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HIV-1 is transcriptionally active in activated T helper (Th)-cells and inactive in naive or 
resting memory Th-cells. Ets-2 is a preinduction transcriptional repressor of the IL-2 
gene in naive Th-cells and a candidate transcriptional repressor of HIV-1 in the same 
cells, because the −279 to −250 upstream region of HIV-1-LTR [repressor–activator  
target sequence (RATS)], that participates in HIV-1-LTR transcriptional silencing, 
encompasses the AAGGAG Ets-2 binding site. In this proof of concept study, we inves-
tigated whether Ets-2 represses the expression of HIV-1. To assess whether Ets-2 can 
repress HIV-1 transcriptional activation acting through RATS, we transfected Jurkat 
cells with an Ets-2 overexpression plasmid (pCDNA3-ets-2) or Ets-2 silencing plasmids 
(ets-2-shRNA) and, as target genes, plasmids carrying the whole HIV-1-LTR sequence 
(HIV-1-LTR-CAT) or two copies of the RATS sequence (2× RATS-CAT) or a point 
mutation in the Ets-2 binding site (2× mutantRATS-CAT) or CMV-CAT (control). Ets-2 
overexpression resulted in a significant reduction of HIV-1-LTR-CAT and 2× RATS-CAT 
activities in stimulated cells, but not of the 2× mutantRATS-CAT or CMV-CAT. Ets-2 
silencing led to increased activities of HIV-1-LTR-CAT and 2× RATS-CAT in unstimu-
lated cells, but had no effect on the activities of 2× mutantRATS-CAT and CMV-CAT. 
To assess Ets-2 binding to HIV-1-LTR–RATS in naive Th-cells, we isolated naive Th-cell 
nuclear proteins and passed them through an Ets-2 antibody column; electrophoretic 
mobility shift assays were performed using an RATS probe mixed with consecutive 
protein eluates. Ets-2 bound to the HIV-1-LTR–RATS in a dose-dependent manner. To 
assess Ets-2 binding to RATS in vivo, Jurkat cells were transfected with 2× RATS-CAT 
and stained for the Ets-2 protein and the RATS sequence by combining immunofluo-
rescence and fluorescence in situ hybridization techniques. In unstimulated cells, Ets-2 
bound to RATS, whereas no binding was observed in stimulated cells. To test for RATS 
specificity, the same experiments were performed with 2× mutantRATS-CAT, and no 
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binding of Ets-2 was observed. The results were corroborated by chromatin immuno-
precipitation assays performed with the same cells. Our results show that Ets-2 is a 
transcriptional repressor of HIV-1. Repression of HIV-LTR-RATS mediated by Ets-2 may 
account for the low-level transcription and replication of HIV-1 in naive Th-cells, and 
contribute to the viral latency and maintenance of viral reservoirs in patients, despite 
long-term therapy.

Keywords: hiV-1, ets-2, repressor–activator target sequence, transcription factors, repressor, T helper cells, 
naive T cells, viral latency

inTrODUcTiOn

HIV-1 displays tropism for T helper (Th) cells, and the progres-
sion of the disease is directly related to Th-cell death. Despite 
initial hopes that HAART delivery might be able to affect a cure, 
further studies revealed that it did not completely eliminate HIV 
from the plasma and persistent viremia could be detected in the 
individuals even after 8  years of HAART therapy (1–4). Viral 
relapse occurs due to the maintenance of latent viral reservoirs 
that are capable of resuming the infection (3). So far, three types 
of cellular reservoirs have been identified: naive and resting 
memory Th cells (4–6), monocytes and macrophages (7–9), and 
myeloid and follicular dendritic cells (10, 11). Regarding Th cells, 
although the HIV-1 virus infects naive and resting memory Th 
cells, naive Th cells expressing the CD45RA surface marker are 
not permissive to viral expression and replication (6, 12).

HIV-1 transcription or latency depends on an elaborate 
interplay between the chromatin integration site of the virus, 
viral, and host transcriptional factors and chromatin modifica-
tions (13–15). Numerous host transcriptional factors including 
NFAT, NF-κB p50/p65, AP-1, and SP-1 (15–17) contribute to 
viral transcriptional activation through direct binding to the 
virus long terminal repeat (5′-LTR) that acts as a transcriptional 
promoter (15, 17). Other host factors, including YY1, NF-κB p50/
p50, CBF-1, STAT5, MBP-1, Foxp3, and ZBRK, contribute to the 
transcriptional repression of the virus indirectly, by disrupting 
molecular pathways that result in viral activation (16, 18–24).

The 5′-LTR region of HIV-1 encompasses a negative regulatory 
element (NRE) spanning −340 to −185 nucleotides upstream the 
transcription initiation site (25). NRE encompasses a repressor–
activator target sequence (RATS) element (−279 to −250) (26, 27), 
the sequence of which shares significant homology to the antigen 
receptor response element 2 (ARRE-2) of the IL-2 gene promoter 
(27, 28). Deletion of the NRE region from the LTR sequence in 
a Jurkat-tat cell line led to induction of viral transcription (25); 
conversely, the insertion of a copy of the NRE sequence under the 
control of a heterologous promoter led to reduction of viral tran-
scription (28). Our earlier transactivation studies in the Xenopus 
laevis oocyte system showed that nuclear protein extracts isolated 
from peripheral blood naive Th cells exerted a strong repression 
activity on the expression of CAT reporter genes under the control 
of the HIV-1-LTR or the RATS element (27). This repression activ-
ity was counteracted by the addition of nuclear protein extracts 
isolated from activated Th cells, leading to the derepression of the 
HIV-1-LTR-CAT and RATS-CAT genes. In addition, we showed 
that the repression activity was not observed when nuclear protein 

extracts isolated from resting memory Th cells were used in the 
experiments (27). Based on these observations, we hypothesized 
that a transcriptional repressor is present in naive Th cells, which 
binds to the RATS sequence of HIV-1-LTR and represses HIV-1 
expression. An in silico analysis we performed to mine microarray 
data to identify transcription factors expressed in naive Th cells 
but not in activated Th cells, revealed that the transcription factor 
Ets-2 was the strongest candidate for being the transcriptional 
repressor (29).

