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Peptides are prevalent in biology, mediating as many as 40% of protein-protein

interactions, and involved in other cellular functions such as transport and

signaling. Their ability to bind with high specificity make them promising

therapeutical agents with intermediate properties between small molecules

and large biologics. Beyond their biological role, peptides can be programmed

to self-assembly, and they are already being used for functions as diverse as

oligonuclotide delivery, tissue regeneration or as drugs. However, the transient

nature of their interactions has limited the number of structures and knowledge

of binding affinities available–and their flexible nature has limited the success of

computational pipelines that predict the structures and affinities of these

molecules. Fortunately, recent advances in experimental and computational

pipelines are creating new opportunities for this field. We are starting to see

promising predictions of complex structures, thermodynamic and kinetic

properties. We believe in the following years this will lead to robust rational

peptide design pipelines with success similar to those applied for small

molecule drug discovery.
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Introduction

Computational modeling is routinely used in the early stages of the drug discovery

process to identify molecules that might bind with high affinity to a particular protein

receptor. Three key aspects that contribute to the success of computational tools are: 1) the

availability of small molecule virtual libraries (e.g., (Irwin and Shoichet, 2005; Shivanyuk

et al., 2007; Bento et al., 2014)), 2) the efficiency of docking software to identify candidates

from the virtual libraries (Murugan et al., 2022), and 3) the accuracy of physics-based

approaches such as alchemical free energy perturbation to determine relative and absolute

binding affinities amongst candidate molecules binding a receptor (Bhati et al., 2017;

Fratev and Sirimulla, 2019; Lee et al., 2020; Limongelli, 2020; Mey et al., 2020). Some of the

limitations include the presence of multiple bindingmodes, plasticity in the receptor, large

conformational changes in the bindingmolecule, highly charged systems, and comparison

across different series of compounds (Chodera et al., 2011; Mobley and Klimovich, 2012;

Mey et al., 2020). Despite the progress of computational platforms for drug discovery,

small molecule drugs typically require a pocket in the receptor protein in order to bind

(Laskowski et al., 1996; Liang et al., 1998; Gao and Skolnick, 2013).
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Peptides are flexible molecules that can bind specifically to

receptors even in the absence of pockets–targets that were once

deemed undruggable by small molecule drugs (Balliu and Baltzer,

2017; Wang et al., 2021). Our cells already use peptides as

signaling molecules (Cunha et al., 2008; Foster et al., 2019;

Dubas et al., 2021), and many protein-protein interactions

take place through peptide epitopes (Milroy et al., 2014;

Pelay-Gimeno et al., 2015; Wai et al., 2018; Aiyer et al., 2021).

Thus, peptides offer the possibility to inhibit interactions present

in disease pathways (Pelay-Gimeno et al., 2015). Furthermore,

peptides are highly programmable for self-assembly, allowing the

generation of functionalized fibers with applications ranging

from scaffolds for tissue regeneration (Loo et al., 2015a) to

bioink (Loo et al., 2015b). Successful computational pipelines

would allow the rational identification of peptides that bind with

high affinity to a particular receptor or have specific self-assembly

properties. However, peptide’s flexible nature, the large sequence

space, and presence of multiple weak interactions that stabilize

the complex, have stymied the development of peptide discovery

pipelines. Achieving success in modeling peptide complexes will

require synergy between several fields which we discuss in this

perspective (see Figure 1).

Infrastructure similar to small molecule discovery pipelines

are already in place for peptides, with an overall lower success

rate. Instead of small molecule virtual libraries, bioinformatic

approaches are typically used to derive peptide libraries based on

known information from the receptor and known binding

partners, reducing the active sequence space from millions

(20n, where n is the length of the peptide) to thousands of

sequences. But, dealing with peptide flexibility reduces the

efficiency of both docking tools and scoring functions to

predict accurate structures (Rentzsch and Renard, 2015; Wang

et al., 2016; Ciemny et al., 2018). Surprisingly, a recent

implementation of AlphaFold (AF) for peptide docking

showed an unprecedented success–despite being trained for a

different task (protein structure prediction) (Jumper et al., 2021;

Ko and Lee, 2021; Tsaban et al., 2022). Combining search

strategies and template-based strategies, PatchMAN has

recently surpassed even the successes from AF under certain

scenarios, leading the way into the structural characterization of

FIGURE 1
Peptide modeling requires synergy between multiple computational techniques and experiments.
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previously unknown peptide-protein interactions (Khramushin

et al., 2022).

