument equals the expected final size of a major outbreak.
The offspring of an individual v in the backward process are the individuals that would
potentially have infected v, if they were infected themselves.

The members of the susceptibility set are divided into the following two groups
(which give rise to a two-type approximating backward branching process).

Type 1: The vertex is included in the susceptibility set by virtue of potential trans-
mission along a single edge
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Fig. 5 The individuals v2 and v3 are both in the susceptibility set S(v1) of v1 by virtue of transmission
within the triangle v1, v2, v3 if and only if at least one of the events E1 (left), E2 (center) or E3 (right)
happens

Type 2: The vertex is included in the susceptibility set by virtue of potential trans-
mission along a triangle edge

We assign kinship as follows. The children of type 1 of an individual v1 are the
individuals included in the susceptibility set due to potential transmission along a single
edge. The children of type 2 of v1 are the individuals included in the susceptibility set
due to potential transmission of the disease to v1, within a triangle of which v1 is a
member. We note that, given a triangle v1, v2, v3 where v1 is the primary case, both
v2 and v3 will be members of the susceptibility set of v1 by virtue of transmissions
within the triangle if at least one of the following events happens:

(E1) v2 and v3 both “infect” v1
(E2) v2 infects v1 and v3 “infects” v2
(E3) v3 infects v1 and v2 “infects” v3

Here “infects” is conditional on the “infector” being infected during the epidemic.
The events E1-E3 are illustrated in Fig. 5.
Standard calculations give that the probability of the union of the events E1-E3

is given by p2 = 3E(TΔ)2 − 2E(TΔ)E(T 2
Δ). Similarly, the probability that neither

v1 nor v2 will be members of the susceptibility set of v by transmissions within the
triangle is given by p0 = (1 − E(TΔ))2. For later use, denote 1 − p0 − p2 by p1.

3.2.1 Expected final size of a major outbreak

Let b be the probability generating function of the offspring distribution of the two
types of the approximating backward branching process. Furthermore, let b∗ be
the probability generating function of the offspring distribution of the ancestor w.
Analogously to the forward branching process, the probability that a branching pop-
ulation whose ancestor is of type i, i = 1, 2, will go extinct is given by qbi , where
q̄b = (qb1 , qb2 )T is the unique solution of q̄b = b(q̄b) in [0, 1)2 (recall R0 > 1). The
probability of extinction is given by b∗(q̄b).

Proceeding in the same manner as in Sect. 3.1.1 yields

b(z1, z2)1 = E
(
(E(Ts)z1 + 1 − E(Ts))

S(s)• (p0 + p1z2 + p2z
2
2)

Δ
(s)•

)

where p0, p1 and p2 are as in Sect. 3.2. Similarly

b(z1, z2)2 = E
(
(E(Ts)z1 + 1 − E(Ts))

S(Δ)• (p0 + p1z2 + p2z
2
2)

Δ
(Δ)•

)
,
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and the probability of ultimate extinction of the backward process is given by

b∗(q̄b) = E
(
(E(Ts)q

b
1 + 1 − E(Ts))

S(p0 + p1q
b
2 + p2(q

b
2 )2)Δ

)
.

We conclude that the expected final size of a major outbreak is given by 1−b∗(q̄b).

4 Vaccination

4.1 Random vaccination with a perfect vaccine

Assume that a fraction fv < 1 of the population is vaccinated, and that the vacci-
nated individuals are chosen uniformly at random (without replacement) from the
population. The vaccine is perfect, in the sense that a vaccinated individual gains full
and lasting immunity to the disease. If the population size N is large, we may use a
slightly different model, where each individual is vaccinated with probability fv, inde-
pendently of the vaccination status of other individuals. By the law of large numbers,
for our purposes the models are equivalent in the limit as the population size N → ∞.

As before, we may approximate the early phase of the epidemic by a multi-type
branching process. The individuals of the approximating branching process are now
of the following three types.

