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Abstract: Background: Despite a number of innovations in anti-diabetic drugs and substantial im-

provement in diabetes care, the number of people with diabetes continues to increase, suggesting 

further need to explore novel approaches to prevent diabetes. Type 2 diabetes (T2DM) is characterized 

by beta cell dysfunction and insulin resistance. However, insulin resistance, usually a consequence of 

obesity, is often emphasized and the role of beta cell dysfunction in T2DM is less appreciated.  

Objective and Results: This paper summarizes recent evidence showing the importance of beta cell 

dysfunction in T2DM and refines the “beta cell workload hypothesis”, emphasizing the importance of 

beta cell preservation for the prevention and management of T2DM.  

Conclusion: It is hoped that this novel concept will foster a better understanding of the pathophysiol-

ogy of T2DM by not only medical staff and patients with diabetes, but also the general population, and 

encourage more people to adhere to a healthy lifestyle, eventually resulting in “stopping diabetes”.�
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1. INTRODUCTION 

 The number of people with diabetes continues to in-

crease, even after the United Nations resolution against dia-

betes in 2006 (UN Resolution 61/225). According to the In-

ternational Diabetes Federation, the number of people with 

diabetes throughout the world has reached 425 million and is 

projected to rise to 629 million in 2045 [1]. Every 8 seconds, 

a person dies from diabetes (4.0 million deaths a year), and 

diabetes accounts for 10.7% of global all-cause mortality [1]. 

The global healthcare expenditure for diabetes is estimated 

to be 727 billion dollars [1]. Thus, diabetes is not only a 

medical problem but also one of the biggest socioeconomic 

problems in the world. Most patients with diabetes are classi-

fied as having type 2 diabetes (T2DM). Despite the recent 

development in anti-diabetic medications and improvement 

of diabetes care, the pandemic explosion of diabetes suggests 

the need for a more effective strategy for prevention, and a 

better understanding of the pathophysiology during and after 

the onset of diabetes is essential to achieve this goal. This 

paper proposes a revised beta cell workload hypothesis as a 

new concept to enhance better understanding of the nature of 

the disease and discusses its significance to establish more 

effective prevention, treatment and care of T2DM, updating 
my previous statement [2]. 
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2. BETA CELL DEFICIT IN TYPE 2 DIABETES 

 Type 1 diabetes (T1DM) is characterized by destruction 
of beta cells, mediated mainly by autoimmune attack, and 
develops due to the absolute loss of beta cell mass and en-
dogenous insulin secretion, and this concept is widely ac-
cepted [3]. In contrast, T2DM is characterized by obesity. As 
hyperinsulinemia has often been observed in patients with 
T2DM since the development of an insulin assay in the 
1970s, the concept of “insulin resistance” has been proposed 
[4] and attracted attention from many researchers and clini-
cians. While exploring the mechanisms of insulin resistance, 
the role of beta-cell dysfunction in the pathogenesis of 
T2DM has often been less appreciated and sometimes even 
ignored. 

 However, recent studies that included a relatively large 
number of subjects with an appropriate control have revealed 
a reduction in beta cell mass by 30 to 65% in patients with 
T2DM (Fig. 1) [5, 6]. A deficit of beta cell mass was also 
observed among different ethnic groups [7-9], suggesting 
universal pathological features across ethnicities. 

 Endogenous insulin secretion is regulated by beta cell 
mass and function. Since it is difficult to distinguish these 
components clearly, these two factors are often referred to as 
“functional beta cell mass” [11]. Nonetheless, the maximum 
acute insulin response to arginine (AIRmax) and postprandial 
insulin secretion has been shown to correlate relatively well 
with beta cell mass [12, 13]. Recent advances in beta cell im-
aging in vivo using positron emission tomography (PET) have 
also suggested a significant correlation between AIRmax and  
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Fig. (1). Beta cell mass in patients with normal glucose tolerance 

(NGT), impaired fasting glycemia (IFG), type 2 diabetes (T2DM) 

and long-standing type 1 diabetes (T1DM). Adapted and modified 

from studies by Butler et al. [5, 10]. 

 

beta cell mass, which declines with duration of T2DM in hu-
mans [14]. 

