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White matter hyperintensities (WMH) are an important 
predictor of both stroke and cognitive impairment.1 

Their prevalence increases markedly with age,1 and hyper-
tension is an important independent risk factor.2,3 Both the 

duration of hypertension and its severity predict the presence 
and extent of WMH.2,3 They are believed to represent cerebral 
small vessel disease (SVD), although their pathogenesis is 
incompletely understood. Twin and family studies quantifying 
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WMH on MRI suggest that the heritability (proportion of dis-
ease risk explained by genetic predisposition) is as high as 
55% to 80%.4–7 Despite this, genome-wide association stud-
ies (GWAS) have only identified 1 common variant increasing 
WMH risk at chromosome 17q25.8,9

This inability of GWAS to identify the variants accounting 
for the expected genetic risk, or missing heritability, has been 
reported in other complex genetic diseases in which the cumu-
lative risk explained by common variants identified by GWAS 
is considerably less than that predicted by the heritability found 
in epidemiological studies.10 Several proposals have been sug-
gested to account for these discrepancies, including a role for 
rare variants that are not easily detectable with GWAS arrays, 
as well as gene–environment interactions, and epistasis.10

Another confounding factor is potential heterogeneity of the 
phenotype. If it is not accounted for in GWAS experiments, 
it could markedly reduce the power to detect genetic associa-
tions. This may be particularly relevant for WMH in which 
neuropathological studies have suggested heterogeneous dis-
ease processes.11,12 It has been suggested that smaller punctate 
lesions may represent a nonischemic cause, whereas larger 
confluent lesions are more likely to be due to SVD pathology.13

Hypertension is a well-established risk factor for WMH,2,3 
and in hypertensive individuals, WMH pathology may differ 
from that in nonhypertensive individuals, possibly with a greater 
extent of ischemic SVD.14 Therefore, WMH genetic architec-
ture might also differ across patient subgroups defined on the 
basis of vascular risk factors. We hypothesized that WMH heri-
tability estimates would increase if the study cohort was divided 
on the basis of presence or absence of WMH-associated risk 
factors because of individual subgroups having reduced hetero-
geneity. GWAS data from unrelated individuals can be used to 
obtain an estimate of heritability.15 Using genome-wide com-
plex trait analysis (GCTA), the proportion of phenotypic vari-
ance explained by single nucleotide polymorphisms (SNPs) on 
conventional genotyping arrays can be determined.

To examine these associations, we used GWAS data from 
2366 subjects with ischemic stroke in whom the WMH volume 

(WMHV) was quantified. These individuals have more severe 
WMH than do age-matched population individuals,1 and this 
may, therefore, increase power when examining genetic asso-
ciations with WMHV. We first performed multivariate regres-
sion to determine the most important risk factors in our data. 
We then used GCTA to estimate the heritability of WMH in 
all individuals and in the presence and absence of risk factors, 
including hypertension.

Methods
Subjects
Patients with ischemic stroke enrolled through 7 hospital-based 
studies and 1 population-based cohort underwent genome-wide ge-
notyping and volumetric WMH analysis, as previously described9 
(Methods in the online-only Data Supplement). All subjects were 
adults (>18 years) of self-reported European ancestry, and had a di-
agnosis of ischemic stroke of any subtype. Exclusion criteria were 
cerebral autosomal dominant arteriopathy with subcortical infarcts 
and leukoencephalopathy, vasculitis, demyelinating, and mitochon-
drial disorders. Cohort demographics and clinical characteristics are 
shown in Table 1. Cases were subtyped based on clinical features, 
brain imaging, and ancillary investigation findings using the Trial 
of Org 10172 in Acute Stroke Treatment (TOAST) classification.16 
Subtyping was performed at individual recruitment centers by an ex-
perienced stroke physician or neurologist.

Risk Factor Definitions
Hypertension was defined as prescription of antihypertensives before 
stroke or systolic blood pressure >140 mm Hg or diastolic blood pres-
sure >90 mm Hg >1 week post stroke. Hypercholesterolemia was de-
fined as treatment with lipid-lowering agents before stroke or elevated 
serum cholesterol (>5.2 mmol/L) on stroke admission. Ever-smoker 
was defined as current and ex-smokers. Type 2 diabetes mellitus was 
defined as a previous diagnosis. Ischemic heart disease was defined as 
known diagnosis of coronary artery disease or self-reported history of 
angina, myocardial infarction, coronary bypass surgery, or percutane-
ous coronary intervention.

Neuroimaging Analysis
MRI scans were acquired using different scanners at individual 
centers as part of routine clinical practice for evaluation of stroke. 

