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Brain metastasis, one of the common complications of lung cancer, is an important cause
of death in patients with advanced cancer, despite progress in treatment strategies. Lung
cancers with positive driver genes have higher incidence and risk of brain metastases,
suggesting that driver events associated with these genes might be biomarkers to detect
and prevent disease progression. Common lung cancer driver genes mainly encode
receptor tyrosine kinases (RTKs), which are important internal signal molecules that
interact with external signals. RTKs and their downstream signal pathways are crucial
for tumor cell survival, invasion, and colonization in the brain. In addition, new tumor driver
genes, which also encode important molecules closely related to the RTK signaling
pathway, have been found to be closely related to the brain metastases of lung cancer. In
this article, we reviewed the relationship between lung cancer driver genes and brain
metastasis, and summarized the mechanism of driver gene-associated pathways in brain
metastasis. By understanding the molecular characteristics during brain metastasis, we
can better stratify lung cancer patients and alert those at high risk of brain metastasis,
which helps to promote individual therapy for lung cancer.

Keywords: brain metastasis, lung cancer, driver gene, receptor tyrosine kinase, epithelial-mesenchymal
transition, colonization
INTRODUCTION

Lung cancer, accounting for 18.4% of the total cancer population, ranks first in cancer-associated
mortality globally. Brain metastasis is one of the main causes of death in patients with lung cancer
(1). With the advancement of cancer treatment strategies, cancer mortality has continued to decline
since 1991. The decrease of mortality is particularly pronounced for lung cancer in recent years,
which decreased by 5% per year (2013 to 2017) compared to 3% per year (2008 to 2013) in men, and
in women by 4% per year compared to 2% per year (2). The prevalence of brain metastases in
patients with advanced lung cancer is about 20~56%, accounting for 40~50% of all brain metastases
(3–5). According to histopathology, lung cancer is classified into two types: non-small cell lung
cancer (NSCLC) (85%) and small cell lung cancer (SCLC) (15%). SCLC has a single histological type
and is highly aggressive. About 50% of patients presents with brain metastases at diagnosis and
during treatment (6). At present, prophylactic cranial irradiation (PCI) can be used for SCLC, while
for NSCLC, effective strategy to prevent brain metastases is still lacking (6). The RTOG 0214 trial of
PCI in NSCLC showed that PCI reduces brain metastasis rates after 1 year (18 vs. 7.7%), but the
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overall survival is not improved (7). It revealed that identifying
candidates who could benefit from PCI was difficult. Hence, for
patients with NSCLC, it is important for clinician to detect the
patient at high risk of brain metastasis.

Since Paget put forward the “seed-soil” hypothesis in 1889,
theories such as cancer stem cells (CSCs), tumormicroenvironment,
and circulating tumor cells have been proposed successively,
further supplementing the mechanism of tumor metastasis (8–
12). In 2003, evolutionary geneticist Austin Burt proposed the
concept of “gene drive,” thinking that cancer is a genetic disease,
in which gene mutations eventually result in phenotype changes,
leading to the occurrence of cancer (13). With the popularization
of high-throughput sequencing technology, genetic cloning events
have again caught people’s eye regarding tumorigenesis (14).
Endogenous mutation process drives the occurrence of lung
adenocarcinoma (15). Driver mutations can arise before and
after subclonal diversification, and the subclonal mutations may
be important for cancer progression (16, 17). By tracking the
driving events of patients, researchers have found that genetic
diversity is a determinant of patient outcome, and clonal evolution
or chromosomal instability is suggested as a biomarker for
detection and intervention of disease progression (18–21).
Moreover, the Genotype-Tissue Expression project found that
local genetic variation affects the expression level of most genes
(22, 23). These findings suggested that driver genes could be used
as biomarkers to predict tumor metastasis.