 Bergmann and Cobelli et al. have shown a hyperbolic 
relationship between insulin sensitivity and insulin secretion, 
and diabetes develops if the increase in insulin secretion is 
insufficient to compensate decreased insulin sensitivity, indi-
cating that beta cell failure is an inevitable factor in the de-
velopment of diabetes [15]. It has been shown that beta cell 
function is already reduced by 50 to 80% at the onset of 
T2DM [16, 17], indicating that both beta cell mass and func-
tion are impaired in people with T2DM. 

 These facts indicate the central role of beta cells in the 
pathogenesis of diabetes [18]. Beta-cell deficit is a common 
pathological characteristic of both T1DM and T2DM, and 
the distinction between the two conditions is likely to be 
related to the extent (almost complete vs. partial) and the 
cause (autoimmune vs. obesity/insulin resistance) of beta cell 
deficit (Fig. 2). 

3. PROGRESSIVE NATURE OF THE DISEASE 

 Beta-cell deficit in T2DM is not only present but is also 
progressive. In the UK Prospective Diabetes Study 
(UKPDS), it was shown that beta cell function was  already  

 

Fig. (2). Changing concepts of pathogenesis of type 1 and type 2 

diabetes. 

 

reduced to 50% of normal at the time of onset of T2DM, and 

continued to decline by ~5% annually [16]. Since the 

reduction in beta cell function has been shown to cause 

worsening of glycemic control and worsen glycemic vari-

ability [19-25], protection of reduced beta cells and preserva-

tion/recovery of functional beta cell mass are important in 

the treatment of T2DM. 

 Then, how does beta cell function change before the on-

set of T2DM? The above-mentioned report from the UKPDS 

suggests that the decline in beta cell function has already 

started ~10 years before the onset of T2DM. It has also been 

reported that beta cell function was reduced by 80% in pa-

tients with prediabetes [17]. 

 A reduction in beta cell mass in patients with prediabetes 

has also been reported (Fig. 1) [5, 26]. Butler et al. suggested 

that 50% loss of beta cell mass is critical to the development 

of T2DM [27]. Taken together, these findings indicate that 

both beta cell mass and function are likely to be already im-

paired before the onset of T2DM (Fig. 3). 

 

Fig. (3). Conceptual schema of beta cell change during development of type 2 diabetes. 
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4. BETA CELL WORKLOAD HYPOTHESIS 

 Then, the next questions are how we can explain this 
progressive nature of T2DM, and how can we explain the 
mechanism of beta cell deficit before the onset of the dis-
ease? 

 To address these questions, we and others have investi-
gated the physiological changes in beta cell mass in humans 
and revealed that beta cell mass is increased by 20 to 50% in 
obese non-diabetic individuals [6, 28]. However, insulin se-
cretion is increased two-fold in obese non-diabetic individu-
als [29], suggesting that insulin secretion from individual 
beta cells, namely “beta cell workload”, is increased in obese 
individuals. 

 Based on these facts, I here propose the “beta cell work-
load hypothesis” (Figs. 4 and 5) [2]. If the workload of indi-
vidual beta cells increases, it is plausible that impairment of 
beta cells occurs through various mechanisms including oxi-
dative stress [30], endoplasmic reticulum (ER) stress [31, 
32], mitochondrial dysfunction [33], amyloid toxicity [34, 
35], inflammatory cytokines [36] and autophagy dysfunction 
[37], even in the presence of a normal glucose level. As a 
result, beta cells eventually die, presumably due to apoptosis, 
and once beta cell mass is reduced, the workload of residual 
beta cells becomes even greater, creating a vicious cycle of 
beta cell dysfunction. A recent rodent study has also sug-
gested beta cell dedifferentiation as a mechanism of beta cell 
loss in diabetes [38, 39]. When functional beta cell mass 
eventually falls to ~50% of normal, hyperglycemia then de-
velops and the decline of functional beta cell mass is further 
augmented by gluco(lipo)toxicity [40]. 

 This hypothesis explains the progressive nature of T2DM 
and is expected to enhance understanding of the disease. 

