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Abstract

CTCF is a ubiquitous epigenetic regulator that has been proposed as a master keeper of chromatin organisation. CTCF-like,
or BORIS, is thought to antagonise CTCF and has been found in normal testis, ovary and a large variety of tumour cells. The
cellular function of BORIS remains intriguing although it might be involved in developmental reprogramming of gene
expression patterns. We here unravel the expression of CTCF and BORIS proteins throughout human epidermis. While CTCF
is widely distributed within the nucleus, BORIS is confined to the nucleolus and other euchromatin domains. Nascent RNA
experiments in primary keratinocytes revealed that endogenous BORIS is present in active transcription sites. Interestingly,
BORIS also localises to interphase centrosomes suggesting a role in the cell cycle. Blocking the cell cycle at S phase or
mitosis, or causing DNA damage, produced a striking accumulation of BORIS. Consistently, ectopic expression of wild type
or GFP- BORIS provoked a higher rate of S phase cells as well as genomic instability by mitosis failure. Furthermore, down-
regulation of endogenous BORIS by specific shRNAs inhibited both RNA transcription and cell cycle progression. The results
altogether suggest a role for BORIS in coordinating S phase events with mitosis.
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Introduction

CTCF is a Zinc finger DNA binding protein initially identified

as a transcriptional regulator [1] and later established as a

chromatin insulator binding protein [2]. CTCF has attracted

much attention in the last years since it has been associated with

heritable genomic imprinting [2,3] and it has been proposed as a

master keeper of global chromatin structure [4,5]. The essential

role for CTCF in genome regulation was revealed by genome-

wide analysis [6,7,8,9].

CTCF-like protein BORIS (Brother of the Regulator of

Imprinted Sites; or CTCFL) has been proposed to be a CTCF

antagonist [10]. The BORIS protein (663 aminoacids) exhibits

high homology with CTCF in the central domain containing 11

Zinc-Finger elements, where every amino acid relevant to DNA

binding is exactly the same. CTCF and BORIS might thus bind to

the same DNA target sequences. On the contrary, the flanking N-

and C- terminal regions show very little sequence homology

between of BORIS and CTCF, implying that they may recruit

different associated cofactors [11,12,13].

BORIS was originally found only in spermatocytes within

normal tissues [11]. More recently, it has been detected in human

oocytes, ovary, embryonic stem cells [14] and various foetal tissues

[15]. Consistent with its significant level of expression in testis,

BORIS knock-out mice suffer from spermatogenesis defects that

result in small testes [16]. In addition, BORIS is aberrantly

expressed in many tumours [17,18,19] and was thus defined

within the cancer-testis group of genes [10]. Because of the high

homology of the zinc fingers domain, BORIS is thought to bind to

the same DNA sequences as CTCF [10]. However, CTCF and

BORIS differ significantly in their amino and carboxy termini,

suggesting that they may act differently by recruitment of different

associated cofactors [11,13]. They are thought to be antagonists

also because of the mutually exclusive manner of their distribution

during male germ cell development, although they are aberrantly

co-expressed in cancer cells. CTCF has been considered as a

tumour suppressor (reviewed in [20], it inhibits cell growth when

ectopically expressed [10,21,22], it is ubiquitously distributed in

somatic cells and it is altered in a number of tumours through

genetic and epigenetic mechanisms [23,24]. It is unclear whether

aberrant expression of BORIS interferes in tumour cells with the

normal function of CTCF [10], or it elicits CTCF independent

functions.

The regulation of BORIS is a complex promoter- and cell type-

dependent process [25]. 23 differentially expressed isoforms of

BORIS have recently been reported [15]. Although the biological

data available have suggested a role for BORIS in epigenetic

genome reprogramming in testis [11] and in the proliferation of
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cancer cells [17], little is known about the mechanisms eliciting

these functions. In part this issue has been hampered by the

restricted detection of the BORIS protein in normal tissues. In

order to gain insight into this issue we have studied a primary

human system. After running a small scale screening on a panel of

cell lines and tissues, we detected BORIS mRNA in skin samples.

The epidermis is a stratified epithelium that self-renews

throughout adult life from the stem cells in the basal layer [26].

As keratinocytes differentiate terminally, they cease proliferation

and migrate through the suprabasal layers. During this process

keratinocytes evolve from quiescent stem cells to actively

proliferating cells and subsequently, to actively metabolic differ-

entiating cells. Keratinocyte differentiation involves a significant

cell mass increase and high production of RNA and proteins

[27,28] and requires continuous reprogramming of gene expres-

sion and chromatin remodelling [29].

We have explored the distribution of CTCF and BORIS in

human epidermis in situ and in primary keratinocytes in vitro. We

show a striking localisation of BORIS to the nucleolus and other

areas of active transcription and to interphase centrosomes. This

localisation was confirmed in mouse testis and a panel of cell lines

from diverse origins. By ectopic expression or inactivation studies,

we also demonstrate a function of BORIS in RNA transcription,

cell cycle progression and genomic instability. We discuss the

potential implications of this novel function of BORIS for cancer

cells.

Materials and Methods

Skin Biopsies and Cell Culture, Treatments and
Transfections

Ethics Statement: Ethical permission for this study was

demanded, approved and obtained from the Ethical Committee

for Clinical Research of the Cantabria Council, Spain (FIS-08/

0890). In all cases, human tissue material to discard after surgery

was obtained with informed written consent presented by

clinicians to the patients or the parents/guardians of minors

involved in the study, the identity was not kept and the material

was thus treated completely anonymously.

Skin biopsies were provided by the Plastic Surgery and

Paediatrics Services of clinic St Jean (Montpellier, France) and

of Hospital Marqués de Valdecilla (Santander, Spain) from

circumcisions (neonatal foreskin) or from plastic surgery (adult

breast, scalp). The fat and most of the connective tissue was

removed using curved scissors, and the epidermis was embedded

in OCT compound (Tissue-Tek, Sakura) and submerged in liquid

Nitrogen (Thermo Shandon). Frozen tissue was microsectioned

and 5–10 mm thick sections were collected on Superfrost Plus

glass-slides (Thermo Scientific) and air dried [30].