Ets-2 belongs to the Ets (E26 transformation specific) family 
of transcription factors that have a characteristic winged helix-
turn-helix DNA-binding domain and bind to a core GGAA/T 
consensus sequence (30–32). Ets factors are involved in the 
transcriptional regulation of several genes and play an important 
role in various cellular functions (mitosis, growth, development, 
differentiation, and apoptosis) and the regulation of immunity 
(33, 34).

Ets-2 is expressed during the early stages of human T lympho-
cyte development (35) and plays a protective role in the prolifera-
tion, maturation, and survival of mouse thymocytes (36). Ets-2 
has the ability to activate or repress the transcription of specific 
target genes. In the breast cancer cell line MCF-7, overexpression 
of exogenous Ets-2 leads to the repression of transcription of the 
endogenous BRCA1 gene through direct binding to its promoter 
(37). Ets-2 has also been found to have a tumor suppressor role 
in a mouse model of Down syndrome in which enhanced Ets-2 
activity induced significant inhibition of intestinal tumors (38).

Recently, we showed that IL-2 expression is blocked in human 
naive, but not activated or memory Th cells, by the transcription 
factor Ets-2 that binds to ARRE-2 of the proximal IL-2 promoter 
(39). In particular, we demonstrated that Ets-2 acts as an inde-
pendent preinduction repressor exclusively in naive Th cells and 
does not interact physically with the transcription factor NFAT 
that binds to the ARRE-2 in activated Th cells. In naive Th cells, 
Ets-2 mRNA expression, Ets-2 protein levels, and Ets-2 binding 
to ARRE-2 decrease upon cell activation, followed by the con-
comitant expression of IL-2. Ets-2 silences directly constitutive or 
induced IL-2 expression through the ARRE-2; conversely, Ets-2 
silencing allows for constitutive IL-2 expression in unstimulated 
cells. Ets-2 binding to ARRE-2 in chromatin is stronger in naive 
compared with activated or memory Th cells; in the latter, Ets-2 
participates in a change of the IL-2 promoter architecture, pos-
sibly to facilitate a quick response when the cells re-encounter 
antigen. In addition, we showed that cyclosporine A stabilizes 
Ets-2 mRNA and protein when the cells are activated (revealing a 
new function of cyclosporine A) (39).
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In this proof of concept study, we show that Ets-2 represses 
HIV-1 transcription through binding to the RATS element of the 
LTR. Thus, we provide solid evidence for a hitherto unknown 
significant parameter that may contribute to the viral latency 
and maintenance of viral reservoirs in naive Th cells of patients, 
despite long-term therapy.

MaTerials anD MeThODs

cells, Phenotyping, and cultures
Primary Cells
Peripheral blood samples (10–20  ml) from 20 healthy young 
adults (13 F/7 M, age range 22–35  years) were collected in 
heparinized tubes. Peripheral blood mononuclear cells (PBMCs) 
were isolated by centrifugation of whole blood over a Ficoll-
Paque gradient (Biochrom) and washed 4× with ice-cold 
RPMI1640 culture medium (Gibco). CD19+ B  cells, CD14+ 
monocytes, CD3+ T  cells, CD4+ CD25− Th cells, CD4+ 
CD25+ Th cells, CD8+ T cytotoxic cells, CD4+ CD45RA+ 
CD25− naive Th cells, and CD4CD45RO+ CD25− memory Th 
cells were isolated by cell sorting using a BD FACS Aria II flow 
cytometer (BD Biosciences). The sorting strategy is shown in 
Figure S1 Supplementary Material. The isolated cell populations 
were phenotyped and used when their purity reached >95%. The 
antibodies used for cell sorting and phenotyping were the mouse 
antihuman monoclonal antibodies (mAbs) CD3-APC-H7 (clone 
SK7), CD19-APC (clone HIB19), CD14-FITC (clone M5E2), 
CD4-APC (clone RPA-T4), CD8-FITC (clone HIT8a), CD25-PE 
(clone M-A251), CD45RA-APC-H7 (clone 5H9), and CD45RO-
PE-Cy7 (clone UCHL1) (BD Biosciences), CD25-PC5 (clone 
B1.49.9) (Beckman Coulter). Fluorescence minus one controls 
were used to identify any background spread of fluorochromes 
and establish gating boundaries. The data were analyzed using 
the BD FACS DIVA software v.8.

Cell Lines
The cell lines used were Jurkat (T-cell acute lymphoblastic leu-
kemia), U937 (histiocytic lymphoma) (American Type Culture 
Collection), RPMI8866 (B lymphoid cell line), and Raji (Burkitt’s 
lymphoma) (European Collection of Cell Cultures).

Cell Culture
Primary cells and cell lines were cultured in RPMI1640 medium 
supplemented with 10% fetal bovine serum (FBS), penicillin 
(100 U/ml), and 50 µM 2-mercaptoethanol (CM), at a concen-
tration of 106  cells/ml, in a 37°C humidified chamber with 5% 
CO2. When required, the cells were stimulated with the mitogens 
ionomycin (2 μM) and phorbol myristate acetate (20 ng/ml) (P/I) 
for the times indicated.