Type 1: Infected along a triangle edge and has a twin that is known not to be sus-
ceptible

Type 2: Infected along a triangle edge and has a twin that might be susceptible
Type 3: Infected along a single edge

To clarify the types, assume that in the early phase of the epidemic v1 is the primary
case in the triangle v1, v2, v3. If v1 attempts to transmit the disease both to v2 and v3 and
succeeds (that is, none of v2 and v3 are vaccinated) then both v2 and v3 are represented
by type 1 individuals in the approximating branching process. This happens with
probability

E(T 2
Δ)(1 − fv)

2. (15)

If v1 attempts to transmit the disease both to v2 and v3, but only succeeds to trans-
mit the disease to v3 (that is, v2 is vaccinated and v3 is not vaccinated), then in the
approximating branching process the individual representing v1 gives birth to one
type 1 individual (representing v3) within the triangle v1, v2, v3. This happens with
probability

E(T 2
Δ) fv(1 − fv). (16)

If v1 attempts to transmit the disease only to v2 and succeeds (that is, v2 is not vac-
cinated) then in the approximating branching process, the individual representing v1
gives birth to one type 2 individual (representing v2) within the triangle v1, v2, v3.
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Fig. 6 Three examples of transmission dynamics within a triangle v1, v2, v3. An attempted transmission of
the disease is represented by an arrow, an attempted transmission to a vaccinated individual is represented
by an arrow and a blue bar. Left: v1 attempts to transmit the disease both to v2 and v3, and succeeds. Both
v2 and v3 are represented by type 1 individuals in the approximating branching process. Center: v1 attempts
to transmit the disease both to v2 and v3, the transmission to v2 is blocked since v2 is vaccinated. Then v3
is represented by a type 1 individual. Right: v1 succeeds to transmit the disease to v2, but does not attempt
to infect v3. Then v2 is represented by a type 2 individual (colour figure online)

This happens with probability

E(TΔ(1 − TΔ))(1 − fv). (17)

The above described events are illustrated in Fig. 6.
Denote the mean matrix of the approximating branching process by M (v)

f =
(m(v)

i, j )
3
i, j=1. Using the expressions in (15) and (16) gives the expected number of

type 1 individuals produced by a type 1 individual

m(v)
1,1 =

(
2(1 − fv)

2E(T 2
Δ) + 2(1 − fv) fvE(T 2

Δ)
)
E

(
Δ(Δ)•

)

= (1 − fv)2E(T 2
Δ)E(Δ(Δ)• )

= (1 − fv)m1,1

where m1,1 is an element of the mean matrix M f of the forward branching process
presented in (9).

Proceeding in the same fashion, we obtain the elements of the mean matrix M (v)
f =

(m(v)
i, j )

3
i, j=1 of the branching process with random vaccination. It turns out that

M (v)
f = (1 − fv)M f .

It is readily verified that the Perron root of M (v)
f is

r (v)
f = (1 − fv)r f , (18)

where r f is the Perron root of M f . Setting r
(v)
f to 1 in (18) and solving for fv yields

the critical vaccination coverage f (c)
v = 1 − 1/r f .

We conclude that, for this particular graph model, equality holds between the basic
reproduction number R0 and the perfect vaccine-associated reproduction number RV

as defined in (7). Note that R0 is based on a rank-based perspective of infection and
not on “who-infected-whom.
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4.1.1 Probability of a major outbreak

Let h be the probability generating function of the offspring distribution of the three
types in our model including vaccination. As in Sect. 3.1.1, we use the probability
generating function to approximate the probability of extinction of the epidemic. To
this end, let (ζi,1, ζi,2, ζi,3) be distributed as the offspring of a type i individual with
transmissionweight T , i = 1, 2, 3, and let (S(i), Δ(i)) be distributed as the joint degree
of this individual. That is,

(S(1), Δ(1))
d= (S(2), Δ(2))

d= (S(Δ)◦ ,Δ(Δ)◦ )

and

(S(3), Δ(3))
d= (S(s)◦ ,Δ(s)◦ ).