Primary keratinocytes were isolated from neonatal human

foreskin and cultured in the presence of a mouse fibroblast feeder

layer (inactivated by a 2 h treatment with 4 mg/ml mitomycin C),

10% serum and 1.2 mM Ca+2, as described [31,32].

Primary keratinocytes were treated for 48 hours with cdk

inhibitors or mitosis kinase inhibitors: 50 mM of hydroxyurea

(Tocris Bioscience), 1 mM of the Aurora B Kinase inhibitor

ZM447439 (Tocris Bioscience) or 100 nM of the Polo Like Kinase

inhibitor BI2536 (Axon MedChem BV). Parallel control cultures

were always subjected to the DMSO vehicle.

HEK293T (human embryonic kidney; [33]), HeLa (human

cervical cancer; [34]), HCT116 (human colorectal cancer; [35]),

MCF7 (human breast cancer; [36]), MEF-1 (obtained from the

American Type Culture Collection) and 3T3-J2 (mouse embry-

onic fibroblasts; [31]) cell lines were grown in DMEM supple-

mented with 10% foetal calf serum (FCS; LONZA), 150 mg/ml of

gentamycin and 2 mg/ml of ciprofloxacin at 37uC in a humidified

5% CO2 atmosphere. HEK293T cells were transfected by the use

of the jetPEI transfection reagent (poly Plus) as indicated by the

manufacturer, with the following constructs: pEGFP-CTCF [37],

pCDNA-CTCF [22], pEGFP-BORIS, pCMV-BORIS (kindly

provided by Elena Klenova, University of Essex, UK), pEGFP-

BORIS-ZF-domain (kindly provided by Niels Galjart and Frank

Sleutels, Erasmus MC, Rotterdam, Netherlands), Fibrillarin-

Cherry (kindly gift by Prof. Angus I. Lamond, University of

Dundee, Dundee, UK; [38]) or shRNAs BORIS (Genecopoieia

Inc, MD, USA; see below).

Mice Tissue
Mice in a C57BL/6 background were obtained from Harland

Ibérica (Barcelona, Spain) and used to purify RNA from different

tissues for quantitative RT-PCR experiments. All experiments

were performed with 10–12 week-old animals and approved by

the Universidad de Cantabria Institutional Laboratory Animal

Care and Use Committee (Ref. Numb. 2008/07).

RNA Purification and RT-PCR Analysis
Total RNA was extracted from human cell lines and different

mouse and human tissues using Trizol reagent (Invitrogen). 2 mg

of RNA were used for the reverse transcription with the iScript

cDNA Synthesis Kit (Bio-Rad). cDNA was amplified using specific

primers (see Information S1) and Qiagen Quantitect Sybr Green

mix with an iQ5 Real-Time PCR Detection System (Bio-Rad).

Amplification efficiencies, determined by amplifying log dilutions

of plasmids containing the corresponding coding sequences, were

near 100%. For semiquantitative PCR, a Thermal Cycler C1000

(Bio-Rad) was used. The PCR conditions were determined

depending on the nature and complexity of the primers. The

results were normalised to b-actin for human samples and to

GAPDH for mouse samples using the comparative DeltaDeltaCt

(DDCt) method.

Chromatin Immunoprecipitation (ChIP) Assays
ChIP assays were performed using a modified version of the

Upstate Biotechnology protocol. Briefly, 56106 cells were fixed in

1% formaldehyde, lysed in lysis buffer (50 mM Tris-HCl pH 8,

10 mM EDTA, 1% SDS, protease inhibitor cocktail Set I) and

sonicated using a Bioruptor UCD-200 (Diagenode), leading to

fragments between 250 and 1000 bp. ChIP was performed using

Dynabeads-protein G (Invitrogen) coupled to anti-BORIS anti-

body (abcam ab18337) or anti-GFP antibody (Invitrogen A11122).

The DNA recovered was purified (Qiaquick columns, Qiagen) and

analysed by quantitative real time-PCR as described above. PCR

was performed in duplicate with equal amounts of specific

antibody immunoprecipitated sample, control (IgG) and Input.

Primers used for H 42.1 and H 37.9 sites in human ribosomal

DNA and amplification conditions were previously described [39].

Values were normalised to input measurements and enrichment

was calculated using the comparative Ct method.

Immunofluorescence and Confocal Microscopy
For immunofluorescence assays, keratinocytes and adherent cell

lines were grown on glass coverslips. Cells and skin sections were

fixed and permeabilized with cold methanol 220uC) for 10 min,

washed with PBS and successively incubated with primary

antibodies and secondary antibodies. Primary antibodies used

were: anti-CTCF (Abcam ab10571, ab84372 or Upstate 07-729);

anti-BORIS (Rockland 600-401-907; Abcam ab18337 or a

Cell Cycle Role of BORIS

PLoS ONE | www.plosone.org 2 June 2012 | Volume 7 | Issue 6 | e39371



chicken polyclonal antibody [17]; anti-keratin K10 (Sigma

WH0003858M1); anti-keratins K1,10,11 (American Research

Products, Inc 03-61808), anti-involucrin (Sigma I-9018); anti-Pan

Histone (Roche 1492-519); anti-cTubulin (Sigma T-6557); anti-

UBF (Santa Cruz sc-13125); anti-Fibrillarin (Abcam ab4566).

Secondary antibodies (Jackson InmunoResearch Laboratories)

were conjugated with Texas Red, fluorescein isothiocyanate or

Cy5. Parallel control samples with no primary antibody, a negative

primary antibody anti-CD8 (Sigma C-7423); mouse IgGs (Santa

Cruz sc-2027) or rabbit antiserum, showed unspecific fluorescent

staining.

Nucleic acids were visualised with the red dye propidium

iodide (4 mg/ml final concentration) on fixed and permeabilized

cells. For detection of GFP-CTCF and GFP-BORIS fusion

proteins, transfected HEK293T cells were fixed with cold

methanol (–20uC), washed and mounted with anti-fading

mounting medium Vectashield (Vector Laboratories) with 49,69-

Diamidino-2-phenylindole dihydrochloride (DAPI) to visualize

the nucleus. Cell samples were examined and images acquired

using a Zeiss IMAGER M1 fluorescence microscope and a Zeiss

LSM 510 META confocal laser microscope equipped with argon

(488 nm) and HeNe (543 nm) and HeNe (633 nm) lasers. Z-stack

digital images were reconstructed after collecting 40 frames by a

confocal microscope (Nikon A1R) at every 0,223 mm depth and

processing by Nis elements AR, 3.2 64 bits).