In lung cancer, patients with mutation of common driver
genes (such as EGFR and ALK) can benefit from targeted
therapy. Progress has also been achieved in research on rare
mutations such as ERBB2, MET, RET, ROS1, and PIK3CA, and
new inhibitors targeting the products of these genes are under
development (24, 25). In recent years, several studies have found
that driver genes have a predictive role in the occurrence of brain
metastases (26–28). In this review, we summarized the current
advances of lung cancer driver genes in the occurrence of brain
metastasis and the related mechanisms, hoping to provide a
general understanding for researchers and clinical doctors.
Frontiers in Oncology | www.frontiersin.org 2
LUNG CANCER DRIVER GENES AND
BRAIN METASTASIS

In a study of 271 patients with lung adenocarcinoma, 85% of
patients have driver gene mutations (29) (Table 1, Figure 1). A
recent study reported that 74.4% of lung adenocarcinoma
patients have at least one druggable mutation detected (30)
(Table 1, Figure 1). In another study of 552 NSCLC patients,
mutation of driver gene is present in 62% of patients, and those
with driver gene mutations are more prone to brain metastases
(26) (33 vs. 19%; Table 1, Figure 1). The three studies suggested
that the incidence of driver gene mutations in NSCLC patient is
high, and lung cancer driver genes, such as EGFR, ALK, and RET
are risk factors for brain metastasis in advanced NSCLC patients.
Tomasini et al. previously proved that EGFR and KRAS
mutations have a predictive role on brain metastasis incidence,
recurrence, and outcome in NSCLC patients (27). Patil
confirmed that brain metastasis is common in patients with
ROS1-positive advanced NSCLC (31). New brain metastasis
driver genes, such as MYC, AXIN2, and NRG1, have also been
discovered (32–35). At present, researchers have mainly studied
the incidence of common driver genes and the rate of brain
metastasis in NSCLC patients. New driver genes, due to their low
incidence, have not been studied yet, although they may be
involved in the occurrence and development of brain metastasis
(Table 2).

However, gene mutations in brain metastatic sites are
inconsistent with the original lesions, and acquired mutations
can occur during treatment, resulting in drug resistance and
disease progression. For example, inconsistent mutation status of
KRAS have been discovered between the primary and metastatic
sites of lung adenocarcinoma, while the status of EGFRmutation
is relatively consistent on the contrary (64). In Brastianos’s study,
86 matched brain metastases, primary tumors and normal tissues
were sequenced with whole exome sequencing to check whether
brain metastases had genetic changes different from the primary
tumors. Changes were found only in brain metastases in about
TABLE 1 | The distribution of the main driver gene mutation types of patients with lung cancer.

Type n = 271 (LUAD) Total (n, %) n = 227 (LUAD) Total (n, %) n = 552 (NSCLC) Total (n, %) n = 153 BM (n, %1/%2)

No driven gene mutation 42 (15.5) 58 (25.6) 210 (38.0) 40 (26.1/19.0)
Driver gene mutation 229 (84.5) 169 (74.4) 342 (62.0) 113 (73.9/33.0)
EGFR mutation 161 (59.4) 102 (44.9) 226 (40.9) 77 (50.3/34.1)
KRAS mutation 20 (7.4) 22 (9.7) 55 (10.0) 12 (7.8/21.8)
ALK fusion mutation 20 (7.4) 9 (4.0) 22 (4.0) 9 (5.9/40.9)
RET fusion mutation 6 (2.2) 1 (0.4) 11 (2.0) 7 (4.6/63.6)
ERBB2 mutation 7 (2.6) 8 (3.5) 7 (1.3) 1 (0.7/14.3)
BRAF mutation 3 (1.1) 3 (1.3) 3 (0.5) 2 (1.3/66.7)
MET mutation/amplification 5 (1.8) 2 (0.9) 3 (0.5) 1 (0.7/33.3)
ROS-1 fusion mutation 6 (2.2) 3 (1.3) 3 (0.5) 0 (0.0/0.0)
NRAS mutation 1 (0.4) – – –