Quantitative real-time Pcr
Total RNA was isolated by the standard Trizol method according 
to the manufacturer’s instructions (Gibco). The RNA yield and 
purity were determined by measuring absorbance at 260/280 nm 
on a Quawell micro volume spectrophotometer Q3000 (Quawell 
Technology). Total RNA (250  ng per experimental point) was 

reverse transcribed with M-MLV reverse transcriptase (200 U/μl) 
(Sigma-Aldrich) in 10× M-MLV Reverse Transcriptase Buffer, 
40 U/μl RNase inhibitor, 1 mM each of the dNTPs, and 2.5 µM 
random hexanucleotide primers (Sigma-Aldrich). Quantitative 
real-time PCR mRNA analysis was performed on an Mx3000PTM 
Quantitative PCR System thermal cycler (Stratagene), using the 
SYBR-green fluorescence quantification technology (KAPA SYBR 
FAST qPCR Kit, Kapa Biosystems). PCR conditions were 95°C for 
15 min followed by 40 cycles of 95°C for 30 s to denature the cDNA, 
58°C for 30 s for annealing, and 72°C for 30 s for extension. The 
results were analyzed using the MxProTM software (Stratagene). 
Expression of β2-m gene served as the normalizer. The primers 
for ets-2 were as follows: 5′-CTCGTGTGTCTCAACCATCTT-3′ 
and 5′-CGCTCTGTGCCTCAGAATAG 3′, yielding a 112 bp PCR 
product and for β2-m 5′-TCGCGCTACTCTCTCTTTCT-3′ and 
5′-TTTCCATTCTCTGCTGGATGAC-3′, yielding an 88 bp PCR 
product. All measurements were done in triplicate.

Western immunoblotting
Whole cell extracts (106  cells per experimental point) were 
prepared using RIPA buffer (50 mM Tris–HCl pH 7.4, 150 mM 
NaCl, 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 
and 1  mM EDTA) supplemented with protease inhibitors 
(Sigma-Aldrich). Protein concentration was determined using 
the Bradford Assay (Sigma-Aldrich). The protein extracts 
(10 µg per experimental point) were separated by SDS-PAGE 
and electrophoretically transferred to PVDF membranes. The 
membranes were incubated with a rabbit polyclonal Ab to 
human Ets-2 (Santa Cruz Biotechnology). A mouse mAb to 
human β-tubulin (Upstate Biotechnology) served as a loading 
control. The membranes were incubated with HRP-conjugated 
goat anti-rabbit IgG (Upstate Biotechnology) and goat anti-
mouse IgG (Upstate Biotechnology) Abs, respectively. Protein 
levels were visualized with the ECL LumiGLO detection kit 
(Upstate Biotechnology).

immunofluorescence
Naive and memory Th cells and Jurkat cells were attached on 
poly-l-lysine coated slides (105  cells per slide), rinsed with 
PBS and fixed with 4% PFA for 10 min at RT. Fixed cells were 
permeabilized with 0.3% Triton X-100 in PBS for 4  min and 
incubated in blocking buffer (PBS with 10% FBS and 3% BSA) 
for 1 h at RT. The cells were stained with mouse anti-Ets-2 mAb 
(Santa Cruz, sc-373754) for 2  h at RT, washed two times with 
0.05% Tween-20 in PBS (5 min per wash), and incubated with 
Alexa Fluor 488-conjugated goat anti-mouse Ab (Thermo Fisher, 
A-11001) for 1  h at RT. Cells were then counterstained with 
4,6-diamidino-2-phenylindole (DAPI) (1  µg/ml) for 10  min, 
mounted in MOWIOL, and stored at 4°C in the dark. Images were 
recorded on a Leica TCSSP5 confocal microscope. Digital images 
were processed using FIJI software.

ets-2 Purification and electrophoretic 
Mobility shift assays (eMsas)
Ets-2 protein was isolated from 1  mg of nuclear protein 
extracts, derived from sorted CD4+ CD25− Th cells from all 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


4

Panagoulias et al. Ets-2 Is a Transcriptional Repressor of HIV-1

Frontiers in Immunology | www.frontiersin.org January 2018 | Volume 8 | Article 1924

PBMC samples. The extracts were diluted 1:5 in KIB buffer 
(20  mM HEPES pH 7.6, 100  mM KCl, 0.02  mM EDTA, 
0.5  mM 1,4-dithio-dl-threitol) and passed through a protein 
A/G agarose column. The eluate was mixed for 1 h with 20 µg 
Ets-2 Ab (Santa Cruz Biotechnology) and then passed through 
a protein A/G agarose column. Bound Ets-2 was eluted with 
ImmunoPure Gentle Ag/Ab Elution Buffer (Thermo Fisher 
Scientific) and collected in 1 ml aliquots. For EMSA, the proteins 
were precipitated by 10% w/v PEG8000, and the pellets were 
redissolved in KIB buffer; EMSAs were performed as described 
(39). The oligonucleotide probe used was the RATS sequence 
AGGCCAATGAAGGAGAGAACAACAGCTTGT (27).

Dna Plasmids
An ets-2 expression plasmid, pcDNA3-ets-2, was generated 
as described (29, 39). The target genes used were as follows: 
pUC-BENN-CAT (40) (a gift from NIH), which contains the 
full-length LTR from HIV-1 (spanning nucleotides −450/+531) 
controlling a CAT-coding sequence followed by an SV40 
polyadenylation signal, 2× RATS-CAT containing two copies of 
the RATS region of HIV-1-LTR (−279/−250) in front of a TK 
promoter, 2× mutantRATS-CAT containing two mutated copies 
of the RATS sequence [point mutation at the Ets-2 binding site 
(G/T)] of HIV-1-LTR in front of a TK promoter, and CMV-CAT 
as a control (27, 39).