Cell counting for cell cycle markers after transfection with GFP-

constructs was performed by scoring positive cells of the given

marker within the GFP positive or negative populations, taken

.1000 total cells and .100 GFP positive cells per sample from 4

different fields (micro-photographs) in duplicates.

Immunoblotting
Primary keratinocytes were lysed with a 7 M urea buffer (0.1 M

Tris-HCl pH 6.8; 7 M urea; 4% SDS; 10% 2-mercaptoethanol,

0.1% bromo phenol blue) and protein levels were determined by

immunoblot as described [22]. The membranes were incubated

with primary antibodies anti-CTCF (BD Biosciences 612148) or

anti-BORIS (Rockland 600-401-907 or abcam ab18337) and then

with fluorescent secondary antibodies (IRDye Antibodies, Li-

COR, Biosciences). The immunocomplexes were detected with an

Odyssey Infrared Imaging System (Li-COR, Biosciences). For

protein loading control, the blots were re-stained with anti-b-actin

antibody (I-19 Santa Cruz Biotech. sc-1616).

Run-on Transcription Assay and BrdU Incorporation
For immunodetection of nascent RNA, short pulses of 59-

fluorouridine (59-FU; Sigma) were performed on primary kerati-

nocytes, generally as described in [40]. Primary keratinocytes were

cultured directly on glass coverslips and 59-FU was added to a final

concentration of 2 mM in the culture medium. After 5 or 10 min,

cells were fixed with 3.7% paraformaldehyde in HPEM buffer

(30 mM Hepes, 65 mM Pipes, 2 mM EGTA, 2 mM MgCl2)

containing 0.5% Triton X-100 for 10 min The incorporation of

59-FU into nascent RNA was detected with an antibody against

halogenated UTP (anti-BrdU clone BU-33 Sigma) and a Texas

Red-conjugated secondary antibody (Jackson Laboratories).

To monitor DNA synthesis in live cells, bromodeoxyuridine

(BrdU) incorporation assays were performed. Primary keratino-

cytes growing on glass coverslips were pulsed with 40 mg/ml BrdU

(Roche) for 15 min, washed in HPEM buffer and fixed with 3.7%

paraformaldehyde as above. Cells were treated with HCl,

neutralized and sequentially incubated with anti-BrdU antibody

and Texas Red-conjugated secondary antibody. Cells were

washed and mounted with anti-fading mounting medium with

DAPI (Vector Laboratories).

Knock-down of Endogenous BORIS with shRNAs
shRNA constructs targeting BORIS were from Genecopoieia

Inc (Rockville, MD, USA; HSH003033-HIVH1). Four different

plasmids with different target sequences for BORIS (sh1,

OS245161; sh2 OS245162, sh3 OS245163 and sh 4 OS245164)

were transiently transfected into HEK293T cells using JetPEI

(Polyplus transfection). Cells were analysed 48 hours after

transfection. Quantification of mRNA transcripts was performed

using RT-PCR and all data normalized to ribosomal protein S14.

The most efficient constructs in diminishing BORIS expression

were selected (sh2 and sh4). A construct carrying a scrambled

sequence of a similar size was used as a control. All shRNAs were

associated to a GFP control to visualise transfected cells.

Flow-cytometry Analyses
Trypsinized HEK 293T cells were fixed in cold 70% ethanol

and stained with propidium iodide as described [41]. After

staining, cells were firmly resuspended and filtered through a

70 mM mesh to minimize the presence of aggregates and then

analysed on a BD FACSCantoTM. 10 000 events were gated and

acquired in list mode for every sample.

Clonogenic Growth Assay
After transfection, HEK 293T cells were placed in 6-well tissue

culture plates at a density of 104 cells/well. 14 days later, cells

were fixed and stained with Cristal violet 1% ETOH to visualize

the colonies.

Results

CTCF and BORIS Protein Expression in Normal Human
Skin

We analysed a panel of mouse tissues (15) for BORIS mRNA

expression by quantitative real time RT-PCR. These studies

identified high levels of BORIS mRNA in testis (Fig. 1A) as

previously described [11]. Lower but reproducible levels of

BORIS mRNA were also detected in other mouse tissues,

particularly in skin and at a lesser extent in spleen (Fig. 1A). We

therefore investigated BORIS mRNA expression by RT-PCR in

human skin. We found significant levels in total human skin and

freshly isolated whole dermis epidermis or disaggregated

keratinocytes (Fig. 1B and Information S1). BORIS transcripts

were detectable with the three primer sets employed, designed

to amplify different regions of BORIS mRNA (Fig. 1B and

Information S1). CTCF mRNA expression was also found in

epidermis, dermis and isolated keratinocytes (Fig. 1B). These

results suggest that BORIS is expressed in normal human skin.

In order to determine the distribution and localisation of the

two proteins in the epidermis, we investigated the expression of

CTCF and BORIS proteins by indirect immunofluorescence on

human skin sections. We labelled skin with antibodies for BORIS

or CTCF of different origins and for keratins 1 or 10 as a marker

of post-mitotic terminal differentiation. Expression of CTCF

protein was observed throughout the suprabasal layers of

epidermis with a punctate focal pattern in the whole nucleus

(Fig. 1C,E), consistent with previous reports in other cell types

[37,42,43]. In contrast, BORIS accumulated in discrete nuclear

and perinuclear spots or foci of all epidermal cells (arrows and

arrowheads, Fig. 1D,F). The distribution of CTCF and BORIS in

epidermis was confirmed with two and three different polyclonal

antibodies, respectively (see Materials and Methods), on skin
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sections from more than five different individuals. Double labelling

experiments for CTCF and BORIS by confocal or conventional

fluorescence microscopy showed the differential distribution of the

two proteins in the epidermis, whose signals did not generally co-

localise within the nucleus (Fig. 1G and Information S1). It is

important to note that the immunostaining intensity of CTCF

diminished in the more differentiated layers of the epidermis

(Fig. 1C,E and Information S1). Therefore, both proteins were

detected throughout the epidermis, although they displayed a

differential distribution.