Note that (S(i), Δ(i)) and T are independent.
By conditional independence

E
(
z
ζ1,1
1 z

ζ1,2
2 z

ζ1,3
3

)
= E

(
E

(
z
ζ1,3
3 |S(1), Δ(1), T

)
E

(
z
ζ1,1
1 z

ζ1,2
2 |S(1), Δ(1), T

))

for z̄ = (z1, z2, z3)T ∈ [0, 1]3.
Conditioned on the transmission weight T and the joint degree (S(1), Δ(1)), the

number of attempted transmissions from a type 1 individual along single edges has a
binomial distribution with parameters S(1) and Ts , and each attempted transmission
succeeds with probability (1 − fv). Thus,

E
(
z
ζ1,3
3 |S(1), Δ(1), T

)
=

∑

k0+k1=S(1)

(
S(1)

k1

)
zk13

(
Ts(1 − fv)

)k1((1 − Ts) + Ts fv
)k0

= (
Ts(1 − fv)z3 + 1 − Ts + Ts fv

)S(1)
. (19)

Similarly, for a type 1 individual w with triangle degree Δ(1), by conditioning on
the number of attempted transmissions (in ki of the Δ(1) − 1 triangles that are not yet
affected by the disease,w attempts to transmit the disease to i individuals, i = 0, 1, 2)
and the vaccination status of the individuals contacted by w we obtain

E(z
ζ1,1
1 z

ζ1,2
2 |S(1), Δ(1), T )

=
∑

k0+k1+k2=Δ(1)−1

(
Δ(1) − 1

k0, k1, k2

)
(1 − TΔ)2k0

(
2TΔ(1 − TΔ)

)k1T 2k2
Δ

⎛

⎝
∑

k̃0+k̃1+k̃2=k2

(
k2

k̃0, k̃1, k̃2

)(
(1 − fv)z1

)2k̃2(2 fv(1 − fv)z1
)k̃1 f 2k̃0v

⎞

⎠
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⎛

⎝
∑

k′
0+k′

1=k1

(
k1

k′
0, k

′
1

)
(1 − fv)

k′
1 z

k′
1
2 f

k′
0

v

⎞

⎠

=
∑

k0+k1+k2=Δ(1)−1

(
Δ(1) − 1

k0, k1, k2

)
(1 − TΔ)2k0

(
2TΔ(1 − TΔ)

)k1T 2k2
Δ

((
(1 − fv)z1

)2 + 2 fv(1 − fv)z1 + f 2v
)k2

(
(1 − fv)z2 + fv

)k1

=
[
(1 − TΔ)2 + 2TΔ(1 − TΔ)

[
(1 − fv)z2 + fv

]

+ T 2
Δ

[(
(1 − fv)z1)

2 + 2 fv(1 − fv)z1 + f 2v
]]Δ(1)−1

. (20)

Combining (19) and (20) yields

E
(
z
ζ1,1
1 z

ζ1,2
2 z

ζ1,3
3

)
= E

[(
Ts(1 − fv)z3 + 1 − Ts + Ts fv

)S(Δ)•

(
(1 − TΔ)2 + 2TΔ(1 − TΔ)

(
(1 − fv)z2 + fv

)

+ T 2
Δ

((
(1 − fv)z1

)2 + 2 fv(1 − fv)z1 + f 2v
))Δ

(Δ)•
]
. (21)

By noting that the offspring distribution of a type 2 individual is identical to the
offspring distribution of a type 1 individual, except that a type 2 may give birth to one
additional type 1 individual with probability TΔ(1 − fv) we obtain

E
(
z
ζ2,1
1 z

ζ2,2
2 z

ζ2,3
3

)
= E

[(
Ts(1 − fv)z3 + 1 − Ts + Ts fv

)S(Δ)•

(
(1 − TΔ)2 + 2TΔ(1 − TΔ)

(
(1 − fv)z2 + fv

)

+ T 2
Δ

((
(1 − fv)z1

)2 + 2 fv(1 − fv)z1 + f 2v
))Δ

(Δ)•

(
z1TΔ(1 − fv) + 1 − TΔ(1 − fv)

)]
. (22)