For the ets-2 mRNA knockdown experiments five ets-2  
shRNA plasmids that target five different sites of ets-2 mRNA 
were used (MISSION® shRNA Plasmid DNA, Sigma-Aldrich).

cell Transfections
Jurkat, RPMI8866, Raji, and U937 cells were transfected with the 
pUC-BENN-CAT and CMV-CAT plasmids using Lipofectamine 
LTX DNA Transfection Reagents (Invitrogen) according to the 
manufacturer’s instructions. Jurkat cells were also co-transfected 
with stable amounts of the reporter plasmids (pUC-BENN-CAT, 
2× RATS-CAT, 2× mutantRATS-CAT, CMV-CAT) and increas-
ing amounts of pcDNA3-ets-2 (overexpression) and shRNA-
ets-2 (knockdown) clones, as indicated. The transfected cells 
were cultured for 48  h in CM (with 5% FBS). When required, 
the cells were cultured for an additional 6 h with P/I. They were 
then processed for CAT analysis using 40  µg of cell lysate per 
experimental point (27, 39), fluorescence in  situ hybridization 
(FISH), or chromatin immunoprecipitation (ChIP) experiments, 
as indicated.

immuno-Dna Fish
A DNA FISH probe was constructed by nick translation using 
biotin-modified nucleotides. The labeled probe (for sequences, 
see ChIP Assays, RATS region of HIV-1-LTR) was ethanol 
precipitated and resuspended in a buffer containing 2× SSC, 
50% formamide, and 10% dextran sulfate. Immuno-DNA 
FISH was performed according to Ref. (41). For each experi-
ment, Jurkat cells transfected with the 2× RATS-CAT or 2× 
mutantRATS-CAT plasmids were attached on slides, fixed in 
4% PFA for 10 min at RT and then washed two times with PBS. 
The cells were permeabilized in 0.3% Triton X-100 for 4 min at 
RT, washed two times with PBS, and incubated with a blocking 

buffer (PBS with 10% FBS and 3% BSA) for 1  h at RT. Next, 
the cells were incubated with a rabbit polyclonal anti-Ets-2 
Ab (Santa Cruz, sc-351) for 1  h at RT, washed three times 
with PBS with 0.05% Tween-20, and incubated with an Alexa 
Fluor 488-conjugated donkey anti-rabbit Ab (Thermo Fisher, 
A-21206) for 1  h at RT. The slides were washed three times 
with 0.05% Tween-20/PBS and fixed with 4% PFA for 10 min 
at RT, followed by further permeabilization in 0.3% Triton 
X-100/PBS for 4 min. For DNA FISH, the slides were washed 
two times in PBS and incubated in 2× SSC for 5 min. The cells 
were denatured in 70% formamide, 2× SSC for 3 min at 73°C 
and dehydrated in ice-cold 70, 85, and 100% ethanol (2  min 
each step). The cells were air-dried and hybridized O/N in a 
humidified chamber at 42°C in 15 µl of a hybridization buffer 
(10% dextran sulfate, 50% formamide, and 2× SSC) combined 
with 100 ng of DNA FISH probe freshly denatured for 5 min 
at 75°C and cooled on ice. The slides were then washed two 
times with 50% formamide/2× SSC, 2× SSC, and 0.01% Tween- 
20/2× SSC for 5 min and incubated in blocking buffer (10% FBS 
and 3% BSA/PBS) for 1 h at RT. The cells were then incubated 
in Streptavidin-Alexa 568 (Life Technologies) solution (diluted 
in blocking buffer) for 1 h at RT and washed three times with 
0.05% Tween-20/PBS. The cells were counter stained with DAPI 
(1 µg/ml) for 10 min, mounted in MOWIOL, and imaged on 
a NIKON Eclipse TE 2000-U (wide field). The images were 
processed with the software FIJI.

chiP assays
For ChIP assays, Jurkat cells (107  cells per experimental point) 
were transfected with the pUC-BENN-CAT plasmid and cul-
tured in CM ± P/I. The cells were fixed in 1.1% formaldehyde for 
10 min followed by quenching with 125 mM glycine for 5 min. 
They were then lysed and sonicated to generate 200–500  bp 
DNA fragments. ChIP assays were performed as described (39). 
Briefly, the reactions were performed in 1 ml sample tubes, using 
10 µg of isolated chromatin supplemented with 40 µl of Protein 
G Dynabeads (Invitrogen) and 5  µg of the appropriate Ab for 
each ChIP reaction. The Abs used were as follows: anti-Ets-2 
(sc-351), anti-POLII (sc-9001), and anti-IgG (sc-2027) as a nega-
tive control (all from Santa Cruz). Immunoprecipitated DNA for 
specific sites was analyzed by real-time PCR using the KAPA 
SYBR FAST qPCR Kit (Kapa Biosystems) and the Mx3000PTM 
Quantitative PCR System thermal cycler (Stratagene). The 
sequences of the ChIP primers used for different genomic regions 
in real-time PCR were as follows: for the RATS region of HIV-
1-LTR, 5′-CCAGAGAAGTTAGAAGAAGCC-3′, 5′-AAGC 
TTTATTGAGGCTTAAGC-3′, yielding a 378 PCR product and  
for the TATA region of the β2-m promoter: 5′-CGCCGATGTACAG 
ACAGCAAA-3′, 5′-TGCTGTCAGCTTCAGGAATG-3′, yield-
ing a 230bp PCR product. The optimized PCR conditions were 
95°C for 10 min, followed by 40 cycles of 95°C for 30 s and 60°C for 
30 s. The results represent the DNA enrichment as the percentage 
of immunoprecipitated chromatin for every condition and set of 
primers relative to corresponding chromatin input [100*((Ct IP/
Ct INPUT) − (Ct IgG/Ct INPUT)) where Ct is the cycle at which 
the threshold line is crossed].
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statistical analysis
Data are expressed as the mean values (SD or SE) from three inde-
pendent experiments. Statistical probabilities were evaluated by 