Table 1. Cohort Demographics and Clinical Characteristics

WTCCC2-UK WTCCC2-D Milan MGH ASGC ISGS SWISS Total

Age, y (SD) 69.3 (13.7) 66.6 (12.3) 57.5 (14.3) 66.3 (14.6) 65.5 (13.3) 68.4 (14.3) 67.0 (10.4) 66.3 (13.8)

Men (%) 313 (60.5) 425 (62.0) 92 (60.5) 333 (59.9) 59 (56.7) 129 (62.0) 55 (48.7) 1406 (60.2)

Hypertension (%) 364 (70.4) 486 (70.8) 86 (56.6) 356 (64.0) 80 (76.9) 126/207 (60.9) 83 (73.5) 1581/2335 (67.7)

Diabetes mellitus (%) 93 (18.0) 153 (22.3) 20 (13.2) 113 (20.3) 18 (17.3) 8/25 (32.0) N/A 405/2040 (19.9)

High cholesterol 297/449 (66.1) 317 (46.4) 93 (61.2) 226 (40.6) 52 (50.0) 49/127 (38.6) N/A 1034/2074 (49.9)

Ever-smoker 332/514 (64.6) 240 (35.0) 63 (41.4) 284/449 (63.3) 26/99 (26.3) 50/207 (24.2) N/A 995/2207 (45.1)

IHD (%) 99/516 (19.2) 109 (15.9) 20 (13.2) 114 (20.5) 38 (36.5) 50/207 (24.2) N/A 430/2221 (19.4)

SVD stroke (%) 117 (22.6) 57 (8.3) 9 (5.9) 67 (12.1) 5 (4.8) 27 (13.0) N/A 282/2223 (12.7)

LAA stroke (%) 103 (19.9) 215 (31.3) 34 (22.4) 128 (23.0) 22 (21.2) 39 (18.8) N/A 541/2223 (24.3)

CE stroke (%) 79 (15.3) 169 (24.6) 29 (19.1) 224 (40.3) 50 (48.1) 57 (27.4) N/A 608/2223 (27.4)

Unknown (%) 218 (42.2) 245 (35.7) 80 (52.6) 204 (36.7) 27 (30.0) 85 (40.9) N/A 859/2223 (38.6)

Total 517 686 152 556 104 208 113 2336

ASGC indicates Australian Stroke Genetics Collaborative; CE, cardioembolic; D, Germany; IHD, ischemic heart disease; ISGS, Ischemic Stroke Genetics Study; 
LAA, large artery atherosclerosis; MGH, Massachusetts General Hospital; N/A, not applicable; SVD, small vessel disease; SWISS, Siblings With Ischemic Stroke 
Study; UK, United Kingdom; and WTCCC2, Wellcome Trust Case Control Consortium-2.



350  Stroke  February 2015

WMHV was measured in the hemisphere contralateral to acute in-
farction to avoid confounding by T2 hyperintense signals because of 
acute stroke. Trained raters blinded to all patient information ana-
lyzed anonymized MRI scans. All supratentorial white matter and 
deep gray matter lesions were included, with the exception of WMH 
corresponding to lacunar infarcts. Each center excluded between 5 
and 12.5% of MRI scans because excessive movement of artifact, 
incomplete brain coverage, or bihemispheric infarcts (other than la-
cunar) precluded accurate WMH quantification.

To account for normal interindividual variability in head size, an 
estimate of total intracranial volume (TICV) was derived, using site-
specific volumetric methodology.

MRI scans from the Massachusetts General Hospital, Ischemic 
Stroke Genetics Study (ISGS), and Australian Stroke Genetics 
Collaborative (ASGC) studies were analyzed in Boston. Siblings 
With Ischemic Stroke Study (SWISS) scans were analyzed in the 
same way at the University of Virginia by the Boston-trained rater. 
Fluid-attenuated inversion recovery sequences were analyzed us-
ing an MRIcro (http://www.mricro.com), a semiautomated method 
described previously.17 Using operator-mediated quality assurances, 
overlapping regions of interest corresponding to WMH produced the 
final maps for WMHV calculation. Intracranial area was derived as a 
validated marker of TICV as the average of 2 midsagittal slices traced 
using anatomic landmarks on T1 sequences.18

The Wellcome Trust Case Control Consortium-2 (WTCCC2) and 
Milan cohorts were analyzed in London using DISPunc semiautomated 
lesion drawing software.19 WTCCC2 consisted of cases recruited from 
the following centers: Munich, St. George’s, Oxford, and Edinburgh. 
For WMH quantification, fluid-attenuated inversion recovery was pri-
marily used, and in its absence, T2 was used. A seed at the lesion border 
was first manually marked and then outlined automatically based on 
the signal intensity gradient. Regions of interest were manually cor-
rected as required. For TICV, T2 was primarily used, and in its absence, 
fluid-attenuated inversion recovery sequences. Images were segmented 
using an automated program, SIENAX,20 and TICV was derived by 
summing cerebrospinal fluid, gray and white matter volumes.