5. CLINICAL IMPLICATIONS: WHY THIS 

CONCEPT IS IMPORTANT 

 Applying this concept has a number of advantages. The 
beta cell workload hypothesis allows the pathogenesis of 
T2DM to be explained in an integrated manner without con-
sidering beta cell dysfunction and insulin resistance sepa-
rately. This concept indicates the importance of reducing 
beta cell workload to break the vicious cycle of beta cell 
impairment in patients with T2DM, resulting in better gly-
cemic control. Indeed, studies have shown superior glycemic 
durability of treatment with non-insulin secretagogues such 
as metformin and thiazolidinediones compared with that with 
sulfonylureas, which are insulin secretagogues [21, 41]. In-
sulin therapy also induces beta cell rest and is reported to 
improve beta cell function [42, 43], although a recent study 
failed to show better preservation of beta cell function with 
initial insulin therapy in youth with IGT or T2DM [44]. Bet-
ter glycemic durability has also been shown with treatment 
with dipeptidyl peptidase-4 (DPP-4) inhibitors, which en-
hance insulin secretion in a glucose-dependent manner and 
improve beta cell function, compared with that with sulfony-
lureas [22, 45]. Another incretin-based therapy, glucagon-
like peptide-1 (GLP-1) receptor agonists, induce weight loss 
[46], which further reduces beta cell workload. Better gly-
cemic durability with treatment with GLP-1 receptor ago-
nists vs. DPP-4 inhibitors has been  reported  [47, 48].  Also,  

 

 

Fig. (4). Proposed mechanisms of beta cell death before (A) and 

after (B) the development of type 2 diabetes (hyperglycemia). In-

creased beta cell workload induces beta cell loss through various 

mechanisms, and once hyperglycemia develops, gluco(lipo)toxicity 
causes further beta cell loss. 

 

Fig. (5). Chronological change in functional beta cell mass in rela-

tion to beta cell workload during the development of type 2 diabetes 

(T2DM). Adopted from ref [18]. Recent studies have suggested that 

functional beta cell mass is already reduced at the onset of T2DM. 

Excess workload on beta cells induced by insulin resistance contin-

ues, stress-induced beta cell death (“karoshi”) may eventually oc-

cur, and beta cell mass is reduced even before the onset of diabetes. 

Once beta cell mass is reduced, the workload on residual beta cells 

is further exaggerated, reflecting the progressive nature of the dis-

ease. NGT; normal glucose tolerance, IGT; impaired glucose toler-
ance, DI; disposition index. 

Obesity

Insulin resistance

Beta cell workload↑ /overwork

Beta cell dysfunction

Functional beta cell mass↓

• Oxidative stress

• ER stress

• Mitochondrial dysfunction

• Amyloid toxicity

• Inflammatory cytokines

• Autophagy dysfunction

A

Obesity

Insulin resistance

Beta cell workload↑ /overwork

Beta cell dysfunction

Functional beta cell mass↓

Hyperglycemia

• Oxidative stress

• ER stress

• Mitochondrial dysfunction

• Amyloid toxicity

• Inflammatory cytokines

• Autophagy dysfunction

• Glucolipotoxicity

B



124    Endocrine, Metabolic & Immune Disorders - Drug Targets, 2019, Vol. 19, No. 2 Yoshifumi Saisho 

sodium glucose cotransporter 2 (SGLT2) inhibitors, which 
increase urinary glucose excretion and induce weight loss, 
have been shown to improve beta cell function, at least partly 
through reducing beta cell workload [49], and superior gly-
cemic durability compared to sulfonylureas has been re-
ported [50]. Especially, recent cardiovascular outcome trials 
(CVOTs) have shown the improvement of CV outcome with 
treatment with GLP-1 receptor agonists [51, 52] and SGLT2 
inhibitors [53, 54], and consideration of the use of these 
drugs for patients with T2DM and atherosclerotic cardiovas-
cular disease (ASCVD) has been recommended by the 
American Diabetes Association (ADA) [55]. The GRADE 
study comparing glycemic durability among four different 
classes of medication (sulfonylureas, DPP-4 inhibitors, GLP-
1 receptor agonists and insulin) added on to metformin in 
patients with T2DM is ongoing [56]. Above all, this concept 
supports the most important and fundamental role of lifestyle 
modification, which enhances insulin sensitivity and reduces 
beta cell workload [2, 18, 57-59]. 