Accumulation of BORIS in the Nucleoli and other Active
Transcription Sites

The staining pattern of BORIS in epidermal keratinocytes was

reminiscent of the nucleoli. This possibility was investigated by

staining the epidermis with propidium iodide (PI), a cytochemical

marker for nucleic acids. The nucleolus is a centre of active

synthesis and processing of rRNAs [44] and references therein)

and with the PI staining appears more intensely labelled than the

rest of the nucleus due to its high content in rRNAs (Fig. 2A). We

further performed double immunofluorescence for BORIS and

nucleolar markers UBF or Fibrillarin [45]. UBF is a transcription

factor of rRNA genes preferentially located in fibrillar centres of

the nucleolus. It plays an important role in inducing the

euchromatic state of the rDNA. Fibrillarin is involved in the

processing of pre-rRNA that takes place in the nucleolus. BORIS

strongly co-localised with both nucleolar markers within the

epidermal nuclei (Fig. 2B,C). It is to note however that while

Fibrillarin was stronger in the proliferative basal of epidermis,

nucleolar expression of BORIS was stronger in the suprabasal

layers of the epidermis, composed of differentiating cells that re-

replicate after a mitotic block (Fig. 2C; [28,32]). We also explored

the distribution of BORIS with respect to chromatin density by

double labelling with a pan-histone antibody. As shown in Fig. 2D,

BORIS localised in nuclear domains that were dull for histone

staining, corresponding to areas of low DNA density. A generally

inverse pattern was found for CTCF, predominant in bright

histone areas (not shown) and in UBF negative domains (Fig. 2E)

as previously described in other cell types [37]. Taken together,

the results from nucleolar markers and histone density suggest that

BORIS is present in less condensed DNA regions typical of

euchromatin.

We aimed to further explore the nuclear localisation of BORIS,

by expressing a GFP-fusion form of the protein. Since primary

keratinocytes are very hard to transfect, we made use of human

epithelial HEK293T cells. We performed transient transfection

with GFP-BORIS and analysed its localisation after 24 h. In cells

transfected with the control GFP vector the signal was distributed

throughout the cell (Fig. 3A). In contrast, the GFP-BORIS fusion

protein strongly localised to the nucleoli, as it was revealed by

immunostaining for BORIS, UBF or Fibrillarin (Fig. 3B–D). Both

the exogenous GFP-BORIS fusion protein and the wild-type

protein were detected with the anti-BORIS antibodies used in the

studies on skin, further confirming their specificity (Fig. 3B,E). We

assessed the overexpression of BORIS protein also by RT-PCR,

with various primer sets (Fig. 3F and Information S1) and by

western blotting, with two different polyclonal antibodies (Fig. 3G

and not shown). Interestingly, the truncated Zinc-Finger domain

of BORIS was sufficient to drive nucleolar localisation (Fig. 3H,I).

The GFP-CTCF protein showed a nucleoplasmic distribution. We

previously reported nucleolar localisation of CTCF [37]. Finally,

double transfection experiments with GFP-BORIS and Fibrillarin-

Cherry (red) showed their co-localisation in live cells (Fig. 3J and

Video S1).

We recently described an epigenetic regulation of ribosomal

chromatin by CTCF and identified two CTCF binding sites at

the intergenic region of the human rDNA repeats [39]. UBF

Figure 1. Expression of BORIS and CTCF in mouse tissues and
human skin. A) BORIS mRNA expression in mouse tissues as analysed
by quantitative RT-PCR by the comparative Ct method and normalised
to GAPDH. Data are represented as fold changes relative to the lowest
BORIS/GAPDH ratio (cartilage, designated as 1.0). For each sample,
measurements were done in duplicate using two different primer sets.
Error bars represent s.d. HEK293T cells transfected with pEGFP-mBORIS
were used as positive control (right graph). B) BORIS, CTCF and b-Actin
(internal control) mRNA expression in human skin and primary
keratinocytes by semiquantitative RT-PCR (H0.3 primer set was used,
see Information S1). Human total skin (S), dermis (D), epidermis (E) and
freshly isolated keratinocytes (K), buffer only-control (C) or molecular
weight markers (M). C,D) Indirect immunofluorescence experiments on
human skin sections with anti-CTCF or anti-BORIS antibodies as
indicated. Colours as indicated. The nuclei were visualised with DAPI
(blue). Dotted line indicates the basal membrane that separates the
epidermis (Ep) from the dermis (Der). Scale bar: 50 mm. Photographs are
representative of studies on five different human individuals with three
different polyclonal antibodies for BORIS and two different antibodies
for CTCF. E,F) Double immunofluorescence for CTCF or BORIS and
markers of post-mitotic terminal differentiation keratins K1/K10. Colours
as indicated. Scale bar: 20 mm. G) Double immunofluorescence for CTCF
(red) or BORIS (green). Scale bar: 10 mm. Arrows indicate the focal
accumulation of BORIS within the nuclei, arrowheads indicate BORIS
dots beside the nuclei. Colours as indicated.
doi:10.1371/journal.pone.0039371.g001
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was found to be a common interacting partner of CTCF and

BORIS. Consistently, chromatin immunoprecipitation assays

(CHIP) in HEK293T cells transfected with the GFP-BORIS

vector showed occupancy of rDNA sites by BORIS (Fig. 4A,B).

Therefore, both H37.9 and H42.1 rDNA sequences are

common binding sites for CTCF and BORIS at the intergenic

rDNA region.

Keratinocytes can be isolated from human skin and cultured

under conditions close to physiological [31]. We took advantage

of these primary cultures to further investigate the localisation of

Figure 2. BORIS localises to the nucleoli of human epidermal cells. A–E) Double immunofluorescence analyses were performed on human
skin sections with antibodies to BORIS or CTCF and UBF, Fibrillarin or pan-histone, as indicated. Coulors as indicated. Nucleoli were counterstained
with propidium iodie (PI) in A. Arrows point at nucleoli (A–C,E) or histone-dark areas (D). Note the coincidence between the BORIS protein, nucleolar
markers and dark-histone areas. Scale bar: 20 mm.
doi:10.1371/journal.pone.0039371.g002
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CTCF and BORIS in epidermal cells. Expression of the

endogenous proteins was first assessed in primary keratinocytes

by western blotting and immunofluorescence as above (Infor-

mation S1). The results were consistent with what observed in

the epidermis. BORIS was detected in discrete areas of the

keratinocyte nucleus (arrows; Information S1), whereas CTCF

was evenly distributed throughout the nucleus (Information S1).