The last step needed for a pipeline that can identify high

affinity peptide binders is a way to rank-order peptides by

binding affinity that overcomes limitations in traditional

scoring functions (see Figure 2). A recent assay using

competitive binding with AF has shown the potential to

differentiate between weak and strong peptide binders under

certain conditions (Chang and Perez, 2022a). Some of the

limitations observed in the assay are similar to those found

when using AF for docking and stem from the fact that AF

was only parametrized for predicting protein structures, rather

FIGURE 2
Strategies for rational peptide design. (A). The structure of target protein and its interacting partners is first identified, and interface
features are extracted from the complex. (B) Machine learning models can use these interface features to perform constrained peptide
design for that target. (C) Alternatively, using these interface features, bioinformatics tools can significantly narrow down the sequence
search space. (D) Peptide docking tools or AI tools can then be used to predict binding in the now reduced set of candidate sequences.
Competitive binding study or high throughput binding affinity measurement can rank order the selected sequences from the docking
step. (E) In some cases, orthogonal modeling capable of predicting kinetic and/or thermodynamic properties can further narrow down the
number of possible sequences selected for experimental determination (adapted from (Chang and Perez, 2022b)). (F) Finally, experimental
characterization and validation can be carried out for the now manageable number of predicted peptide binders.
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than binding–thus AF has an implicit bias against bound

peptides. A different approach using an extra layer on top of

AF trained on binding affinity data for the Major

Histocompatibility Complex (MHC type I and II) shows the

ability to differentiate active binders from inactive peptides

(Motmaen et al., 2022). Finally, some physics-based

approaches try to establish methodologies capable of

capturing both the flexibility and binding affinity based on

known binding modes (Morrone et al., 2017; Liu et al., 2020;

Mondal et al., 2022). However, they are still more

computationally demanding and there are no good

benchmark sets showing transferability, convergence, and

associated errors.

Based on our current understanding of the field we expect

significant changes coming from better training of AF like

strategies to the problem of peptide-protein complexes.

There are already instances of this, and the community has

developed efforts for facilitating the use (https://colab.research.

google.com/github/sokrypton/ColabFold/blob/main/

AlphaFold2.ipynb) (Mirdita et al., 2022) and training (https://

github.com/aqlaboratory/openfold) of these technologies.

However, these are all focused on the structure prediction.

What will we need to predict binding affinities or binding

mechanisms? Approaches such as the one presented for

MHC are only possible when enough existing data on

binding affinities is known and are thus not directly

transferable to all systems. Similar to the Protein Structure

Initiative (Montelione, 2012), will the collection and creation of

databases of binding affinities for multiple systems (e.g., similar

to those curated for transcription factor protein-DNA

interactions (Chiu et al., 2019; Fornes et al., 2019)) lead to

new possibilities for the virtual screening of peptide libraries

based on artificial intelligence? And what is the role of physics-

based approaches? Worldwide competition events such as

CAPRI (Janin et al., 2003) and CASP(Moult, 2005) have

spurred development, independent assessment and

standardized benchmark sets for the community–and they

play an important role for the development of similar model

challenges in related fields (e.g. the CyroEM model challenge)

(Lawson et al., 2021).

Key areas of synergy for modeling
peptide behavior

Increasing the size of peptide-protein
databases

Machine learning has already shown promising results for

predicting peptide-protein interactions despite being trained for

a different task–training for peptide binding will require

increasing our structural and energetic understanding of these

interactions. However, the transient nature of peptide-protein

interactions has made it challenging to accumulate large datasets,

both in terms of structures and binding free energies. Both are

needed to develop computational software that predicts high

affinity peptide binders (Cunningham et al., 2020; Motmaen

et al., 2022). Two advances will play key roles to increase database

knowledge to feed machine learning databases: 1) curating

protein-protein structural databases to identify peptide

epitopes and their interaction patterns, as recently shown by

PatchMAN (Khramushin et al., 2022) and others (Peterson et al.,

2017; Aderinwale et al., 2020), 2) establishment of high

throughput/high sensitivity techniques for determining

binding affinities (Nguyen et al., 2019).