WMH quantification agreement across the 2 main reading centers 
was performed for 50 randomly selected scans; agreement was good 
(intraclass correlation coefficient, 0.95; confidence interval, 0.91–0.97).

Genotype Analysis
All genotyping was performed using the Illumina Human660W-
Quad, 650K-Quad, or 610-Quad beadchips with the exception of 
Massachusetts General Hospital samples genotyped on the Affymetrix 
6.0 Beadchip. Standardized quality control procedures were applied 
before imputation using IMPUTE version 2 (http://mathgen.stats.
ox.ac.uk/impute/impute_v2.html) and HapMap3 and 1000 Genomes 
Project Phase pilot (June 2010). Imputed genotype dosage data were 
converted to hard-call using a strict level of confidence (r2>0.95) in 
PLINK version 1.07 (http://pngu.mgh.harvard.edu/≈purcell/plink/). 
Per-center strict quality control procedures were then applied; SNPs 
that were either rare (minor allele frequency, <0.01) or missing in 
>1% of genotypes were discarded. After quality control, there were 
472,591 consensus autosomal SNPs from the merged genotyped data 
remaining for heritability analysis.

Statistical Analyses
For statistical analyses, SPPS version 16 (http://www.ibm.com/soft-
ware/uk/analytics/spss) and R version 3.1.1 (http://www.r-project.
com) were used, and P<0.05 was considered significant. To minimize 
WMHV measurement biases secondary to differing imaging param-
eters, MRI scans from individual centers were analyzed separately 
and divided into groups based on the availability of fluid-attenu-
ated inversion recovery or T2 for WMH quantification (Table I in 
the online-only Data Supplement). Single-hemisphere WMHV was 
doubled to obtain whole-brain values and log-transformed. WMHV 
was adjusted for age and TICV by deriving standardized residuals 
from a linear regression model, including these as predictors. For 
SWISS samples only, WMHV was adjusted for intracranial volume 

before transformation by multiplying by the ratio of mean intracra-
nial area:individual intracranial area. The age- and TICV-adjusted 
WMHV residuals formed the phenotype for risk factor predictor and 
heritability analyses.

Predictors of WMHV
Univariate regression was used to assess the relationship of binary 
cardiovascular risk factors (hypertension, diabetes mellitus, ever-
smoker, sex, ischemic heart disease, and hypercholesterolemia) with 
adjusted WMHV. Subjects with missing risk factors or subtype in-
formation were excluded from individual analyses. Stroke subtypes 
were also assessed as predictors of adjusted WMHV. Subjects with no 
determined stroke cause or >1 potential stroke cause were excluded 
from these analyses. All significant risk factors were included in a 
multivariate linear regression, predicting adjusted WMHV, and those 
with persistent significance were used to stratify the data for heritabil-
ity analyses.

Heritability Analyses
To estimate the heritability from the GWAS data, we used the ge-
nome-wide Complex Tool version 1.02 (http://www.complextrait-
genomics.com/software/gcta/).15,21 This estimates the phenotypic 
variance attributable to common SNPs, referred to here as SNP heri-
tability (H

SNP
). Statistically significant H

SNP
 was defined as P<0.05 for 

all likelihood ratio tests applied to the analyses. First, a genetic rela-
tionship matrix was derived on a per-chromosome basis and merged 
into a single autosomal matrix and adjusted for prediction errors due 
to imperfect linkage disequilibrium. One of a pair of individuals with 
estimated relatedness ≥0.125 was removed, corresponding to third-
degree relatives. Ancestry informative principal components were 
derived within GCTA.

We first calculated the H
SNP

 of WMHV adjusted for age and TICV 
in the entire cohort, using a restricted maximum likelihood, cova-
rying for 10 ancestry principal components. To determine the effect 
of controlling for clinically important covariates, we performed a 
second analysis in which sex and hypertension status were added as 
covariates.