the Student’s t-test or one-way ANOVA. The statistical significance 
level was set at p < 0.05. Data analysis and graphic representation 
was performed using the GraphPad Prism 5.0 Software.
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FigUre 1 | Ets-2 expression in human peripheral blood mononuclear cells (PBMCs); differential expression in naive vs resting memory T helper (Th) cells.  
(a) Relative Ets-2 mRNA gene expression levels measured by real-time PCR in PBMCs and populations thereof. CD3+ T cells, CD19+ B cells, CD14+ monocytes, 
CD8+ T cytotoxic cells, CD4+ CD25− Th cells, CD4+ CD25+ Th cells (including Tregs), CD4+ CD45RO+ CD25− memory Th cells, and CD4+ CD45RA+ 
CD25− naive Th cells were isolated by cell sorting from healthy young adults. β2-m served as the normalizer gene for relative expression. The results are presented 
as the mean values (SD) from three independent experiments. Statistically significant differences are indicated by asterisks (*p < 0.05, ***p < 0.001, one-way 
ANOVA, more than two groups, gray lines; *p < 0.05, Student’s t-test, two groups, black lines). (B) Characteristic dot plots showing cell purity after sorting CD4+ 
CD45RA+ CD25− naive and CD4+ CD45RO+ CD25− memory Th cells. (c) Relative amounts of Ets-2 protein in the nuclei of naive and memory Th cells shown by 
immunofluorescence. The cells were stained for the Ets-2 protein (green), and the nuclei were counterstained with 4,6-diamidino-2-phenylindole (DAPI) (blue). 
Images are from a Leica TCSSP5 confocal microscope, 63× objective. The results shown are representative of at least three independent experiments.
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resUlTs

ets-2 expression in PBMc Populations
We investigated the endogenous Ets-2 mRNA levels by real-time 
PCR in sorted PBMC populations. As shown in Figure 1A, all 
PBMC populations expressed Ets-2, with naive Th cells express-
ing the highest levels and B cells the lowest. Focusing on naive and 
resting memory Th cells, Ets-2 mRNA levels were significantly 
higher in naive Th cells.

The difference in Ets-2 mRNA levels between naive and resting 
memory Th cells is also depicted at the protein level. Highly 
purified naive and resting memory Th cells (Figure  1B) were 
studied by confocal microscopy for the presence of Ets-2 protein, 
after staining with an anti-Ets-2 mAb. As shown in Figure 1C, the 
concentration of Ets-2 in the cell nucleus was significantly higher 
in naive Th cells compared with resting memory Th cells.

Measurement of Ets-2 mRNA and protein levels in non-
activated and activated naive Th cells showed that the levels of 
Ets-2 mRNA gradually decreased upon cell activation with P/I 
(Figure 2A). This reduction was also depicted at the protein level 
as shown by western blot analysis (Figure 2B) and immunofluo-
rescence (Figure 2C).

These data confirm our earlier findings for Ets-2 expression 
in PBMC populations purified by a different methodology (39) 
and show that naive Th cells express Ets-2 mRNA and protein 
at significantly higher levels compared with resting memory Th 
cells. The first activation of naive Th cells lowers Ets-2 mRNA and 
protein to levels that mark a permanent status of Ets-2 expression 
in resting memory Th cells.

endogenous ets-2 expression is 
reciprocal to hiV-1-lTr activation
We investigated the endogenous Ets-2 mRNA levels in Jurkat, 
RPMI8866, Raji, and U937 cell lines cultured in uninduced 
(CM) and induced conditions (P/I) (Figure  3A). Jurkat cells 
expressed high levels of Ets-2 mRNA in CM, and its synthesis 
was decreased upon stimulation with P/I, whereas Ets-2 expres-
sion was not modified in stimulated RPMI8866, Raji, and U937 
cells (Figure 3A). The reduction of Ets-2 expression in stimulated 
Jurkat cells is also depicted at the protein level, shown by western 
blot analysis (Figure 3B) and immunofluorescence (Figure 3C).

Transfection of Jurkat, RPMI8866, Raji, and U937 cells with 
the pUC-BENN-CAT plasmid or the CMV-CAT plasmid (as 
a negative control) showed higher pUC-BENN-CAT activity 
in unstimulated Jurkat cells compared with RPMI8866, Raji, 
and U937 cells (Figure  3D). pUC-BENN-CAT activity was 

increased 2.4× fold in P/I-activated Jurkat cells but remained at 
the same low levels in P/I-activated RPMI8866, Raji, and U937 
cells (Figure 3D). CMV-CAT activity was unaffected by culture 
conditions in all the cell lines tested (Figure 3E).

These data indicate that in Jurkat cells, there is a negative 
causality between Ets-2 and HIV-1-LTR expression.

ets-2 represses hiV-1-lTr activity 
through the raTs sequence
Co-transfection of P/I-stimulated Jurkat cells with increasing 
amounts of the Ets-2 overexpression vector pCDNA3-ets-2 
and stable amounts of the reporter plasmids pUC-BENN-
CAT, 2× RATS-CAT, 2× mutantRATS-CAT, and CMV-CAT 
(Figure 4) showed that transfection with increasing amounts of 
pCDNA3-ets-2 led to a gradual reduction of the pUC-BENN-
CAT (Figure  4A) and 2× RATS-CAT (Figure  4B) expression 
activities. This reduction was not observed when the cells were 
co-transfected with pCDNA3-ets-2 and 2× mutantRATS-CAT 
(Figure 4C) or CMV-CAT (Figure 4D).

To verify that Ets-2 protein binds to RATS in naive Th cells, 
we performed EMSA with purified Ets-2 isolated from nuclear 
extracts from peripheral blood Th cells. The protein extracts were 
passed through an Ets-2 Ab-binding column, and EMSAs were 
performed using an RATS probe mixed with consecutive protein 
eluates. As shown in Figure 4E, Ets-2 bound to RATS in a dose-
dependent manner.

To confirm the negative causality between Ets-2 and pUC-
BENN-CAT or 2× RATS-CAT expression, we co-transfected 
Jurkat cells with increasing amounts of ets-2 mRNA knock-
down clones and constant amounts of pUC-BENN-CAT, 2× 
RATS-CAT, or 2× mutantRATS-CAT (Figure 5). The expression 
of the reporter genes was measured by CAT assays. The results 
show that Ets-2 knockdown resulted in a gradual increase in 
pUC-BENN-CAT (Figure  5A) and 2× RATS-CAT activity 
(Figure 5B) but not in 2× mutantRATS-CAT (Figure 5C). Ets-2 
knockdown was confirmed at the protein level by Western blot 
analysis (Figure 5D).