The protein data bank (Berman et al., 2002) has an

overrepresentation of structures amenable to the techniques

needed to solve their structures. Thus, stable protein

monomers are overrepresented with respect to multimeric

structures. Furthermore, many intrinsically disordered

proteins (IDP) contain short linear motifs (SLiMs) that bind

proteins transiently through peptide epitopes 3–12 amino acids

long (Krystkowiak and Davey, 2017; Ivarsson and Jemth, 2019).

These interactions are hard to characterize both experimentally

and computationally, but their prevalence (estimated to be up to

100,000 SLiMs) and biological importance makes their

characterization especially important (Tompa et al., 2014). As

many peptide sequences will be able to bind in sites were SLiMs

bind, it will be more important to characterize not only binding

affinities (in terms of Kd) but also the specificity of the binding

region.

A similar issue of binding affinity/specificities can be seen in

determining where in a genome a transcription binding protein

will bind. This community has developed high-throughput

techniques to identify binding affinities both in vivo and

in vitro which are summarized in position binding motifs

(PBMs) and compiled in databases such as

TRANSFAC(Matys et al., 2006) or JASPAR(Fornes et al.,

2019). We expect to see expansion of peptide databases to the

levels seen in the protein-DNA field. Many high-throughput

techniques for detecting binding affinities (Tonikian et al., 2008;

Ivarsson et al., 2014; Jensen et al., 2018; Parker et al., 2019) are

limited by one or more of the following: low binding affinities,

aggregation, rapid equilibrium, low accuracy in estimating purity

and/or concentration of the peptides, qualitative (presence of

binding) instead of quantitative (Kd), and fast dissociation rates

(Nguyen et al., 2019)—thus, resulting in high uncertainties.

Generally, higher accuracy data requires lower throughput

methods such as isothermal titration calorimetry or surface

plasmon resonance (Abraham et al., 2005), limiting the

amount of available data. More recently, developments such

as microfluidic-based approaches (Vincentelli et al., 2015;

Nguyen et al., 2019; Hein et al., 2020) enable a faster

complementary method to high-throughput methods and will

play a key role in increasing our understanding of peptide-

protein binding affinities.
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Bioinformatics

While some high-throughput methods use combinatoric

peptides libraries, bioinformatic tools use knowledge of the

system to create libraries that are more likely to contain

peptides that bind a particular target (Turk and Cantley,

2003). Thanks to advances in sequencing and metagenomic

approaches, there are now extensive sequence libraries

(Bateman et al., 2017; Breitwieser et al., 2017) and efficient

tools to process them (Finn et al., 2011; Remmert et al., 2012;

Potter et al., 2018). Furthermore, their importance for both

computational and experimental researchers has led to

effective pipelines without computational expertise

requirement (Joshi and Blankenberg, 2022). Thus,

bioinformatic approaches take the role of narrowing sequence

space.

Machine learning

With the rapid evolution of this field, any prediction of how

exactly this field will evolve and which databases will be needed

for training will likely be outdated in a few weeks. A promising

trend highlighted by the application of AlphaFold to problems of

protein-protein and peptide-protein structure predictions is the

potential for transferability across macromolecular interactions.

Recently, AlphaFold principles have been used to derive a

protein-nucleic acid structure prediction software (Baek et al.,

2022). Future AI should be aiming to understand

macromolecular interactions independently of the type of

molecule: rather than having an AI for proteins and a

different for small molecules or nucleic acids we need

integrated AI to handle all aspects of molecular

recognition–transferable to other biomolecules like peptoids,

modified proteins, nucleic acids and capable of interacting

with small molecues. A second area of development for AI

will be the identification and correction of biases arising from

training datasets. For example, the training for finding folded

states creates a bias to favor bound structures over unbound

ones–predicting some protein-peptide complexes even when the

peptide should not bind. Finally, the prediction of structures and

binding affinities seem to be on two independent tracks at the

moment–some tools are good for sampling bound states and

others for rank-ordering them by binding affinity (Cunningham

et al., 2020; Chang and Perez, 2022a; Motmaen et al., 2022).