Similarly,

E
(
z
ζ3,1
1 z

ζ3,2
2 z

ζ3,3
3

)
= E

[(
Ts(1 − fv)z3 + 1 − Ts + Ts fv

)S(s)•

(
(1 − TΔ)2 + 2TΔ(1 − TΔ)

(
(1 − fv)z2 + fv

)

+ T 2
Δ

(((
(1 − fv)z1)

2 + 2 fv(1 − fv)z1 + f 2v
))Δ

(s)•
]
. (23)
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Combining these results yields the probability generating function h of the offspring
distribution of a type 1, 2, 3 individual respectively. That is, h(z̄)1 is given by (21),
h(z̄)2 is given by (22) and h(z̄)3 is given by (23).

The probability generating function h∗ of the initial case is given by

h∗(z̄) = E(z
ζ∗,1
1 z

ζ∗,2
2 z

ζ∗,3
3 )

= E

[(
Ts(1 − fv)z3 + 1 − Ts + Ts fv

)S

(
(1 − TΔ)2 + 2TΔ(1 − TΔ)

(
(1 − fv)z2 + fv

)

+ T 2
Δ

((
(1 − fv)z1

)2 + 2 fv(1 − fv)z1 + f 2v
))Δ

]
. (24)

for z̄ = (z1, z2, z3)T ∈ [0, 1]3, where (S,Δ) is distributed as the joint degree of the
initial case and independent of T . The probability of extinction of the approximating
branching process is given by h∗(q̄ (v)), where q̄ (v) is given by the point in [0, 1]3
closest to the origin that satisfies q̄ (v) = h(q̄ (v)). Thus, by Theorem 1 the probability
of a major outbreak is 1 − h∗(q̄ (v)).

4.1.2 The backward process

We now turn our attention to the backward process and final size of an epidemic
in a population where a fraction fv is vaccinated with a perfect vaccine. To this
end, we introduce the following three types, where individuals are classified by their
vaccination status and the type of the edge alongwhich theywould transmit the disease
if infected.

Type 1: Transmits along triangle edge, no information on vaccination status is avail-
able

Type 2: Transmits along triangle edge and is known not to be vaccinated since it is
successfully infected by its twin

Type 3: Transmits along single edge, no information on vaccination status is avail-
able

To clarify the types a bit more, let v1, v2, v3 be a given triangle. At least one of v2
and v3 belongs to the susceptibility set of v1 by virtue of potential transmissions within
the triangle if some the following events, illustrated in Fig. 7, happens. Note that all
cases infected by virtue of transmission within the triangle v1, v2, v3 are attributed to
v1.

(E1) v2 attempts to infect v1 and v3 attempts to infect v2, both succeed, and v3
does not attempt to infect v1. Or the same thing might happen, with v2 and
v3 interchanged. This results in one type 1 and one type 2 individual in the
approximating branching process. If v1 is represented by a type 1 or 3 individual
this happens with probability

2
(
1 − fv

)2
E(TΔ)E

(
TΔ(1 − TΔ)

)
,
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Fig. 7 At least one of v2 and v3 will belong to the susceptibility set of v1 by virtue of potential transmissions
within the triangle if some of the following types of scenarios (left to right in the picture) occur: E1, E2,
E3, E4. An attempted transmission of the disease is represented by an arrow, an attempted transmission to
a vaccinated individual is represented by an arrow and a blue bar (colour figure online)

if v1 is represented by an individual of type 2 this happens with probability

2(1 − fv)E(TΔ)E
(
TΔ(1 − TΔ)

)
.

(E2) Only one of v2 and v3 attempts to infect v1, and succeeds. The other node does
not attempt to infect any node within the triangle. This results in one type 1
offspring. If v1 is represented by an individual of type 1 or 3 this happens with
probability

2(1 − fv)E(TΔ)E
(
TΔ(1 − TΔ)

)
,

if v1 is represented by an individual of type 2 this happens with probability

2E(TΔ)E
(
TΔ(1 − TΔ)

)
.