In Vivo interaction between ets-2 Protein 
and the raTs sequence
To confirm the physical interaction between the endogenous 
Ets-2 protein and the RATS sequence of HIV-1-LTR, Immuno-
DNA-FISH experiments were performed (Figure 6). Jurkat cells 
were transfected with 2× RATS-CAT or 2× mutantRATS-CAT 
plasmids and cultured for 48  h in CM. When indicated, the 
cells were cultured for additional 6  h in the presence of P/I. 
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FigUre 2 | Ets-2 mRNA and protein expression levels in resting vs activated naive T helper (Th) cells. (a) Relative Ets-2 mRNA gene expression levels measured by 
real-time PCR in naive Th cells isolated and cultured in CM or P/I for 6, 12, and 18 h. β2-m served as the normalizer gene for relative expression. The results are 
presented as the mean values (SD) from three independent experiments. Statistically significant differences are indicated by asterisks (**p < 0.01, ****p < 0.0001, 
one-way ANOVA). (B) Western blot analysis of Ets-2 protein levels in naive Th cells isolated and cultured in CM or P/I for 6, 12, and 18 h. β-Tubulin protein levels 
were used as an internal control for equal loading. The results shown are representative of at least three independent experiments. (c) Relative amounts of Ets-2 
protein in the nuclei of resting and 6 h-activated naive Th cells shown by immunofluorescence. The cells were stained for the Ets-2 protein (green), and the nuclei 
were counterstained with 4,6-diamidino-2-phenylindole (DAPI) (blue). Images are from a Leica TCSSP5 confocal microscope, 63× objective. The results shown are 
representative of at least three independent experiments.
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FigUre 3 | Ets-2 and HIV-1-LTR expression in leukemic cell lines. (a) Ets-2 mRNA levels in Jurkat, RPMI1788, Raji, and U937 cells measured by real-time PCR. 
The cells were cultured in CM or P/I for 6 h. β2-m served as the normalizer gene for relative expression. The results are presented as the mean values (SD) from 
three independent experiments. Statistically significant differences are indicated by asterisks (*p < 0.05, Student’s t-test). (B) Western blot analysis of Ets-2 protein 
levels in Jurkat cells cultured in CM or P/I. β-Tubulin protein levels were used as an internal control for equal loading. The results shown are representative of at least 
three independent experiments. (c) Relative amounts of Ets-2 protein in the nuclei of unstimulated or P/I-stimulated Jurkat cells shown by immunofluorescence. The 
cells were stained for the Ets-2 protein (green), and the nuclei were counterstained with 4,6-diamidino-2-phenylindole (DAPI) (blue). Images are from a Leica 
TCSSP5 confocal microscope, 63× objective. The results shown are representative of at least three independent experiments. (D,e) Jurkat, RPMI8866, Raji, and 
U937 cells were transfected with 20 µg of pUC-BENN-CAT or CMV-CAT plasmids and cultured in CM or P/I. CAT assays were performed in cell extracts. The 
results are presented as the mean values (SD) from three independent experiments. Statistically significant differences are indicated by asterisks (***p < 0.001, 
Student’s t-test).
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In CM conditions, Ets-2 protein co-localized with the RATS 
sequence in Jurkat cells transfected with the 2× RATS-CAT 
plasmid, whereas in P/I-activated cells the Ets-2/RATS co-
localization was not observed (Figure  6A). Conversely, when 
Jurkat cells were transfected with the 2× mutantRATS plasmid 
no co-localization was observed under CM of P/I conditions 
(Figure 6B).

To confirm the specificity of the in vivo Ets-2 protein binding 
to RATS, ChIP experiments were performed from chromatin 
isolated from Jurkat cells transfected with pUC-BENN-CAT 
and cultured for 48 h in CM or for an additional 6 h in the pres-
ence of P/I (Figure 7). Cross-linked chromatin was subjected to 
immunoprecipitation using Abs against human Ets-2 and POLII 
or a negative control Ab to IgG. The relative positions of Ets-2 
and POLII on HIV-1 LTR are shown in Figure 7A. A chromatin 
region that encompasses the human β-2m gene promoter includ-
ing the TATA element was used as a negative control for Ets-2 
binding. Ets-2 or POLII binding to the RATS or the β-2m-TATA 
sequences was detected by real-time PCR using specific sets of 
primers. In CM conditions, Ets-2 binding to the RATS sequence 
was significantly higher compared with P/I conditions (Figure 7B, 

anti-ets-2, RATS). The inability to detect Ets-2 binding on the 
RATS sequence in activated cells is consistent with the results 
from the Immuno-DNA-FISH (Figure 6A). P/I induction of the 
cells resulted in the engagement of POLII to the LTR sequence 
that acts as the virus promoter, a fact consistent with the tran-
scriptional activation of the virus (Figure 7B, anti-polII, RATS). 
No Ets-2 binding to the β-2m gene promoter was observed under 
CM or P/I conditions (Figure  7B, anti-ets-2, β-2m-TATA); by 
contrast, the anti-POLII Ab bound to the genomic region around 
the TATA box of β-2m promoter under both CM and P/I condi-
tions (Figure 7B, anti-polII, β-2m-TATA).

The data confirm that Ets-2 binds to the RATS element of the 
HIV-1 LTR in vivo in unstimulated cells. Ets-2 binding is signifi-
cantly reduced when the cells are activated, a state in which the 
expression of HIV-1 LTR is significantly increased (Figure 3D).