PIK3CA/Multiple mutation – 3/16 (1.3/7.0) – –

EGFR mutation +X3 – – 12 (2.2) 4 (2.6/33.3)
January 2021 | Vo
1Number of brain metastasis/Total number of brain metastasis.
2Number of brain metastasis/Total number of the mutations or total number of no driver gene mutation.
3X genes included the mutations of ALK, KRAS, BRAF, ERBB2, and MET amplifications.
LUAD, lung adenocarcinoma; NSCLC, non-small cell lung cancer; BM, brain metastasis.
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53% of cases. Detected alteration was associated with the
sensitivity to phosphatidylinositol 3 kinase (PI3K) pathway and
epidermal growth factor receptor (EGFR) pathway inhibitors
(65). Integrated genomic and transcriptomic analysis had
identified crucial roles of EGFR signaling in brain metastasis
(34). Furthermore, Paik and Wang H et al. also revealed a
correlation of PI3K signaling with increased risks of brain
metastasis in patients with NSCLC (32, 66). In Wang H’s
study, mutations of EGFR, KRAS, and ALK are highly
Frontiers in Oncology | www.frontiersin.org 3
concordant between primary NSCLC and matched brain
metastases, whereas discordance of PI3K signaling suggested
the unique genomic evolution and oncogenic mechanisms of
brain metastasis (32).

In addition, single nucleotide polymorphisms of driver genes
are also closely related to the occurrence of lung cancer brain
metastases. Li Q et al. proved for the first time that genetic
variations in the transforming growth factor-b (TGF-b), PI3K/
protein kinase B (AKT) pathways were associated with an
TABLE 2 | Potential biomarkers in lung cancer driver genes and the targeted drugs in brain metastasis.

Gene Mutation rate in NSCLC (%) Ref BM rate in NSCLC
(with vs. without mutation) (%)

Ref Drug (Treat BM or
have intracranial activity)

Trial Ref

EGFR 29.4
40.9

33.2–59.4

(28)
(26)

(29–31, 36)

31.4 vs. 19.7
34.1 vs. 19.0
27.6–52.9 1

(28)
(26)

(31, 37)

Afatinib
Erlotinib
Icotinib
AZD3759
YH25448

Clinical
Clinical
Clinical
Preclinical
Preclinical

(38)
(39)
(40)
(41)
(42)

ALK 4.0
4.0–19.9

(26)
(29–31, 43)

40.9 vs. 19.0
23.8–58.4 1

(26)
(31, 37)

Alectinib
Crizotinib
Lorlatinib

Clinical
Clinical
Clinical

(44)
(45, 46)
(47, 48)

NCT03052608
PF-06463922 Preclinical (49)

ROS1 0.5–5.7 (26, 29–31) 19.4–47.4 1 (31, 50, 51) Entrectinib
Repotrectinib

Clinical
Preclinical

(52, 53)
(54)

MET 0.5–1.8 (26, 29, 30) 33.3 vs. 19.0 2 (26) Cabozantinib
Tepotinib

Case report
Case report

(55)
(56)

RET 2.0
0.4–2.2

(26)
(29, 30)

63.6 vs. 19.0
24.8–46.5 1

(26)
(57)

Selpercatinib
Pralsetinib

Clinical
Clinical

(58)
NCT03037385
NCT04222972

KRAS 7.4–45.5 (26, 29, 30, 59) 21.8 vs. 19.0
16.8–28.4 1

(26)
(31, 60)

– – –

BRAF 0.5–3.5 (26, 29, 30, 61) 66.7 vs. 19.0 2

18.8 1
(26)
(31)

– – –

ERBB2 1.3–3.5 (26, 29, 30) 14.3 vs. 19.0 2 (26) – – –

NRG1 1.7 (62) – – – – –

PIK3CA 1.3–4.2 (30, 63) – – – – –
January 2021 |
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1There is no brain metastasis data from patients without driver gene mutations in the corresponding references.
2Total number of the mutations <10.
A B C

FIGURE 1 | Three studies have shown that the most common type of lung cancer driver gene mutation is EGFR mutation, followed by KRAS mutation and ALK
fusion mutation. The black area indicates the percentage of brain metastases in the total number of corresponding mutations. (A) n = 271; (B) n = 227; (C) n = 552.
The incidence of brain metastases in patients with driver gene mutations is shown in brackets.
Article 606300