To test the hypothesis that WMH heritability increases in risk 
factor–defined groups, we derived H

SNP
 in subjects subgrouped on 

the basis of presence or absence of significant predictors of WMHV. 
In these stratified analyses, WMHV was adjusted only for age and 
TICV. We needed to determine whether increases in H

SNP
 in the pres-

ence of risk factors were significantly more than expected by chance. 
One thousand permutations were performed in which subsets of in-
dividuals were selected randomly at rates reflecting the risk factor 
prevalence in individual centers (Table 1). H

SNP
 was calculated in 

these subsets, and P values reflected the proportion of permutations 
in which H

SNP
 was greater or equal to the observed H

SNP
 within risk 

factor–defined groups.
We also applied bivariate linear mixed modeling within GCTA22 

to calculate the genetic correlation of WMHV, in the presence and 
absence of significant risk factors, as tagged by genome-wide SNPs. 
In this setting, genetic correlation reflects the extent to which ge-
netic susceptibility is shared between risk factor–defined subgroups. 
Finally, genotype–environment interactions were investigated using 
a model that included the main effects of the environmental factor 
as fixed effects and the genotype–environment interaction effect as 
random effects to estimate the variance of the genotype–environment 
interaction term.

Results
Predictors of WMHV
In univariate analyses, female sex, hypertension, diabetes mel-
litus, and SVD stroke subtype were significant predictors of 
WMHV (Table II in the online-only Data Supplement). After 
multivariate linear regression, female sex (B=0.097; SE=0.061; 
P=0.021), hypertension status (B=0.138; SE=0.045; P=0.02), 

http://www.mricro.com
http://mathgen.stats.ox.ac.uk/impute/impute_v2.html
http://mathgen.stats.ox.ac.uk/impute/impute_v2.html
http://pngu.mgh.harvard.edu/ <2248> purcell/plink/
http://www.ibm.com/software/uk/analytics/spss
http://www.ibm.com/software/uk/analytics/spss
http://www.r-project.com
http://www.r-project.com
http://www.complextraitgenomics.com/software/gcta/
http://www.complextraitgenomics.com/software/gcta/
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and SVD stroke subtype status (B=0.430; SE=0.061; P<0.001) 
independently predicted WMHV (Table III in the online-only 
Data Supplement), and they were, therefore, taken forward to 
stratified heritability analyses. The small number of SVD sub-
type individuals, however, precluded SVD stratified heritabil-
ity analyses using GCTA.

Heritability Analyses
We estimated that a significant proportion of age- and TICV-
adjusted WMHV variance was attributable to common SNPs 
(H

SNP
=0.21; SE=0.09; P=0.0065; Table 2). H

SNP
 estimates for 

WMHV remained stable after additional adjustment for sex 
and hypertension status (H

SNP
=0.23; SE=0.09; P=0.0026).

H
SNP

 estimates were higher among hypertensive individu-
als (H

SNP
=0.45; SE=0.12; P=7.99×10−5), and this increase was 

greater than that expected by chance (P=0.012 from permuta-
tion). In contrast, estimates were lower and nonsignificant in 
nonhypertensive individuals (H

SNP
=0.13; SE=0.25; P=0.13). 

H
SNP

 was also higher among women (0.40 versus 0.18 in men), 
but this was not greater than that expected by chance (P=0.164 
from permutation).

We estimated the degree of genetic correlation of WMHV 
in the presence and absence of significant risk factors. We 
identified a significant genetic correlation between men and 
women (r2=0.83; P=0.04). Conversely, we found no signifi-
cant genetic correlation in WMHV between hypertensive and 
nonhypertensive individuals (r2=0.15; P=0.40). These results 
indicate that SNPs predicting WMHV are shared between 
men and women, but they differ for hypertensives and nonhy-
pertensives. This was also supported by interaction analyses, 
which revealed significant gene–environment interaction with 
hypertension status (V

g×e
 =0.33; SE=0.17; P=0.017) but not 

with sex (P=0.50; Table 3), indicating that genetic risk factors 
interact with hypertension status to increase WMHV.

Discussion
Using GWAS data from ischemic stroke cohorts, we found 
that a significant proportion of variance in WMHV is attribut-
able to common SNPs on genome-wide arrays with an herita-
bility estimate of 21% to 23%. In comparison, using similar 
heritability methods has given H

SNP
 estimates of 38% in isch-

emic stroke,23 24% in Alzheimer disease, and 30% in multiple 
sclerosis.24 Our WMHV heritability estimates are consider-
ably lower than those from twin and family studies, which 

range between 55% and 80%.4–7 Our results suggest that a 
major reason for the lower heritability estimates from GCTA 
may be heterogeneity in the WMH phenotype, with differ-
ent genetic architecture in hypertensive and nonhypertensive 
individuals.