To investigate the potential role of BORIS within the

keratinocyte nucleus, we performed run-on transcription assays

to detect nascent mRNA. This useful technique analyses overall

gene transcription in live cells [37,40,46]. A short pulse with 59-

fluorouridine (59FU) allows detection of foci of nascent RNA

molecules. A 10 min pulse of 59FU in keratinocytes revealed a

classical pattern of transcription foci among which the nucleolus

was the most prominent (due to transcription of ribosomal

DNA) but not the only one (arrows; Fig. 5A). Interestingly,

double staining for 59FU and endogenous BORIS revealed a

tight association not only within the nucleoli, but at all areas of

nascent RNA (Fig. 5A). On the contrary, endogenous CTCF in

keratinocytes did not localise to areas of 59FU incorporation

(Fig. 5B). Finally, we questioned whether BORIS foci were

related to DNA replication. Labelling of DNA synthesis by a

15 min pulse of BrdU incorporation showed that the distribu-

tion of endogenous BORIS or CTCF in the keratinocyte

nucleus was unrelated to DNA replication (Information S1). To

test whether there was a functional role of BORIS at sites of

transcription, we made use of specific shRNA to knock-down

the endogenous protein. Two different shRNAs against BORIS

diminished its expression with a different efficiency (Fig. 5D).

They also caused an inhibition of pre-rRNA synthesis as

assessed by RT-PCR and in situ overall transcription, as

compared with a scrambled irrelevant RNA sequence (Fig. 5D).

Figure 3. Exogenous GFP-BORIS localises to the nucleoli. A–E, H,I) Detection of GFP (green) or BORIS (red), UBF, or Fibrillarin by
immunofluorescence in HEK293T cells 24 hours after transfection with plasmids carrying GFP (A) or GFP-BORIS (B-D), wild-type BORIS (E) or GFP-Zinc
finger domain of BORIS (H,I), as indicated on the left side. The nuclei were visualised with DAPI (blue). Scale bar: 10 mm. F) Detection of BORIS mRNA
expression by RT-PCR in HEK293T cells transiently transfected as above. Primers for CTCF and b-actin were used as controls. BS: BORIS. G) Detection of
BORIS by western blotting with the antibodies used for the immunofluorescence analyses above. Note the higher molecular weight of the fusion
protein GFP-BORIS, compared to the wild-type protein (arrow). b-Actin as loading control. J) Video microphotograms showing the co-localisation of
GFP-BORIS and Fibrillarin-Cherry in live cells after transient transfection (see also Video S1).
doi:10.1371/journal.pone.0039371.g003
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Cell Cycle-dependent Centrosomal Localisation of BORIS
The localisation of BORIS in a dotty perinuclear structure in

the skin was reminiscent of centrosomes (see e.g., [28]).

Interestingly, CTCF has been reported to localise to the

centrosomes at metaphase in HeLa cells [42]. To investigate this

issue, we performed double staining for CTCF or BORIS and c-

tubulin in primary keratinocytes. Centrosomes duplicate during S

phase of the cell cycle and are key motors for the ordering and

polar separation of the chromosomal spindle during mitosis [47].

c-tubulin is a specific component of centrosomes [48]. We found

CTCF and c-tubulin co-localisation only sporadically in meta-

phase keratinocytes (Fig. 6A,C), never in interphase centrosomes

(Fig. 6D). In striking contrast, BORIS was present in the

centrosomes of all interphase keratinocytes (Fig. 6B,E), but not

in mitotic cells as the centrosomes split far apart at metaphase

(Fig. 6B,F). Detailed one-plane confocal microscopy analyses

confirmed these results in primary keratinocytes and human

epidermis (Fig. 6G,H). Centrosomal BORIS was undetectable at

the beginning of prophase and was detected again just after

cytokinesis. Similarly, BORIS centrosomal staining by confocal

analyses of epidermis was strong in interphase cells (Fig. 6H) but

was not detected in mitotic cells (not shown). Altogether, the results

suggest a dynamic localisation of CTCF and BORIS at the

centrosomes, where they alternate as the cell cycle progresses

through mitosis.

Having detected BORIS in the nucleoli and centrosomes, we

analysed its subcellular localisation in cell systems previously

reported to express the protein (Fig. 7). We found both nucleolar

and interphase-centrosomal distribution of BORIS in HeLa

(cervical cancer), HCT116 (colorectal cancer) and MCF7 (breast

cancer) cells. BORIS was also observed in the cytoplasm of these

cancer-derived cell lines, as previously reported [17,25,49]. In

contrast, CTCF was generally excluded from the nucleolus and

interphase centrosomes in these cells (Information S1). In addition,

we investigated the subcellular localisation of BORIS in mouse

normal testis, where BORIS was initially detected. We observed a

punctate distribution of BORIS in the testis epithelium as reported

(Fig. 7B; [11]). As in human epidermis, BORIS co-localised with

the nucleolar marker UBF within the nuclei (not shown) and with

the centrosomal marker c-tubulin beside the nuclei (Fig. 7B).

BORIS Induces Accumulation of Cells in S Phase and
Genomic Instability

Epidermal keratinocytes block mitosis and accumulate mitotic

cyclins as they initiate terminal differentiation [28,32]. We have

observed accumulation of BORIS in the cytoplasm of keratino-

cytes in differentiating layers of the epidermis that accumulate also

the mitotic regulator Cyclin B (Fig. 8A). To investigate whether

the accumulation of BORIS was related to a mitosis defect we

blocked freshly isolated epidermal keratinocytes at mitosis by

different inhibitors: i) Nocodazole, inhibitor of microtubule

formation (not shown), ii) BI2536 and ZM447439 (ZM77),

inhibitor of Polo-Like kinase and Aurora B kinase, respectively,

that are components of the mitosis spindle checkpoint [50]. We

also made use of hydroxyurea, that blocks cells at the beginning of

S phase. Either blocking Mitosis or S phase progression provoked

a substantial accumulation of BORIS (Fig. 8B,C, Information S1

and not shown), suggesting that the regulation of BORIS is linked

to cell cycle progression. Defects in cell cycle progression

accumulated BORIS and this was especially remarkable when

we treated primary keratinocytes with the genotoxic agent

doxorubicin (Fig. 8B,C), that induces in these cells acute DNA

damage and p53 [32].