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Kang et al. Driver Gene-Associated Brain Metastasis
increased risk of brain metastasis in NSCLC patients (67, 68).
Recently, Xu Y et al. also proved that single nucleotide
polymorphisms in the mammalian target of rapamycin
complex 1 (mTORC1) signaling pathway are significantly
associated with increased risk of brain metastasis (69). Activity
of mTORC1/2 is higher in patients with lung cancer with brain
metastases (70). Therefore, it is very necessary to clarify the
status of lung cancer driver genes at the diagnosed with NSCLC,
which can help predict the occurrence of brain metastasis. New
driver genes may play a unique role in the mechanism of
brain metastasis.
SIGNALING PATHWAY IN LUNG CANCER
DRIVER GENE

Lung cancer driver genes mainly include EGFR, ERBB2, MET,
RET, ALK, and ROS1, all encoding genes for receptor tyrosine
kinases (RTKs). Abnormal RTKs activation in tumors mainly
includes acquired mutations, genome amplification,
chromosome rearrangement, and autocrine activation, which
lead to the imbalance of RTK signals and promote cell
proliferation, metabolism, cytoskeleton remodeling, cell
migration, and anti-apoptosis effects (71). RTKs form dimers
by binding to their corresponding ligands or closely combining
with members of the same family to stabilize and enhance
downstream signaling pathways. The downstream signaling
pathways of RTKs mainly include RAS (a GTPase)/RAF (a
kinase)/mitogen-activated protein kinase (MAPK) and PI3K/
AKT/mTOR (72–74). Other genes encoding important
molecules in these pathways are also lung cancer driver genes.
Li D et al. reported that driver gene mutations can occur within
tyrosine kinase domains and genetic alterations frequently
occurs in genes of the MAPK signaling, WNT signaling and
mTOR pathways in patients with lung adenocarcinoma (75).

Classical driver genes can also interact with other pathways,
which have been shown to be activated in lung cancer. Proteomic
data have uncovered an interdependence of PI3K and signal
transducer and activator of transcription 3 (STAT3) (76).
Tyrosine-759, located in Janus kinase (JAK), acts as a docking
site for the adaptor molecule SHP2, which is crucial for the
initiation of the PI3K and MAPK pathway (77). Govindan et al.
proved that JAK/STAT pathway is significantly altered in
patients with lung cancer (78). RAS can also cross-link with
the WNT/b-catenin pathway to promote tumor invasion (79). In
addition, the downstream pathways of RTKs can also act
synergistically with TGF-b receptors. TGF-b receptors levels
can differentially affect the activation of the MAPK pathway
(80). In a transgenic mouse model of KRAS-induced lung cancer,
invasive adenocarcinoma is modeled by the loss of the TGF-b
receptors (81). Interfering with these pathways can suppress lung
cancer with positive driver genes. For example, preclinical
findings have identified that inhibition of the interleukin-6 (IL-
6)/STAT3 pathway can also inhibit tumor growth with EGFR
mutation in NSCLC and suppress KRAS-driven lung
Frontiers in Oncology | www.frontiersin.org 4
adenocarcinoma (82–85). Mohrherr et al. proved that JAK/
STAT pathway inhibitors can attenuate the progression of lung
cancer driven by KRAS in preclinical models (86). In addition,
TGF-b receptor inhibitors may be an effective therapy in a subset
of KRAS-mutant patients with NSCLC (87). Molecules in these
pathways can be considered as potential biomarkers in
preventing lung cancer driver gene-associated brain metastasis.
MECHANISM OF LUNG CANCER DRIVER
GENES IN BRAIN METASTASIS

Mutations introduced during primary tumor cell growth can result
in clonal heterogeneity. Vogelstein put forward four types of genetic
heterogeneity in tumors: intratumoral, intermetastatic,
intrametastatic, and interpatient (88). Intratumoral heterogeneity
provides the seeds for intermetastastic heterogeneity. Intratumoral
heterogeneity mediated through chromosome instability is
associated with an increased risk of recurrence or death in
NSCLC and driven metastasis (19, 20, 89). Chromosome
instability is increased in brain metastases and is a driver of
metastasis (65, 90). Intermetastatic heterogeneity supports the
idea that the genetic alterations required for metastasis are present
before metastasis actually occurs (91). The founder clones are
initiating events for lung cancer and other mutations are acquired
later and perhaps are important for tumor progression (78). The
outgrowth of distal colonizing cells necessitates further selection
from subsequent genetic heterogeneity (92).