(E3) v2 and v3 both attempt to infect v1 and succeeds. This results in two type 1
individuals born in the approximating branching process. If v1 is represented
by an individual of type 1 or 3 this happens with probability

(1 − fv)E(T 2
Δ),

if v1 is represented by an individual of type 2 this happens with probability

E(T 2
Δ).

(E4) v2 attempts to infect v1 and succeeds. The other node, v3, attempts to infect
v2, but fails due to v2 being vaccinated. The individual v3 does not attempt to
infect v1. In this scenario, v2 belongs to the susceptibility set of v1. However,
we do not include v2 is the approximating branching process. This does not
have any impact on the result of our analysis, since we are only interested in
the probability of extinction of the backward process and v2 does not produce
any offspring in this process.
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4.1.3 Expected final size

Let b(v) and b(v)∗ be the probability generating function of the offspring distribution of
the three types of the approximating backward branching process and of the ancestor,
respectively. Furthermore, let ζ̄i = (ζ b

i,1, ζ
b
i,2, ζ

b
i,3) be distributed as the offspring of

a type i, i = 1, 2, 3, individual and denote by Es the conditional expectation given
that the parent of ζ b

i,1, ζ
b
i,2, ζ

b
i,3 is susceptible. Let further ζ̄∗ = (ζ b∗,1, ζ

b∗,2, ζ
b∗,3) be dis-

tributed as the offspring of the ancestor. Denote the extinction probability of a process
descending from a type i individual by qbi , i = 1, 2, 3 and let q̄b = (qb1 , qb2 , qb3 )T.

To find an expression for b(v), we first note that for z̄ = (z1, z2, z3)T

E
(
z̄ ζ̄3

)
= fv + (1 − fv)Es

(
Es

(
z
ζ b3,3
3 |S(3), Δ(3)

)
Es

(
z
ζ b3,1
1 z

ζ b3,2
2 |S(3), Δ(3)

))

(25)

where, as before, (S(i), Δ(i)) is distributed as the joint degree of a type i individual,
i = 1, 2, 3.

Now

Es

(
z
ζ3,3
3 |S(3), Δ(3)

)
=

∑

k0+k1=S(3)−1

(
S(3) − 1

k0, k1

)
zk13 E(Ts)

k1E(1 − Ts)
k0

= (
E(Ts)z3 + 1 − E(Ts)

)S(3)−1
. (26)

By conditioning on the number of triangles k2 in which an event of type E3 occurs,
the number of triangles ka1 in which an event of type E1 occurs, the number of triangles
kb1 in which an event of type E4 occurs and the number of triangles kc1 in which an
event of type E2 occurs we obtain

Es(z
ζ3,1
1 z

ζ3,2
2 |S(3), Δ(3))

=
∑

k0+ka1+kb1+kc1+k2=Δ(3)

(
Δ(3)

k0, ka1 , k
b
1 , k

c
1, k2

)
E(1 − TΔ)2k0

(
2E(TΔ)E

(
TΔ(1 − TΔ)

)
(1 − fv)

)ka1

(
2E(TΔ)E

(
TΔ(1 − TΔ)

)
fv

)kb1(
2E(TΔ)E

(
(1 − TΔ)2

))kc1

E(TΔ)2k2 z
ka1
2 z

ka1+kc1+2k2
1

=
((

E(1 − TΔ)
)2 + 2E

(
TΔ

)
E

(
TΔ(1 − TΔ)

)
(1 − fv)z2z1

+ 2E(TΔ)E
(
TΔ(1 − TΔ)

)
fv

+ 2E(TΔ)E
(
(1 − TΔ)2

)
z1 + E(TΔ)2z21

)Δ(3)

. (27)
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Inserting the right hand sides of (26) and (27) in (25) gives

E(z
ζ3,1
1 z

ζ3,2
2 z

ζ3,3
3 )

= fv + (1 − fv)E

[(
E(Ts)z3 + 1 − E(Ts)

)S(s)•

((
E(1 − TΔ)

)2 + 2E(TΔ)E
(
TΔ(1 − TΔ)

)
(1 − fv)z1z2

+ 2E(TΔ)E
(
TΔ(1 − TΔ)