In order to further investigate whether BORIS is involved in the

progression of S phase and mitosis, we overexpressed wild type or

GFP-BORIS by transient transfection in human epithelial

HEK293T cells as in Fig. 3 and studied the effects on the cell

cycle. As shown in Fig. 9A, overexpression of BORIS provoked an

accumulation of cells in S phase and a significant increase of large

and polyploid cells. Increased cell size is typical of mitosis failure

and re-replication [28]. These results suggest that BORIS must be

degraded in order for mitosis to progress, as other classical

regulators of S phase and mitosis (e.g., Cyclins E, A and B;

reviewed in [51]). To further explore whether the accumulation of

cells in S phase was due to an increase of proliferation or to a cell

cycle block, we performed analyses of cell cycle markers and clonal

growth. Overexpression or inactivation of BORIS caused a

decrease in the index of cell cycle markers PCNA and Cyclin A

(Fig. 9B and Information S1) and in the clonogenic cell potential to

grow (Fig. 9C). This further suggests that the regulation of BORIS

is important for the correct progression of the cell cycle, its

deregulation causing cell cycle defects.

Figure 4. Exogenous GFP-BORIS binds ribosomal DNA. A)
Scheme showing the location of the H37.9 and H42.1 sites utilised for
the studies within the ribosomal intergenic region of the rDNA repeats.
B) In vivo binding of BORIS to ribosomal DNA (rDNA). Chromatin
immunoprecipitation (ChIP) analyses with anti-BORIS (grey bars) or anti-
GFP (black bars) antibodies show BORIS occupancy of H37.9 and
H42.1 rDNA sites. Chromatin was prepared from HEK293T cells mock
transfected or transfected with GFP or GFP-BORIS expression vectors as
indicated. Relative enrichment was quantified by real-time PCR with the
H37.9 and H42.1 rDNA primer sets. Data were normalised against the
enrichment for the negative control Myc-H.1 [73]. The value for the
amount of PCR product present from ChIP assay with anti-IgG antibody
(white bars) was set as 1. Small bars are s.d. of two independent
experiments performed in duplicate samples. Bottom panels show
typical PCR products after the ChIP analyses.
doi:10.1371/journal.pone.0039371.g004
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Figure 5. Endogenous BORIS localises to nuclear active transcription sites of primary keratinocytes. A–C) Human primary keratinocytes
were pulse-labelled with 59fluorouridine (59FU) for 10 min to label nascent RNA. Double immunofluorescence was performed with an anti-BrdU
antibody to detect 59FU or Fibrillarin and anti-BORIS or anti-CTCF, as indicated. Nuclei were visualised with DAPI (blue). Colours as indicated. Note
that endogenous BORIS localises to nuclear areas of nascent RNA in the nucleolus and other small spots (arrows). Scale bar: 20 mm. D) Partial
knocking-down of BORIS by transient tranfection of scrambled (SC) or specific shRNAs in HEK293T cells affects transcription. Left bar histograms:
relative RNA expression by RT-PCR of BORIS or Pre-RNA after transfections; small bars are s.e.m. Right panels: pulse-labelled cells with 59FU after
transfections: GFP labels transfected cells, in green, 59FU in red, Dapi in blue. Note that transfections with BORIS shRNAs inhibit global transcription
(arrows), but not transfections with the scrambled control (arrows). Microphotographs representative of two independent experiments. Scale bar:
40 mm.
doi:10.1371/journal.pone.0039371.g005
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Discussion

CTCF and BORIS in Human Epidermis
We have presented a strong body of evidence for the expression

of CTCF and BORIS proteins in human epidermis. CTCF was

highly ubiquitous in the epidermis although it diminished in the

more differentiated layers. CTCF levels also decrease during

differentiation of several hematopoietic lineages [52]. CTCF has

been shown both to associate with cell growth arrest [10,21,22] or

to stimulate proliferation (in T cells; [53]). The lower level of

CTCF protein in differentiating layers of epidermis is consistent

with its function in limiting cell growth, since keratinocyte

differentiation involves cell size and cell mass increase [27,28,54].

The expression of the BORIS protein in human epidermis is

unexpected since it was initially thought to be restricted to testis.

However, Monk et al reported BORIS expression in ovary and

Figure 6. BORIS is expressed in interphase centrosomes of primary keratinocytes. A, B) Double immunofluorescence for CTCF or BORIS
(red) and centrosome marker c-tubulin (green) on primary keratinocytes, as indicated. The nuclei were visualised with DAPI (blue) Arrowheads point
at CTCF in mitotic centrosomes. Scale bar: 15 mm. C–F) High magnifications of keratinocyte nuclei showing either co-localisation (C,E) or not co-
localisation (D,F) of CTCF or BORIS with c-tubulin as indicated, in interphase (E,D) or metaphase cells (C,F). C and F are details of A and B, respectively.
Scale bar: 10 mm. G, H) Double immunofluorescence and confocal microscopy analyses of primary keratinocytes (G), or skin sections (H) showing
focal centrosomal co-localisation of BORIS (red) and c-tubulin (green). Arrowheads point at BORIS in interphase centrosomes; arrows point at BORIS in
the nucleolus of interphase cells. Scale bar: 15 mm.
doi:10.1371/journal.pone.0039371.g006
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oocytes [14]. Other cancer testis genes have been found in normal

tissues or cells other than testis [55,56] and therefore, low levels of

BORIS might be expressed in small quantities in normal tissues.