During the process of brain metastasis, abnormal genes drive
tumor cells to escape normal regulatory mechanisms and change
the microenvironment of lung cancer tumors through various
signals, which continues to enhance tumor invasiveness, induce
epithelial-mesenchymal transition (EMT) and accelerate vascular
invasion (93). Metastatic tumor cells are arrest at vascular branch
points, early extravasation, persistent close contacts to
microvessels, and perivascular growth (94). Tumor cells cross
the blood-brain barrier mediated by specific molecules and turn
into dormancy/quiescence, laying the foundation for growth after
several months or even longer (92, 95). Tissue remodeling creates
a tumor microenvironment, affecting the homeostasis of the
central nervous system and promoting tumor metastasis and
growth (96). The following content mainly focuses on the
mechanism of lung cancer driver genes and associated signaling
pathway in the three main steps of brain metastasis (Figure 2).

Promote Tumor Cell Survival
Phenotypic and functional heterogeneity arise among cancer cells
within the same tumor. Comparing with cancer cells without
driver gene mutation, those with a mutation, such as EGFR,
ERBB2, TGFbR2, MET, RAS, RAF, PIK3CA, and PTEN genes,
can proliferate under limiting nutrient concentrations (88). Cells
with driver gene mutations will have a selective growth advantage
than others. For instance, mutations in KRAS or BRAF genes
confer on cancer cells the ability to grow in lower glucose
concentrations (97, 98). Some of driver genes encode RTKs to
January 2021 | Volume 10 | Article 606300
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receive the growth factor signal, whereas others are signal
transducers of RTK-related pathways (99). After ROS1
rearrangement, the extra-membrane part of the expressed
protein is lost, leaving only the activated intra-membrane part,
which fuses with other proteins and continuously transmits signals
of growth and proliferation (100). Inhibition of these receptors or
signals can interfere with cell growth and promote apoptosis.
Inhibiting of EGFR activity increases apoptosis (101). Govindan
et al. supposed that it is likely that driver gene mutations, such as
EGFR and KRAS, are initiating events for lung cancer (78).

In cancer genome landscapes, driver genes regulate cell
survival by the RAS/MAPK pathway, PI3K pathway, STAT
Frontiers in Oncology | www.frontiersin.org 5
pathway, and TGF-b pathway (88). Lysophosphatidylcholine
acyltransferase 1 can up-regulate the PI3K/AKT pathway and
promote EGFRmutation lung adenocarcinoma cell proliferation,
invasion, and brain metastasis (102). Targeting lonidamine to
mitochondria can inhibit AKT/mTOR signal, induce autophagic
death of lung cancer cells with KRAS mutation and block
tumorigenesis and brain metastasis (103). PTEN is an
important gene that negatively regulates the AKT signaling
pathway. Mutations in PTEN may have strong tumor-growth-
promoting capability (75). In mouse models, tracheal epithelial
cells lacking PTEN produce spontaneous tumors (104, 105).
Abnormal activation of the above tumor driver genes leads to
A B

C D

FIGURE 2 | Signaling pathway and mechanism related to lung cancer driver gene in brain metastasis. (A–C) represent the tumor cell survival, EMT, and colonization
respectively. (D) corresponds to the cell or molecule in (A–C).
January 2021 | Volume 10 | Article 606300
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growth dominance and immortalization of lung cancer cells,
opening the first step of tumor metastasis.

In the tumor microenvironment, driver gene-associated
pathways are also involved in the formation of tumor
immunosuppressive microenvironment, which is more
conducive to the survival of tumor cells. In preclinical study,
tumor cells use PI3K-hypoxia-inducible factor 1a axis to polarize
macrophages into tumor-associated macrophages (TAMs),
which produce IL-6 after engulfing particles released by tumor
cells (106, 107). TAMs polarize towards M2 type through the IL-
6/STAT3 signaling pathway to promote tumor metastasis and
rejects immune cells from penetrating (108–110). Wu SY et al.
proved that M2 macrophages are closely related to brain
metastasis of lung cancer (111). On the other hand, by
regulating mTOR, TAMs block normal glycolysis, induce
excessive angiogenesis, and form abnormal blood vessels (112).
These signals regulate the microenvironment of the primary
tumor to escape from the immune system, and to create a
microenvironment suitable for tumor growth and invasion.
Moreover, activation of the EGFR pathway increases the
production of tumor-derived vascular endothelial growth
factor (VEGF), which acts on endothelial cells in a paracrine
manner to promote angiogenesis (113). When driver gene is
mutant or the coding molecule is activated, the above situation
will be more likely to happen.