DiscUssiOn

Naive Th lymphocytes are one of the main cellular reservoirs of the 
HIV-1 virus in infected individuals (6); therefore, the involvement 
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FigUre 4 | Ets-2 silences HIV-1-LTR expression through binding to the repressor–activator target sequence (RATS) element. Jurkat cells were transfected with 
increasing amounts of the Ets-2 overexpression plasmid pcDNA3-ets-2 (0, 0.5, 1, 2, and 4 µg) and a constant amount (2 µg) of the reporter plasmids:  
(a) pUC-BENN-CAT, (B) 2× RATS-CAT, (c) 2× mutantRATS-CAT, or (D) CMV-CAT as control. The amount of transfected DNA per sample was retained to 6 µg by 
the addition of appropriate amounts of vector pcDNA3 DNA. The cells were cultured in P/I. CAT assays were performed in cell extracts. The results are presented as 
the mean values (SD) from three independent experiments. Statistically significant differences are indicated by asterisks (*p < 0.05, **p < 0.01, ***p < 0.001, 
one-way ANOVA). (e) Ets-2 binding activity to the RATS element. T helper-cell nuclear extracts were passed through a protein A/G agarose column to remove 
proteins that bind to A/G agarose. The resulting eluate (a) was mixed for 1 h with 20 µg anti-Ets-2 Ab and passed through a protein A/G agarose column. Bound 
Ets-2 was eluted and collected in consecutive 1 ml aliquots. The consecutive protein aliquots (b–i) were precipitated by PEG8000, and the pellets were redissolved 
in buffer. Electrophoretic mobility shift assays were performed with the RATS oligonucleotide probe.
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of host transcription factors of infected naive Th cells in HIV-1 
suppression, through their binding to the virus LTR, constitutes 
a major cause of viral latency in these cells. Our previous studies 

have demonstrated that in naive, but not activated or memory Th 
cells, a transcription factor binds to the RATS element of HIV-
1-LTR and represses viral expression (27). The RATS sequence 
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FigUre 5 | Ets-2 knockdown increases HIV-1-LTR expression. Jurkat cells 
were transfected with increasing amounts of the Ets-2 knockdown shRNA 
clones (0, 0.5, and 1 µg) and a constant amount (1 µg) of the reporter 
plasmids (a) pUC-BENN-CAT, (B) 2× RATS-CAT, or (c) 2× mutantRATS-
CAT. The amount of transfected DNA per sample was retained to 2 µg by the 
addition of appropriate amounts of vector pLKO.1 DNA. The cells were 
cultured ±P/I as indicated. CAT assays were performed in cell extracts. The 
results are presented as the mean values (SD) from three independent 
experiments. Statistically significant differences are indicated by asterisks 
(*p < 0.05, one-way ANOVA). (D) Western blot analysis to verify the silencing 
of Ets-2 in the transfected cells. β-Tubulin protein levels were used as an 
internal control for equal loading. The results shown are representative of at 
least three independent experiments.

FigUre 5 | Continued
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Our results demonstrate a significant inhibitory potential for 
Ets-2 that binds to the RATS element of HIV-1 LTR and represses 
the expression of LTR-driven reporter genes and, also, that the 
actual amount of Ets-2 protein plays a critical role in its repressive 
activity.

Our results fit well in the current understanding of the role 
of the transcriptional factors of the Ets family in controlling the 
expression and the differentiation of a wide variety of genes in 
hemopoietic cells. Ets factors bind to a DNA region spanning 
12–15 bp containing a central GGA motif (32), present in both 
the IL-2 promoter and HIV-1 LTR. Ets proteins are expressed 
during development of the immune system, and a comprehensive 
analysis of the expression of members of this family revealed 
striking dynamic patterns in all cells tested (35). Identification 
of Ets-2 as a HIV-1 LTR repressor in naive Th cells could explain 
certain aspects of the immunopathogenesis of HIV infection.  
On one hand, the discovery of a cell type-specific repressor could 
provide an explanation as to why the virus stays latent in these 
cells, in spite of its capacity to infect them. Being in a state of tran-
scriptional silence, the virus does not express the enzymes that 
are responsible for replication of HIV genome and therefore is 
not vulnerable to the antiretroviral agents currently used to treat 
the disease (42). Hence, naive Th cells constitute a viral reservoir 
that underlies the latency of the infection, resistance to treatment 
and decline of the repertoire of antigenic responses seen during 
disease progression.

Competition between the viral LTR and endogenous cellular 
promoter targets for Ets-2 could provide a unifying mechanism 
behind the autoimmune phenomena observed during HIV infec-
tion, present in 1–60% of all infected patients (43–48), as well 
as the role of natural infections in enhancing viral replication 
(49–52). Binding of Ets-2 to the retroviral promoter would result 
in decreased availability of the former to inhibit its endogenous 
targets, which would make the cells harboring the virus hyper-
responsive to antigenic stimuli. In such a population of cells, a 
weaker antigenic stimulation (i.e., one that comes from ubiqui-
tous self-antigens) might provide a stimulus strong enough to 
trigger an (auto)-immune response. Antigens in the setting of 
community-acquired infections (i.e., viral, bacterial, mycobacte-
rial, and parasitic) may play a similar role. Evidence to support 
such an interaction comes from experimental data examining 
the influence of HIV infection on the expression of reporter 
genes driven by either the IL-2 promoter or tandem copies of 