Very recently, different BORIS isoforms have been reported in

somatic cells of foetal tissues including skin [15] and BORIS

protein has been reported in the nucleolus of cultured cells from

various origins [57]. Works studying BORIS expression and

localisation have produced controversial findings [15,58,59]. This

might be due to either low sensitivity of BORIS antibodies, to the

restricted and punctate distribution of the protein in normal cells,

or both [58]. Nevertheless, the distribution of BORIS in the

epidermis that we have found was confirmed with three

independent affinity-purified polyclonal antibodies of diverse

origins (see Material and Methods). The specificity of the antibodies

Figure 7. Endogenous BORIS localises to the centrosomes in human cell lines and mouse testis. A) Double immunofluorescence analyses
were performed on the indicated human cell lines with antibodies to BORIS (green) or to c-Tubulin (red). Nuclei were visualised with DAPI (blue). Note
the distribution of BORIS in the centrosomes (arrowheads), cytoplasm (asterisks), and nucleoli (arrows). Scale bar: 40 mm. B) Single
immunofluorescence (upper panels) or double immunofluorescence (lower panels, high magnifications) as above, on sections of mouse testis.
Note a band of BORIS expression in the cyst, as described previously (upper panels, thin broken lines; Loukinov et al, 2002); thick dotted line: basal
membrane of the testis cyst. Note the co-localisation of BORIS and c-tubulin (lower panels, arrow-heads). Representative of three different biopsies
from two different specimens. L: Lumen of the cyst. Scale bar: 10 mm.
doi:10.1371/journal.pone.0039371.g007
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was also confirmed by immunofluorescence and western-blotting

on cells transfected with wild type or GFP- BORIS.

BORIS in the Nucleolus and other Transcription Sites
The nucleolus is the centre of ribosomal RNA production [60].

In the last years the nucleolus has become increasingly relevant in

the control of cellular growth and oncogenesis [61]. CTCF is a

predominantly nucleoplasmic protein with both nucleolar exclu-

sion or nucleolar localisation [37,43,62]. CTCF function might

depend on its specific localisation in the distinct nuclear

compartments. We have previously reported nucleolar localisation

of CTCF during erythroid differentiation [37] and in vivo binding

of BORIS to the nucleolar-specific factor UBF and to ribosomal

DNA [39]. In the present study we show a striking and neat

accumulation of BORIS in the nucleoli, in epidermal keratinocytes

and in a variety of human cancer cell lines where the protein had

been previously reported to be expressed. Furthermore, exogenous

GFP-BORIS accumulated in the nucleolus of human epithelial

cells. While this work was being revised, [57] reported nucleolar

localisation of BORIS in cultured cell lines and [63], reported

changes in the architecture of the nucleolus in the absence of

CTCF. BORIS and CTCF exhibit high homology in the central

11 Zinc-Finger domain. We have shown that this domain is

responsible for nucleolar targeting of both CTCF [37] and BORIS

(herein). Interestingly, the nucleolar transcription factor UBF is the

only common interacting partner of CTCF and BORIS so far

identified [39]. However, we did not clearly find endogenous

CTCF within the nucleolus in our studies. Likely, the translocation

of CTCF from the nucleoplasm to the nucleolus is a dynamic

process, consequence of functional interactions with other

macromolecules through the N- and C- terminus domains.

A similar transit at the nucleolus has been reported for other

nuclear factors [64]. For instance the transcription factor MYC is

rarely found in the nucleoli yet it plays an important role in the

regulation of rDNA transcription. In addition, we have previously

shown that CTCF goes to the nucleoli during erythroid differenti-

ation, which involves cell growth arrest [37]. Within the epidermis,

nucleolar CTCF might be present in individual cells at a very

particular time and be hardly detectable. This would be in agreement

with its reported function in cell growth arrest, since epidermal cells

are continuously undergoing cellular growth [28,32].

In our experiments, BORIS not only localised to the nucleolus

within the nucleus. It was frequently detected in other nuclear

spots in human keratinocytes both in the epidermis and in primary

cultures. Labelling nascent RNA in live cells showed that the

endogenous protein was present in sites of RNA transcription.

Moreover, knocking-down BORIS with specific shRNAs caused a

reduction in the synthesis of rRNA (RT-PCR) and global RNA (in

vivo labelling). This suggests a role for BORIS in the licensing of

RNA transcription.

BORIS in the Centrosome
BORIS localised in the centrosomes in the epidermis of skin

section and in primary keratinocytes, as revealed by co-localisation

with the specific centrosome-specific marker c-tubulin. We also

found BORIS in the centrosomes of mouse testis and a variety of

human non-tumour or cancer cell lines of different origins. BORIS

was present in the centrosomes up to prometaphase, when they split

Figure 8. Accumulation of BORIS upon S phase and mitosis arrest. A) BORIS accumulates in differentiating keratinocytes of epidermis
undergoing mitosis arrest as revealed by double labelling of human epidermis for BORIS (red) and Cyclin B (green); nuclear DNA (DAPI, blue). Scale
bar: 15 mm. B) BORIS accumulates in primary keratinocytes treated for 24 h with inhibitors of the G1/S transition of the cell cycle (hydroxyurea, HU),
the mitosis checkpoint (ZM77 for Aurora B kinase), or the genotoxic agent doxorubicin (DOXO). Microphotographs show merge of anti-BORIS, anti-c-
tubulin for centrosomes (green) and DAPI for nuclear DNA (blue). Scale bar: 10 mm. Arrows point at accumulation of BORIS. Note that DOXO provokes
a generalised increased of BORIS. C) Relative BORIS mRNA as measured by RT-PCR, in primary keratinocytes treated as above. Representative of three
independent experiments with cells from two different human individuals.
doi:10.1371/journal.pone.0039371.g008
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far apart and then it became undetectable (Fig. 10). Centrosomes

duplicate during S phase and split apart at the beginning of mitosis

[65]. Through the control of microtubule nucleation, they are

involved in the assembly and organization of the mitotic bipolar

spindle that ensures accurate chromosome segregation. The

subcellular distribution of BORIS in both nucleoli and centrosomes

might seem intriguing. However, proteins with a similar dual

distribution have been described previously and might have a role in

coordinating S phase with mitosis [66,67]. For instance, they can

inhibit centrosome duplication until the S phase is completed. One

of these proteins is nucleophosmin/B23, which is involved in

ribosome biogenesis and localises to the centrosome to prevent it

from duplication (Fig. 10). They might thus contribute to maintain

genome integrity.