Apart from age, hypertension is the most important conven-
tional risk factor for WMH.2,3 We found significantly greater 
heritability estimates of 45% in the hypertensive group com-
pared with 13% in nonhypertensive individuals. We found that 
a significant proportion of WMHV phenotypic variance was 
attributable to a hypertension–gene interaction. This indicates 
that different genetic variations contribute to WMHV in the 
presence and absence of hypertension. In contrast, the high 
genetic correlation between sexes (r2=0.83) without evidence 
of an interaction by sex indicates shared WMH causes in men 
and women, as would be expected. Therefore, the H

SNP
 dif-

ference across sexes is likely driven by nongenetic factors, 
and our finding that female sex is a predictor of WMH could 
reflect sex differences in physiological, immune, or behavioral 
risk factors25 not accounted for in these analyses.

Estimates of heritability derived from genome-wide data are 
often lower when compared with those derived from pedigree-
based studies,15,24 and there are many reasons for this. Unlike 
genome-wide data, pedigree-based heritability estimates cap-
ture the variance not only from common variants but also from 
rare, structural, and poorly tagged variants.15 They are also 
susceptible to overestimation because of shared family envi-
ronments.10 Our data demonstrate that phenotypic heterogene-
ity could also contribute to this discrepancy because traits are 
likely to be less varied in pathogenesis within families than in 
unrelated individuals. This is particularly relevant to WMH, a 
radiological marker of various pathophysiological processes. 
Consistent with this, the H

SNP
 for WMHV is high in cerebral 

autosomal dominant arteriopathy with subcortical infarcts 
and leukoencephalopathy (H

SNP
=0.85), a monogenic disease 

characterized by confluent WMH secondary to a small-vessel 
arteriopathy.26

Our results support the hypothesis of reduced WMH het-
erogeneity among risk factor–defined subgroups and also sug-
gest that different pathophysiological mechanisms contribute 
to disease in hypertensives and nonhypertensives, consistent 
with pathological data.13,14

There are several limitations in this study. First, we use 
genome-wide data from several cohorts genotyped using vari-
ous platforms. To minimize propagating genotyping bias, we 
applied strict levels of imputation confidence and genotyping 
call rates to derive a consensus set of SNPs. As a result of limited 

Table 2. HSNP for WMHV for All Cases and Stratified by 
Significant Risk Factors and Genomic Inflation Factor (λ) for 
WMHV Genome–Wide Association Analyses

Risk Factor Strata n H
SNP

 (SE) P Value λ

All cases 2243 0.21 (0.09) 0.0065* 1.02

Sex Female 889 0.40 (0.20) 0.020* 1.04

Male 1353 0.18 (0.14) 0.092 1.01

Hypertension Hypertensives 1515 0.45 (0.12) 7.99×10−5* 1.05

Nonhypertensives 727 0.13 (0.25) 0.31 1.00

H
SNP

 indicates SNP heritability; SNP, single nucleotide polymorphism; and 
WMHV, white matter hyperintensity volume.

*P<0.05.

Table 3. Genetic Correlation of WMHV Across Risk  
Factor–Stratified Groups and Phenotypic Variance Attributable 
to Gene–Environment Interactions (Vg×e/Vp)

Risk Factor
Correlation 
Coefficient

Correlation  
P Value

Interaction 
Variance

Residual 
Variance

Interaction  
P Value

Sex 0.83 (0.57) 0.04* <0.01 (0.12) 0.21 (0.12) 0.50

Hypertension 0.15 (0.56) 0.40 0.33 (0.17) 0.04 (0.13) 0.017*

Standard errors (SE) shown in brackets. WMHV indicates white matter 
hyperintensity volume.

*P<0.05.
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coverage, heritability estimates are likely to be conservative. 
Second, our cohorts were drawn from several international 
studies, giving the potential for population stratification; how-
ever, we show that all samples used are European in ancestry. 
Furthermore, there are differences in risk factor rates (Table 1) 
among cohorts, raising the possibility of systematic diagnostic 
biases underlying differences in risk factor–stratified heritabil-
ity estimates. However, WMHV genome–wide analyses did 
not reveal significant inflation of test statistics (λ≤1.05) overall 
or within risk factor–stratified groups (for QQ plots).

In summary, our results suggest that different genetic influ-
ences may operate in WMH in hypertensive individuals com-
pared with those found in nonhypertensive individuals. Our 
results suggest that future GWAS studies in WMH may gain 
power by stratifying by hypertension status or by including 
a gene–hypertension interaction term in association models. 
Furthermore, these data may prove relevant to the future stud-
ies of other complex phenotypes.
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