While development in affinity prediction has lagged behind the

structure prediction problem, there is a recent increase in the

number of methods available, some of them now available as

webservers with promising accuracy (Romero-Molina et al.,

2022). It is feasible to think that as binding affinity databases

increase in size and accuracy, these two independent pieces will

be trained together. In this direction, machine learning based

approaches that predict peptide-protein interactions and peptide

binding residues (Lei et al., 2021) can help increase or build

peptide-protein databases.

Physics-based approaches

The promise of these approaches has been their potential to

capture bound states, as well as the thermodynamic and kinetic

properties connecting the different states. This promise has been

compromised by inaccuracies in physics models (force fields),

efficient sampling strategies, and computational cost (Durrant

and McCammon, 2011; Petrov and Zagrovic, 2014). At this point

it seems unfeasible that physics-based approaches will be able to

match the speed and accuracy of structure predictions coming

from machine learning in the near-future. However, once the

structure is known, it might still play a role in determining

thermodynamic (e.g., Kd) and kinetic properties (e.g., kon and

koff) (Zuckerman and Chong, 2016; Paul et al., 2021, 2017;

Dickson et al., 2017; Zimmerman et al., 2018; Wang and

Miao, 2020).

With an increasing number of methods that capture

thermodynamics, the question is whether or not they will

become computationally feasible and routine to match the

success of FEP calculations in small molecules. These types of

methods could address some of the limitations that are prevalent

in small chemical changes (single point mutations) and explicitly

account for posttranslational modifications (Edwards et al.,

2021). Furthermore, the development and maturity of

platforms to analyze ensembles for kinetic properties (e.g.,

weighted ensemble methods, and Markov state models) are

leading to pioneering works capturing not only the

thermodynamics but also kinetics of macromolecular

interactions (Zuckerman and Chong, 2016; Zhou et al., 2017).

Currently dissociation rates seem to have the largest uncertainties

(by a few orders of magnitude), which can be in part explained by

force fields that tend to favor compact structures. As these

methods mature and force field development efforts continue

to emphasize capturing folded, IDP, bound and unbound

behavior, we expect the accuracy to improve.

Design principles

Recent protein design work is already leveraging machine

learning to hallucinate novel folds based on the idealized version

of proteins learnt by the algorithms (Anishchenko et al., 2021;

Wang et al., 2022). Furthermore, the promise of constraint design

based on a given backbone structure is promising for the design

of proteins and peptides that bind a particular target (Moffat

et al., 2021; Anand et al., 2022). This has already led to the design

of mini proteins through the combination of computation

(Rosetta) and experiments (Cao et al., 2022). Recent

approaches started to take physical property such as solubility
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of designed peptides into consideration (Kosugi and Ohue,

2022). With the maturity of this field at the hands of a few

expert groups, comes the possibility to design molecules with an

increasing range of properties, such as peptide macrocycles that

are not only able to adopt a particular structure, but also are able

to cross membranes.

Peptide self-assembly

Peptides have programmable self-assembly properties, while

maintaining the ability to incorporate functional motifs

recognized by other macromolecules. Fortunately, due to these

properties, peptides are increasingly used for biomaterial design

applications (e.g., functionalized hydrogel scaffolds that induce

cellular behavior) (Loo et al., 2015a). Despite its promise,

atomistic tools to predict the structures, properties,

accessibility of functional sites and contributing to the

development of materials have lagged their experimental

counterpart (Rauscher and Pomès, 2017; Smadbeck et al.,

2014). We believe two independent directions will benefit

from recent approaches: 1) the identification of new

functional motifs to queue cellular behavior; 2) the ability to

predict structures and physical properties of self-assembling

peptides to complement experimental efforts.