shares significant homology with the ARRE-2 sequence in the 
IL-2 promoter, where the transcription factor Ets-2 binds and 
suppresses IL-2 expression in naive Th cells (39).
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FigUre 6 | Physical interaction between endogenous Ets-2 protein and the repressor–activator target sequence (RATS) element. Jurkat cells were transfected with 
the (a) 2× RATS-CAT or (B) 2× mutantRATS-CAT plasmids. Post-transfection, the cells were cultured in CM or P/I and attached on slides. The cells were stained 
for the Ets-2 protein (green), and the nuclei were counterstained with 4,6-diamidino-2-phenylindole (DAPI) (blue). Next, the cells were denatured and hybridized with 
a DNA fluorescence in situ hybridization probe that identifies and attaches to the RATS region of HIV-1-LTR (red). Yellow spots indicate Ets-2/RATS co-localization 
[(a), CM]. Images are from a NIKON Eclipse TE 2000-U microscope, 100× objective. The results shown are representative of at least three independent 
experiments.
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the ARRE-2 site of the IL-2 promoter in transfected T-cell clones 
(53). In that system, augmentation of the IL-2 promoter-driven 
reporter-gene activity was up to 155× fold higher when cells were 
activated in the presence of HIV virions. In the light of our earlier 
study (27) and the data we presented in this work, we can propose 
that the RATS element on HIV-1 LTR constitutes a more efficient 
competitor for the repressor molecule Ets-2 in the host cell. The 
reduced availability of repressor molecules to cover its endog-
enous target may lead to the activation of naive Th cells by weaker 
antigenic stimuli. The net outcome would be a paradoxical state of 

autoimmunity accompanied by worsening immunosuppression 
as the functional repertoire of T cells is progressively depleted. 
This mechanism could account for the simultaneous occurrence 
of autoimmunity and immunosuppression in the setting of the 
HIV infection progression toward clinical AIDS, as well as the 
reemergence of autoimmunity after immune reconstitution has 
been effected by HAART (54).

The functional involvement of Ets-2 in autoimmune phenom-
ena is also suggested by EMSA experiments using nuclear extracts 
of T  cells from autoimmune patients, which demonstrated the 
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FigUre 7 | Chromatin immunoprecipitation (ChIP) assays to verify the specificity of the in vivo binding of Ets-2 to repressor–activator target sequence (RATS).  
(a) Schematic representation of the HIV-1-LTR sequence showing the relative binding positions of transcription factors, the TATA box, and the transcriptional 
initiation start site (+1). The arrows indicate the relative position of the primers pair used for the detection, by real-time PCR, of the HIV-1-LTR region that 
encompasses the RATS element and the virus TATA box from the immunoprecipitated chromatin. (B) Jurkat cells were transfected with the pUC-BENN-CAT 
plasmid and were cultured in CM ± P/I for 6 h. The cells were harvested, and their extracts were prepared for ChIP analysis. ChIP assays were carried out with Abs 
to Ets-2, POLII (and IgG for background determination). The results represent the DNA enrichment as the percentage of immunoprecipitated chromatin for every 
condition and set of primers relative to the corresponding chromatin input. To control for the accuracy of the ChIP assays, for the specificity of the Abs and the 
amplified regions, real-time PCR was performed to detect the TATA region of the β2-m gene promoter (β2-m-TATA). The results shown are the mean values (SE) of 
three independent experiments. Statistically significant differences are indicated by asterisks (*p < 0.05, Student’s t-test). The control antibody to IgG failed to 
precipitate chromatin.
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absence of ARRE-2 binding activity in naive Th cells [(55), and 
our unpublished data] during both disease activity and remis-
sion, suggesting that this abnormality is primary, rather than an 
epiphenomenon. During lymphocyte maturation, a failure in the 
acquisition of the repressor by some otherwise mature thymo-
cytes could result in an increased number of peripheral naive Th 
cells, which are more prone to develop into autoreactive clones 
upon antigenic stimulation. Such an epigenetic abnormality can 
be potentially mirrored in naive Th-cell infection by HIV-1.

Recent studies have demonstrated decreased IL-2 expression 
in primary Th cells with latent HIV-1 infection even after activa-
tion of the cells with mitogens (56, 57). On the other hand, in 
HIV-1 elite controllers that are characterized by undetected viral 
load (<50 HIV-1 RNA copies/ml) and normal Th-cell numbers, 

high levels of IL-2 are detected in their blood serum compared 
with progressors (58). To note, IL-2 plays an important role in 
HIV infection, since it contributes to Th-cell proliferation and 
their protection from apoptosis (59). It would be interesting 
to investigate whether Ets-2 expression levels in naive Th cells 
affect the progression of HIV-1 infection in progressors vs elite 
controllers.

Our earlier EMSA experiments performed with nuclear 
proteins isolated from resting peripheral blood T  cells that 
exhibited repressor activity on IL-2 and HIV-1 expression, and, 
as probes, either the ARRE-2 element of the IL-2 promoter or 
the RATS element of the HIV-1-LTR, showed the formation of 
similar complexes. Cross-competition experiments with varying 
quantities of ARRE-2 and RATS cold probes showed that the 
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RATS element competed much more efficiently for protein bind-
ing to ARRE-2 compared with ARRE-2 competition for protein 
binding to RATS. Specifically, 50-fold of cold RATS probe was 
sufficient to compete for protein binding to ARRE-2 to a level 
attained with 1,000-fold of cold ARRE-2 probe to compete for 
protein binding to RATS (27). These early observations, taken 
together with our recent discoveries that this repressor protein 
that binds to ARRE-2 and RATS in naive Th cells is the transcrip-
tion factor Ets-2 [Ref. (29, 39) and this work], indicate that Ets-2 
has the propensity to preferentially target the HIV-1 LTR during 
infection, thus contributing to viral latency and maintenance of 
viral reservoirs in patients, despite long-term therapy.

Although it will be considerably difficult to perform these 
direct competition experiments in naive Th cells infected with 
latent HIV-1 because they are extremely rare in peripheral blood 
(60), our results that show a similar pattern of Ets-2 expression 
between peripheral blood naive Th cells isolated from immu-
nocompetent HIV-1+ patients and healthy controls (pages 4–7 
and Figure S3 in Supplementary Material) confirm that Ets-2 is 
available and can act as a repressor if and when the patients’ naive 
Th cells become infected.

The identification of Ets-2 as transcriptional silencer of the 
HIV-1 virus sets the stage for investigations into the immu-
nopathogenesis of the HIV-1 infection in the domain of genomic 
conflict.
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