)
fv

+ 2E(TΔ)E
(
(1 − TΔ)2

)
z1 + E(TΔ)2z21

)Δ
(s)•

]
. (28)

Similarly

E(z
ζ2,1
1 z

ζ2,2
2 z

ζ2,3
3 ) = E

[(
E(Ts)z3 + 1 − E(Ts)

)S(Δ)•

((
E(1 − TΔ)

)2 + 2E(TΔ)E
(
TΔ(1 − TΔ)

)
(1 − fv)z1z2

+ 2E(TΔ)E
(
TΔ(1 − TΔ)

)
fv

+ 2E(TΔ)E
(
(1 − TΔ)2

)
z1 + E(TΔs)

2z21

)Δ
(Δ)•

]
. (29)

and

E(z
ζ1,1
1 z

ζ1,2
2 z

ζ1,3
3 ) = fv + (1 − fv)E(z

ζ2,1
1 z

ζ2,2
2 z

ζ2,3
3 ). (30)

Combining these results yields the probability generating function of the offspring
distribution of the three types; b(v)(z̄)3 is given by (28) and b(v)(z̄)2 is given by (29).
By replacing (S(s)• ,Δ

(s)• ) in the right hand side of (28) by (S(Δ)• ,Δ
(Δ)• ) we obtain

b(v)(z̄)1.
Also by replacing (S(s)• ,Δ

(s)• ) in the right hand side of (28), but now by (S,Δ) we
obtain the probability generating function b(v)∗ (z̄) of the offspring of the initial case.
The expected final size of the epidemic, conditioned on that a major outbreak occurs,
is given by

1 − b(v)∗ (q̄b).

5 Numerical example

Consider for now the special case where Ts = TΔ. With some abuse of notation we
denote Ts = TΔ by T , i.e. T = Ts = TΔ is one-dimensional here. Under very general
assumptions, increasing the heterogeneity in infectiousness leads to a decrease in the
probability of a major outbreak, the expected final size and R0 (Kuulasmaa 1982;
Meester and Trapman 2011; Miller 2008), see also Ball (1985); Kenah and Robins
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(2007); Miller (2007). In particular, for a fixed (marginal) transmission probability
E(T ), the probability of a major outbreak and the expected final size are maximized if
T = E(T ) with probability 1 and minimized if P(T = 1) = E(T ) = 1− P(T = 0).
Similarly, for given E(T ), R0 is maximized if T = E(T ) with probability 1 and
minimized if P(T = 1) = E(T ) = 1 − P(T = 0).

We illustrate this with the following two examples. In this first example we assume
that T = Ts = TΔ. Consider the three degree distributions

1. p(2, 1) = 1
2. p(4, 0) = 0.95 = 1 − p(2, 1)
3. p(0, 2) = 0.95 = 1 − p(2, 1).

That is, in all three degree distributions the total degree is 4 with probability 1.
In addition, distribution 1 corresponds to a network where every node is member of
exactly one triangle. Distribution 2 corresponds to a network where a node is not a
member of any triangle with probability 0.95, while with probability 0.05 a node is
member of one triangle. Finally, distribution 3 corresponds to a network where a node
is a member of two triangles with probability 0.95, while with probability 0.05 a node
is member of one triangle.

Furthermore, let T have distribution Beta(α, α) for some α > 0. That is, T has
density,Cαxα−1(1−x)α−1, on the interval (0, 1), whereCα is a normalizing constant.
Then E(T ) = 1/2 and we can tune the heterogeneity of the infectivity of infected
individuals by varying α. In particular

E(T 2) = 1

2

(
1 − 1

2 + α−1

)
.