Promote Epithelial-Mesenchymal
Transition
EMT is a temporary and reversible process characterized by
epithelial cell dedifferentiation and migration to a distance site
(114). Bakhoum et al. found that metastatic tumors contain a
large number of differentially upregulated EMT- and
inflammation-related genes (90). Markers of EMT, including
E-cadherins and N-cadherin, can be used as biomarkers to
predict brain metastasis (115, 116). Various internal signals
(such as gene mutations) and external signals (such as growth
factor signals) play an important role in this process (117).
Yousefi et al. put forward CSCs may originate from somatic
mutations of normal tissue stem cells or may dedifferentiate from
cancer cells via EMT (118). In the absence of driver gene
mutations, RTK, TGF-b, and WNT pathways play an
important role in EMT via activating transcription factors,
such as twist family bHLH transcription factor 1 (TWIST1)
and zinc finger E-box binding homeobox 1 (ZEB1) protein (118,
119). These signal pathways interact with each other to promote
EMT (120–124).

As crucial internal signals, driver gene mutations give tumor
cells stronger capability of EMT. For instance, driver gene RAS is
closely related to EMT, and TWIST promotes tumor initiation
and progression in vivo only after interaction with activated RAS
(125). Activation of RAS can stimulate apoptosis-stimulating
protein of p53 2 (ASPP2) and b-catenin to translocate from the
cell junction to the cytoplasm and nucleus, reducing the
formation of ASPP2-b-catenin complex, leading to EMT of
tumor cells (79). In addition, mutation of TGF-b receptor can
lead to loss of cytostatic effects of TGF-b. Tumor cells in the
Frontiers in Oncology | www.frontiersin.org 6
absence of cytostatic response may undergo EMT in response to
TGF-b, which helps to escape the immunosuppressive
environment and induce angiogenesis as well as systemic
spread in 3D Tissue Culture (126, 127).

Therefore, many molecules can affect the occurrence and
development of tumors by promoting or interfering with EMT.
TAM induces EMT through IL-6-mediated WNT pathway to
promote the invasion of lung cancer cells (128). MicroRNA-330-
3p and Insulin-like growth factor binding protein-3 affect EMT
by regulating the TGF-b/Smad signaling pathway, thereby
promoting brain metastasis in NSCLC (129, 130). Programmed
death ligand-1 may induce EMT by activating the TGF-b/Smad
signaling pathway, and this process contributes to the primary
resistance of EGFR-mutant NSCLC cells to TKIs (131, 132).
ASPP2 can stabilize the b-catenin–E-cadherin complex and
prevent b-catenin from transactivating ZEB1 to limit the
aggressiveness of RAS and inhibit tumor metastasis in vivo
(133, 134). Another study suggested that apoptotic lung cancer
cells can increase the level of phosphatase and tensin homolog
(PTEN) in exosomes from TAMs, which results in reduction of
ZEB1 and inhibition of EMT (135).

Affect the Colonization of Metastatic
Tumor Cells Into the Brain
The PI3K/AKT, JAK/STST, and WNT signaling pathways are
involved in vessel penetration and colonization of tumor cell to the
brain (136). Attenuated WNT signaling is associated with the
dormancy/quiescence of tumor cells in metastases (95). Ma SC
et al. proved in vitro experiments that Claudin-5 regulates
permeability of the blood-brain barrier by changing the
proliferation, migration, and adhesion of brain microvascular
endothelial cells, which resulted in decreased brain metastases
from lung cancer (136). In preclinical study of breast cancer,
heparin binding EGF, ligand of EGFR, can enhance the adhesion
between tumor cells and brain endothelial cells, and help tumor
cells penetrate the blood-brain barrier in breast cancer (92).
Cathepsin S attenuates EGF-mediated EGFR degradation, which
regulates EGFR signaling (137). Cathepsin S produced by tumor
cells promotes tumor cell extravasation by accelerating the
proteolysis of adhesion molecules between endothelial cells (138).