 On the other hand, T2DM is difficult to cure. Elimination 
of insulin resistance by metabolic surgery is expected to be a 
potential therapy leading to a cure for diabetes [60]. How-
ever, even if drastic weight loss can be achieved after sur-
gery, remission of diabetes occurs in a small proportion of 
subjects [61, 62], which is likely due to reduced beta cell 
mass in these patients. Although patients with T2DM usually 
appreciate the importance of lifestyle modification for gly-
cemic control, the incurable nature of the disease often 
causes negative feelings and exhausts patients, resulting in 
difficulty in maintaining motivation to adhere to treatment in 
the long term. This concept explains the significance of 
maintaining lifestyle modification by emphasizing the im-
portance of protection/preservation of residual beta cells, and 
may enhance patients’ motivation to adhere to therapy. 

 Moreover, this concept explains the importance of beta-
cell protection in the prevention of T2DM. It indicates that 
similarly to patients with T2DM, lifestyle modification and 
maintaining a healthy lifestyle aiming to reduce beta cell 
workload are also important for prevention of T2DM [63-
66], which may enhance motivation for lifestyle modifica-
tion in the general population. Reducing beta cell workload 
with pharmacological interventions have also been shown to 
prevent T2DM onset in patients with prediabetes [43, 64, 67-
70]. Better understanding of the general population may also 
facilitate policy changes to promote a healthier society. 

 Considering beta cell deficit as the common pathogenesis 
in both T1DM and T2DM, this concept provides a clearer 
picture of common and distinct aspects between T1DM and 
T2DM, which fosters the development of common treatment 
strategies such as the use of oral hypoglycemic agents in 
patients with T1DM [71]. It will also facilitate applying 
treatment for T2DM to patients with T1DM or a non-insulin-
dependent state such as those with latent autoimmune diabe-
tes of adults (LADA) or slowly progressive T1DM 
(SPIDDM). On the contrary, patients with T2DM and an 
insulin-dependent state should be treated similarly to those 
with T1DM. From the beta cell point of view, this concept 
allows physicians to treat T1DM and T2DM more sequen-
tially. Although this concept may apply to other types of 
diabetes/glucose intolerance such as monogenic diabetes 

syndromes, e.g., maturity-onset diabetes of the young 
(MODY) and maternally inherited diabetes with deafness 
(MIDD) [72, 73], or gestational diabetes [74, 75], further 
studies will be needed to clarify this issue. 

 Finally, this concept may explain the different patho-
physiology of T2DM among ethnicities. Asians develop 
T2DM with less obesity, i.e., BMI ~23, compared with Cau-
casians, i.e., BMI over 30 [76-78]. We have reported that in 
Japanese there was no significant increase in beta cell mass 
in obese non-diabetic subjects [9, 79] or subjects treated with 
glucocorticoids [80], suggesting a limited increase in beta 
cell mass in the face of obesity and/or insulin resistance in 
Asians. Differences in the compensatory increase in func-
tional beta cell mass in the face of obesity/insulin resistance 
may result in different susceptibility to T2DM among differ-
ent ethnicities as well as individuals [81], which may be use-
ful to develop individualized approaches for different ethnic-
ities and/or areas as part of a global strategy for T2DM pre-
vention. Further research is needed to explore this possibil-
ity. 

CONCLUDING REMARKS 

 Diabetes is now a serious social problem all over the 
world. This paper proposes a novel concept of T2DM that 
will enhance better and correct understanding of the disease 
not only by physicians and medical staff, but also by patients 
with T2DM and the general population. The greatest part of 
therapy for diabetes is lifestyle modification, which requires 
self-management by patients. A patient-centered approach is 
important for the treatment of T2DM [82], and a better and 
correct understanding of the disease is essential for patients 
to select the most appropriate therapeutic option. Better and 
correct understanding also enhances patients’ adherence to 
treatment, resulting in the improvement of treatment effi-
cacy. “Karoshi” is a Japanese term which can be translated 
literally as “death from overwork” causing occupational sud-
den mortality. Hence, we can call beta cell death due to ex-
cess workload under insulin resistance, beta cell “karoshi”, 
which may be more easily understandable for the general 
population. The concept of beta cell “karoshi” may help 
people imagine protecting their own beta cells from over-
work that leads to beta cell death or “karoshi”, and could 
empower and motivate them to make better choices in their 
daily lives. Enhancing better and correct understanding of 
the disease in the general population should be the first step 
toward prevention and will foster “stopping diabetes”. 
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