Note that α = 1 corresponds to T ∼ U (0, 1), with α → ∞ corresponding to T
becoming a point mass at 1/2. HereU (0, 1) denotes the uniform distribution on (0, 1).
Figure 8 shows the probability that a major outbreak does not occur, the expected final
size, R0 and the critical vaccination coverage f (c)

v as functions of α or E(T 2).
As can be seen in Fig. 8, ignoring actual heterogeneity of infectivity in this case

leads to an overestimation of the probability of a major outbreak (Fig. 8a, b). This
effect is particularly evident in the presence of high clustering; the steeper slope of the
curve corresponding to distribution 3 (Fig. 8b) and the relatively low probability of a
major outbreak when α is small can be explained by the fact that the approximating
forward branching process is close to being critical when α is small. Figure 8c, d shows
that heterogeneity of infectivity has virtually no impact on the expected final size of a
major outbreak and R0 in the near absence of clustering, which is in line with known
results for unclustered networks [see, for instance, section 4 in Miller (2008)]. In the
presence of clustering, on the other hand, ignoring heterogeneity of infectivity leads
to an underestimation of the expected final size and a substantial overestimation of the
critical vaccination coverage f (c)

v . Note that R0 and f (c)
v depend on the distribution

of T only through the first and second moment of T .
Next, we relax the assumption Ts = TΔ and investigate the impact of the correlation

ρ between Ts and TΔ on the spread of the disease. To this end, we consider a model
where as before Ts and TΔ both have distribution Beta(α, α) and where the correlation
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ρ = ρ(t) may be tuned by varying t ∈ [−1, 1]. Here ρ(t) is increasing in t with
ρ(−1) = −1 and ρ(1) = 1. The degree distribution of the underlying graph is given
by distribution 1 above.

To construct such a model, let the joint distribution of Ts and TΔ be as follows. Let
N1, N2, N3 be three independent standard normal random variables, and assume that
the joint distribution of Ts and TΔ is given by

T
d= (F−1

α (Φ(Ns)), F
−1
α (Φ(NΔ))),

where Fα and Φ are the CDF’s of the distributions Beta(α, α) and N (0, 1), and Ns

and NΔ are the standard normal random variables

Ns = √|t |N1 + √
1 − |t |N2,

NΔ = sign(t)
√|t |N1 + √

1 − |t |N3.

With little effort one can show that ρ(t) is indeed increasing in t , that (by the symmetry
of the distribution Beta(α, α)) ρ(−1) = −1 and ρ(1) = 1, and that Ts and TΔ are
independent for t = 0. As can be seen in Fig. 9 the probability 1− f ∗(q̄) that a major
outbreak occurs increases as the correlation ρ(t) decreases. This effect is substantial
when heterogeneity in individual infectivity is high (i.e. α is small) but wanes as
the heterogeneity decreases (i.e. α increases). This can be explained by the fact that
for a fixed value of α the probability that an infectious individual will not transmit
the disease to any of its susceptible neighbours decreases as t increases, and that
this probability is more sensitive to changes in t if the heterogeneity in individual
infectivity is higher [cf. Kuulasmaa (1982)]. It should be noted that R0 and the critical
vaccination coverage f (c)

v do not depend on the correlation ρ(t), which can be seen
from the expression for the mean matrix in (9) and (18).

6 Discussion

In this paper, we have incorporated clustering in the spread of an infectious disease
by allowing for groups of size three with non-overlapping edges. It is, in principle,
straightforward to extend the methods used in this paper to larger group sizes. The
CMC may, for instance, be generalized to larger group sizes as follows. Let K =
{k1, . . . , kr } ⊂ N≥2 be the set of possible group sizes. In the matching procedure,
each node is equipped with an r -dimensional degree in N

r
0. The i th component (the

ki -degree) of a degree specifies the number of groups of size ki to which the node
in question belongs. Analogously to the construction of a CMC graph, groups are
then formed by creating one list for each group size; a node with ki -degree di appears
precisely di times in the list corresponding to groups of size ki . The lists are then
shuffled and half-edges of nodes in positions k+1, . . . , k+ki in the ki -list are joined.
The structure of a graph so obtainedwould be characterized by fully connected cliques,
and similar to that of a random intersection graph (Ball et al. 2014). One possible
approach to investigate epidemics on such graphs would be to approximate the spread
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Fig. 8 The impact of heterogeneity in infectivity for the three degree distributions. With some abuse of
notation we write T = Ts = TΔ. a The probability that a major outbreak does not occur as a function of α.
b The probability that a major outbreak does not occur as a function of E(T 2). c The expected final size of
a major outbreak as a function of α. d The expected final size of a major outbreak as a function of E(T 2).