Tumor cells that enter the brain microenvironment interact with
the original “residents” (mainly microglia and astrocytes), and grow
autonomously in brain tissue through tumor-specific signaling
pathways. Tumor cells interact with microglia and affect
angiogenesis and survival through activation of STAT3 pathway
in microglia (139). In multiple models of tumor metastasis, TAMs
activate JAK/STAT signals to reverse EMT and promote metastatic
colonization (140). Moreover, Chen Q et al. found that gap
junctions between lung cancer cell and astrocyte triggers STAT1
survival signals in vivo and in vitro (141). Activated astrocytes
produce IL-6, which in turn promotes lung cancer cell proliferation
in Seike’s study (142). In brain metastases, astrocytes and tumor
cells transduce bidirectional signals through endothelin and its
receptors, as well as the AKT pathway, which produces
chemotherapy protection (143). Unfortunately, this result is
mainly verified in breast cancer cell lines.
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However, despite the fact that driver genes are related to brain
metastasis and driver gene-associated signaling pathways play a
key role in colonization, there are still very few such preclinical
studies on why lung cancer with driver gene mutation is more
likely to develop brain metastasis than those without. At present,
studies have focused on the relationship between patients with
positive driver genes and the occurrence of brain metastasis, as
well as the molecular mechanism of brain metastasis is not clear
in patients with driver gene mutation. Preclinical models only
center on the use of driver gene mutations in cell lines or animal
models. For example, Nguyen demonstrated earlier that the
WNT signaling pathway can enhance the ability of lung
adenocarcinoma cells with KAS or EGFR mutation to colonize
the brain (144). Adaptive loss of PTEN of breast cancer cells in
brain metastasis, which was silenced by astrocyte-derived
miRNAs, leads to increased secretion of chemokine (C-C
motif) ligand 2, recruitment of myeloid cells, promotion of cell
proliferation, and reduced apoptosis, which further enhances the
growth of tumor cells in metastatic sites (104).

Why do tumor cells choose to “settled” in the brain? A
reasonable explanation may be that the tumor cells that
successfully grow, proliferate, and eventually form brain metastases
have specific adaptations to the brain microenvironment.
Transcriptome data of microarray hybridization showed that
metastatic tumor cells are reprogrammed in the brain
microenvironment to obtain neuronal cell characteristics (145).
There is a similar situation in the lung cancer bone metastasis
model. Tumor cells can acquire the characteristics of the metastatic
microenvironment, which known as osteomimicry (146).
Furthermore, residents in pre-metastasis microenvironment
remodel the soil to promote seed growth in breast cancer lung
metastasis model (147). In addition to the specific adaptations,
tumor cells will also choose a more favorable microenvironment.
Saunus’s research found that EGFR, ERBB2, and ERBB3 transcripts
were abundantly expressed in lung cancer brain metastases, and
ERBB3 transcript abundance correlated with its oncogenic partner
ERBB2 (34). However, expression of neuregulin 1, which is the
ligand for erb-b2 receptor tyrosine kinase 3, is very low in tumor cells
and rich in brain microenvironment. This result suggests tumor cells
are more likely colonized in more favorable microenvironment.
THERAPY PROSPECTS FOR LUNG
CANCER DRIVER GENE

The discovery of various driver gene mutations has greatly
promoted targeted therapies for lung cancer. According to the
National Comprehensive Cancer Network guidelines, most
targeted therapies recommended for NSCLC are those
targeting EGFR, ALK, ROS1, BRAF, RET, and MET (148).
Genetic testing has become one of the routine diagnostic
procedures for patients after confirmation of NSCLC diagnosis.
A single biopsy can capture most functionally important
mutations in metastatic tumors, thereby providing necessary
information for treatment decisions (149). NSCLC patients
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with positive driver genes have good sensitivity to TKIs.
Prolonged survival has been achieved with radiotherapy
combined with TKIs-targeted therapy in patients with brain
metastases (150). Although good clinical effects can be
achieved with first- and second-generation of TKIs, recurrent
metastasis can occur, with the brain being the most frequent
metastatic site. This may be a result of the blood-brain barrier to
make the brain a tumor “refuge” (151). At present, improving
penetration into the blood-brain barrier and intracranial activity
is one of the key points in developing the third-generation TKI
and new drugs. The development of nano-targeted drug systems
might also benefit patients with brain metastases (152).