Interestingly, CTCF has been reported to localise to metaphase

centrosomes [42,43] and to interact with nucleophosmin/B23

[68]. Therefore both CTCF and B23 are detected in centrosomes

from metaphase to G1 phase, precisely when BORIS is not there

detectable. This alternate pattern of CTCF and BORIS associ-

ation with the centrosomes may be important for their function

during the cell cycle (Fig. 10).

Potential Functions of BORIS
Despite BORIS being expressed in a variety of human

malignancies, little is known about its biological functions. This

issue has in part been hampered by the fact that detection of

BORIS was initially restricted to testis [11]. The detection of

BORIS in normal epidermis provides new insight.

BORIS and CTCF are thought to have opposed functions

[10,11]. Although they have a highly conserved DNA binding

domain and thus they are thought to bind to the same sites, they

are often expressed in a different manner. CTCF is ubiquitous in

normal tissues, has cell growth restrictive activities and is often lost

in cancer [20]. In contrast, BORIS is detected in cancer and in

immortalised cell lines, suggesting that it associates with cell

growth [10,11]. This may explain why tissues with a high cell turn-

over (such as testis and epidermis) express more detectable levels of

BORIS. Interestingly, within the epidermal nuclei CTCF accu-

mulated mainly around regions of heterochromatin whereas

BORIS localised to areas of euchromatin, on basis of the DNA

and histone density. Euchromatin is formed by decondensed

chromatin required to allow DNA replication or transcription.

Considering the presence of BORIS in euchromatin domains,

the evidence involving the endogenous protein in global

transcription and the role of CTCF in chromatin remodelling, it

is tempting to speculate that BORIS might participate in the

unfolding of the chromatin preceding transcription. This would

explain why BORIS is undetectable during mitosis, when

chromatin is highly condensed. Within the same lines, when we

partially inhibited the endogenous BORIS protein by shRNAs,

RNA transcription was significantly inhibited. This model is

consistent with the frequent overexpression of BORIS in cancer

cells [60]. It is unclear what drives the two proteins to different

sites according to the different needs. Some studies have found an

association between CTCF and BORIS DNA binding and the

chromatin status (reviewed in [69]). It is conceivable that DNA

methylation, specific histone modifications and different binding

partners may influence the binding of CTCF or BORIS to the

Figure 9. Involvement of BORIS in cell cycle progression and genomic instability. A) Ectopic expression of BORIS causes cell accumulation
in S phase, polyploidy and cell size increase. Human embryo epithelial HEK293T cells were transfected with GFP-BORIS, the wild type gene (WT-BORIS)
or no DNA (control). Bar histogram shows the quantitations of flow-cytometry analyses of two independent experiments 60 h after transient
transfections. Small bars are s.d.m. The gates used for the quantitations are shown below in representative flow-cytometry histograms for the cell
cycle (DNA content, in red) or cell size (Forward Scatter, in blue), 48 h or 60 h after transient transfections with the indicated genes. B) Transient
transfection (48 h) with GFP-BORIS or scrambled control shRNA (GFP-SC) or BORIS-specific shRNAs (GFP- sh2, sh4) reduces the index of HEK293T cells
expressing cell cycle markers PCNA or Cyclin A; small bars are the s.e.m. of duplicate samples. C) Clonogenic growth potential of HEK293T cells 7 days
after transfections as above; note the decreased colony forming efficiency after transfection with GFP-BORIS or BORIS sh2.
doi:10.1371/journal.pone.0039371.g009
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chromatin [39] and this is an issue to pursue. Within the same

lines, the state of DNA methylation and histone modifications has

been found to change during epidermal differentiation [29].

Overexpression of BORIS caused an accumulation of cells in S

and G2/M phases of the cell cycle. This effect was unrelated to an

increase of the cell cycle and proliferation. First, there was no

apparent association between endogenous BORIS and sites of

DNA replication. Second, the proportion of cells expressing cell

cycle markers PCNA or Cyclin A diminished after transfection

with BORIS, as well as the capacity to grow and form colonies.

The accumulation of cells in S phase and mitosis upon

overexpression of BORIS might be consequence of replication

defects induced by altered chromatin unfolding and/or defects in

coordinating S phase with mitosis. During the cell cycle, mitosis

must not start before the S phase is completed and S phase

regulators are degraded [51]. BORIS might thus have a role in

coordinating S phase with mitosis and when deregulated, in

genomic instability. Consistently, in our experiments ectopic

expression of BORIS caused polyploidy, a marker of mitotic

failure and genomic instability. Moreover, the inhibition of

endogenous BORIS by shRNAs caused a decrease in the cell

cycle index and in the clonogenic capacity. Other lines of evidence

further support a role of BORIS in genome instability:

i) in our experiments, BORIS accumulated in the cytoplasm

of keratinocytes upon a mitosis block caused by differen-

tiation or by inhibitors of Aurora B and Polo-like kinase,

members of the spindle checkpoint [65];

ii) the most striking accumulation of BORIS in keratinocytes

occurred in response to doxorubicin, that causes DNA

damage, and proteins involved in the DNA damage

checkpoint have been found in the centrosome [70].

iii) within the epidermis, BORIS accumulated with mitotic

Cyclin B in the cytoplasm of suprabasal cells arrested in

mitosis;

iv) BORIS accumulates in the cytoplasm of pre-meiotic

spermatocytes and when absent in mice it provokes defects

in spermatogenesis [11,16].

v) CTCF has been shown to interact with cohesins [71],

proteins that hold sister chromatids together during

metaphase. Interestingly, cohesins have recently been found

in the centrosomes, to keep them together until they

separate before mitosis [72].

vi) inactivation of CTCF and the guardian of the genome p53,

provokes strong activation of BORIS [25].

In summary, optimal levels of BORIS may be needed to

support normal cell division. Conversely, defects in cell division

may lead to the accumulation of cytoplasmic non-functional

BORIS. CTCF and BORIS might thus antagonise each other as

the different needs for chromatin folding or unfolding and

centrosome duplication and separation succeed during the cell

cycle (Fig. 10). They also might have a role in linking these events

with centrosome duplication and mitosis. This model is consistent

with the proposed activity of CTCF as a tumour suppressor and

the frequent deregulation of BORIS in cancer.
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sentative of 20 different fields of two independent experiments.
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