e The basic reproduction number R0 as a function of E(T 2). f The critical vaccination coverage f (c)
v as a

function of E(T 2)

of the disease by a multitype Galton Watson process where groups (or cliques) are
represented by the particles of the branching process. The types of the approximating
branching process would then be vectors inN2 of the form (m, n), wherem represents
the size of the clique and n represents the number of members of the clique that the
primary case of the clique attempts to infect. Another possible approach would be to
use an infinite type branching process in the spirit of Ball et al. (2014). We believe
that the result would be analogous to the results obtained in Ball et al. (2014).
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Fig. 9 The probability that a major outbreak does not occur as a function of α and t
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Appendix: Proof of proposition 1

Let d̄ = {(Si ,Δi )}i∈N be a given (i.e. non-random) degree sequence that satisfies the
following regularity assumptions.

(A1)
∑N

i=1 1(Si=k1,Δi=k2)
N → p(k1, k2) for any k1, k2 ∈ Z≥0.

(A2)
∑N

i=1 Δ2
i

N → E(Δ2) and
∑N

i=1 S
2
i

N → E(S2)

where (S,Δ) has distribution p, which is assumed to satisfy A1–A2 in Sect. 2.1.
Let further G = {GN }N∈N be a sequence of graphs generated by the CMC, where the
degree sequence of GN is given by d̄N = {(Si ,Δi )}Ni=1 and denote D(N )

S = ∑N
i=1 Si .

Under the assumptions A1–A2 the expected number of self-loops and the expected
number of multiple edges are both of order O(1) [cf. Van der Hofstad (2016, prop.
7.11)]. Denote by AN the number of wedges of GN that are “deleted” when merging
multiple edges and erasing self-loops, that is

AN =
N∑

i=1

(
Si + 2Δi

2

)
2 − |WGN∧ | =

N∑

i=1

(Si + 2Δi )(Si + 2Δi − 1) − |WGN∧ |,

then E(AN ) = O(1).
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From the definition of AN , we deduce that the total number of ordered triangles of
GN is bounded from below by |WGN

Δ | ≥ ∑N
i=1 2Δi − AN and the total number of

ordered wedges is bounded from above by

|WGN∧ | ≤
N∑

i=1

(
Si + 2Δi

2

)
2 =

N∑

i=1

(Si + 2Δi )(Si + 2Δi − 1).

Therefore, by the definition of C(GN ) and the assumptions above

C(GN ) ≥

(∑N
i=1 2Δi
N

)
− AN

(∑N
i=1(Si+2Δi )(Si+2Δi−1)

N

) P→ E(2Δ)

E((2Δ + S)2) − E(2Δ + S)
(31)

as N → ∞.
This lower bound is tight in the limit as the number of nodes N → ∞. Indeed,

denote byWGN
s the set of ordered triangles of GN that consists solely of single edges,

i.e.

WGN
s = {(u, v, w) ∈ V 3

N : (u, v), (u, w) and (v,w) are single edges},

where VN is the node set of GN . Now, whenever D
(N )
S ≥ 6

E
(
|WGN

s |
)

≤
∑

i

⎛

⎝
(
Si
2

)∑

j

S j

D(N )
S − 2

(
∑

l

Sl

D(N )
S − 3

(
(S j − 1)(Sl − 1)

D(N )
S − 5

))⎞

⎠

(32)

where the sums run over the integers 1, . . . , N .
Dividing by N in (32) and letting N approach infinity gives E(|WGN

S |)/N → 0 as

N → ∞. Thus |WGN
S |/N→ 0 in probability. Repeating this procedure for triangles

formed by a combination of triangle and single edges gives

C(GN )
P−→ E(2Δ)

E((2Δ + S)2) − E(2Δ + S)
. (33)

The assertion now follows by bounded convergence and the law of large numbers.
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