With the in-depth study of the mechanism for driver genes in
lung cancer with brain metastasis, driver gene-associated
signaling pathways, such as RAS/RAF, PI3K/AKT/mTOR,
WNT/b-catenin, and JAK/STAT, also provide new targets for
the treatment of lung cancer with brain metastases. mTORC1/2
inhibitor, for example, have demonstrated inhibition effects on
tumor growth, EMT, metastasis, and improvements in anti-
tumor immunity in preclinical models of lung cancer (153).
JAK1/2 inhibitors also have potential therapeutic effects in
patients with KRAS mutations (86). The PI3K signaling
pathway is also enriched in brain metastases, suggesting an
association of this pathway with increased risk of brain
metastasis, which is expected to become a new therapeutic
target (66, 154). However, none of these inhibitors has been
studied in brain metastasis models. Table 2 summarizes the
potential biomarkers in lung cancer driver genes and lists the
targeted drugs in brain metastasis. It is important to note that
although targeted drugs of the rare driver gene associated with
brain metastasis have not been studied in lung cancer, they have
shown good results in other models of brain metastasis, such as
breast cancer and melanoma (155, 156).

Moreover, the occurrence of secondary mutations in driver
genes or other new mutations increases the complexity of the
tumor genome, leading to drug resistance in targeted therapies
and limiting patient’s survival (157). For NSCLC, more than 30%
of patients with mutant EGFR undergo disease exacerbation due
to brain metastasis during TKIs treatment (158, 159). On the
other hand, the response to treatment is different between
patients with or without driver gene mutation. For example,
programmed death 1 (PD-1) inhibitor has played a role in
treatment of NSCLC brain metastasis (160, 161). For patients
without driver gene mutation, Ma ZY et al. found that the
outcomes of patients with NSCLC presenting brain metastasis
were comparable to patients without BMs when treated with
nivolumab (PD-1 inhibitor) (162). This result suggests that
driver genes are significant for the hierarchical management of
patient treatment.
OUTLOOK

This review summarizes for the first time the signaling pathways
related to driver genes and the role of these signaling pathways in
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the mechanism of brain metastasis. Tumor driver gene-
associated signaling pathways are important signals for lung
cancer with brain metastasis, which promotes tumor cell
survival, invasion, and colonization. Furthermore, various
cytokines and chemokine signals can be released after
interaction of tumor cells with original resident cells in the
brain or lung. These signals promote metastasis by driving
gene-related signaling pathways. However, it is worthy of
attention to researchers that in recent studies, lung cancer
driver genes are related to brain metastasis and can be used as
biomarkers for predicting brain metastasis, but there is still a lack
of molecular mechanisms of brain metastasis starting with
driver genes.

With the popularization of genetic testing technology, when
patients with non-small cell lung cancer are diagnosed, clarifying
the driver mutation status or intratumoral heterogeneity of the
primary lesion can not only guide medication, but also predict
the subsequent development of the tumor, including brain
metastasis. Currently, only clinicopathologic variables, such as
patient age, disease stage, and tumor histology, are used to
predict the risk of brain metastasis (163–165). In future
studies, common and druggable lung cancer driver genes,
which have been confirmed to predict brain metastasis, can
be combined with high-risk clinical features through artificial
intelligence algorithms to establish a brain metastasis prediction
Frontiers in Oncology | www.frontiersin.org 8
model. For patients at high risk of brain metastasis, more
treatment strategies, including PCI, targeted therapy, and
immunotherapy, can be chosen. And high-risk patients
without neurological symptoms also need regular computed
tomography or magnetic resonance imaging. New lung cancer
driver gene, which involved in pathways associated with brain
metastasis, can be studied as potential biomarkers. Last but not
the least, understanding the molecular characteristics of primary
tumor and brain metastases can provide more information about
tumor driver genes in the clinic for precise treatment.
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