Post translational modifications

The recent Sars-COV2 pandemic highlighted the need to

account for post translational modifications (PTM). Yet, as

modelers we are often faced with the challenge of knowing

which and where these modifications occur, lack of

parameters or datasets (machine learning) to model these

modifications. This issue becomes accentuated for the

transient interactions of interest in peptide-protein

interactions. However, the community has shown a fast

response and adaptation to model these systems. We believe

going forward the community will collect more data on such

PTM that will improve modeling efforts. For example, many of

the peptide-protein experimental binding affinity assays already

incorporate the ability to introduce such PTMs (Nguyen et al.,

2019)—and computational pipelines (Khoury et al., 2013;

Croitoru et al., 2021) are adapting to facilitate incorporating

such modifications to systems of interest.

Discussion

We are excited by the role that recent advances in a variety of

areas can have in the field of peptide-protein structure and

affinity prediction. Peptides can be of interest as single

molecule therapeutics or as programmable molecules that

aggregate to specific patterns creating scaffolds (Perez et al.,

2021). In both scenarios a functional motif will allow these

peptides to target and inhibit or enhance interactions and

pathways. Peptides have some intrinsic limitations like fast

degradation and difficulty crossing barriers that might make

them precursors of other molecules such as modified peptides

(Szabó et al., 2022), mini-proteins (Cao et al., 2022) and small

molecule peptidomimetics (Rubin et al., 2018; Perez, 2021).

However, predicting the initial structure and identifying high

affinity binders will be critical to develop these peptide

derivatives. As the field moves forward, identifying novel

binding motifs and the sequence/structure relationships that

allows these peptides to bind will in turn increase our

understanding of binding plasticity, the role of multiple

binding modes in binding affinities for more accurate

predictions.

A particular field of interest where we see methods

expanding their presence is in material bioengineering (Pérez

et al., 2013). Here, peptide epitopes embedded in fibers that

make up the extra cellular matrix (ECM) bind different integrin

proteins on the cellular membrane which trigger different

cascade of events that govern cellular behavior (such as

adhesion, growth, or migration) (Collier et al., 2010; Wade

and Burdick, 2012; Loo et al., 2015a; Hellmund and Koksch,

2019). We are aware of under 100 linear motifs that bind

integrins, where both the sequence and conformation are

important. However, it is likely that more motifs can bind in

these sites, offering opportunities for designed biomaterials.

The second challenge such materials must meet is the ability to

self-assemble in order to mimic the ECM–with different

biomechanical properties in different tissues (e.g., softer for

tissues like the brain, and stiffer for tissues like bone or muscles)

(Collier et al., 2010). Computational tools in this area are scarce

(Smadbeck et al., 2014; Rauscher and Pomès, 2017), but

increase in computational power, force fields that better

represent the balance between folded/unfolded and new

sampling strategies make us optimistic in this area as well.

Starting from peptides that are experimentally known to self-

assemble, the first goal is to robustly and reproducible generate

atomistic models of the resulting scaffold. Analysis of these

scaffolds will allow us to distinguish mechanical properties like

stiffness and accessibility of the functional motifs. A second

requirement will be to identify pipelines that are sensitive to

sequence properties: many experimental designs show the

evolution of the peptide self-assembling motif, from initial

sequences that barely oligomerized to successful scaffolds

(Papapostolou et al., 2007). With self-assembling materials

small errors in force field or machine learning preferences

get amplified throughout the scaffold. Thus, a higher level of

sensitivity is required. Finally, these models should be tested for

functionality: are the binding motifs readily available for

interaction with desired proteins (e.g., integrins that control

cellular behavior). Can these models explain some of the
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behavior observed when mixing two successful binding motifs

that have different functionality (e.g., adhesion and growth

signals) (Liu et al., 2015).

Conclusion

The rapid pace of advances in AI, coupled with increased

computational power, access to larger and more curated

databases and improvements in other computational modeling

pipelines is changing many aspects of structural biology

pipelines. We believe this presents an opportunity to advance

our understanding of systems involving peptide molecules, where

advances both experimental and computational have faced the

challenges of working with such flexible molecules. Peptides

already have multiple applications ranging from drugs, to

nanodevices, or tissue regeneration to name a few. Developing

robust computational pipelines to design and control the

properties of these molecules will allow a rapid increase in the

number of applications and uses of these molecules.
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