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Background. The purpose of this study is to review the current literature on knee joint biomechanical gait data analysis for knee
pathology classification. The review is prefaced by a presentation of the prerequisite knee joint biomechanics background and a
description of biomechanical gait pattern recognition as a diagnostic tool. It is postfaced by discussions that highlight the
current research findings and future directions. Methods. The review is based on a literature search in PubMed, IEEE Xplore,
Science Direct, and Google Scholar on April 2019. Inclusion criteria admitted articles, written in either English or French, on
knee joint biomechanical gait data classification in general. We recorded the relevant information pertaining to the investigated
knee joint pathologies, the participants’ attributes, data acquisition, feature extraction, and selection used to represent the data,
as well as the classification algorithms and validation of the results. Results. Thirty-one studies met the inclusion criteria for
review. Conclusions. The review reveals that the importance of medical applications of knee joint biomechanical gait data
classification and recent progress in data acquisition technology are fostering intense interest in the subject and giving a strong
impetus to research. The review also reveals that biomechanical data during locomotion carry essential information on knee
joint conditions to infer an early diagnosis. This survey paper can serve as a useful informative reference for research on the subject.

1. Introduction

Classification of biomechanical gait patterns is a useful,
promising diagnostic method to assess conditions such as
knee joint injuries and pathologies. A thorough knowledge
of the anatomy and biomechanics of the knee joint is essen-
tial to properly diagnose and treat such conditions [1]. We
start with a brief introduction to knee joint anatomy [2]
and biomechanics [3, 4].

The knee consists of two joints of three bones. The joints
are the tibiofemoral joint (with medial and lateral compart-
ments) and the patellofemoral joint. The bones are the femur
superiorly, the tibia inferiorly, and the patella anteriorly. To
maintain stability, the knee joint relies heavily on muscles
and soft tissue structures, such as the cartilage, ligaments,
and tendons.

The knee joint function is to allow movements with six
degrees of freedom: three rotational components about the
axes of a coordinate system and three translational compo-
nents along these. Usually, the Cartesian coordinate system
is the reference system in biomechanics [5]. It consists of
three axes: anterior-posterior, medial-lateral, and longitudi-
nal, and the corresponding three planes are the frontal, the
sagittal, and the transverse. The frontal plane divides the body
into the front and back parts. The sagittal plane divides it into
the left and right halves. Finally, the transverse plane divides
the body into the top and bottom parts. The translations
and rotations in the knee joint coordinate system have been
described given Cartesian coordinate systems embedded in
the tibia and femur [6]. In the knee joint coordinate system,
flexion-extension occurs about the femoral axis, internal-
external rotation occurs about the tibial axis, and abduction-
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adduction about an axis that is perpendicular to the femoral
and tibial axes (as represented in Figure 1). The lateral-medial,
distal-proximal, and posterior-anterior translations occur
along each of the three coordinate axes, respectively.

Biomechanics is “the study of the movement of living
things using the science of mechanics” [7], which is “a branch
of physics that is concerned with the description of motion
and how forces create motion” [5]. Biomechanics has already
demonstrated the potential to be a useful tool in orthopaedics
[8, 9]. The Chan et al.’s orthopaedic sport biomechanics par-
adigm [10] established the threefold role of biomechanics in
(1) injury prevention, (2) immediate evaluation of treatment,
and (3) long-term outcome evaluation. Labbe et al. [11] sug-
gested adding two other roles to this paradigm, namely, (1)
evaluating the impact of an injury on knee joint function
and (2) assisting in diagnosis.

Biomechanical gait analysis studies involve recording a
number of biomechanical variables including Electromyog-
raphy (EMG) data, spatiotemporal parameters, kinematics,
and kinetics [12]. EMG data corresponds to the electrical
signals generated by muscular contraction. Spatiotemporal
parameters include step and stride length, speed of
movement, cadence, and single limb support (SLS). Kinemat-
ics is the study of movements without reference to the forces
that cause motion, whereas kinetics is the study of forces that
cause motion. Ground Reaction Forces (GRFs), joint
moments, and joint powers are parts of the kinetic data.

The scientific literature relating to “gait analysis” in its
most general meaning is abundant [13]. In human gait anal-
ysis, the two main topics of general interest are gait identifi-
cation [14, 15] and gait analysis for clinical applications
[16, 17]. Gait identification refers to the recognition of a
person from their gait and is generally used as a biometric
identifier. It is out of scope of the present review. This review
addresses specifically biomechanical gait analysis for clinical
applications, more precisely on the evaluation of the knee
joint movement for a better understanding and diagnosis of
knee joint injuries and pathologies. Examples of knee joint
injuries and pathologies that can affect gait include ligament
injury, meniscal tear, osteoarthritis (OA), patellofemoral
syndrome, iliotibial band syndrome, bursitis, Baker’s cyst,
and tendinitis. Several studies of OA have recognized the
importance of biomechanical gait analysis in the pathogene-
sis of the knee joint problems [18, 19]. The motivation for
evaluating the knee joint movement is twofold. First, knee
joints are the most commonly injured joints. There has been
a report of 17,397 patients suffering 19,530 sports injuries in
a 10-year span [20]. It showed that 6,434 (37%) had 7,769
injuries (39.8%) related to the knee joint. Second, common
diagnostic methods of the knee joint problems, such as clin-
ical assessment (medical history and physical examinations),
roentgenography, magnetic resonance imaging, computed
tomography, X-ray imaging, and arthroscopy, do not provide
objective information on the functional aspects of the knee
joint. For this reason, biomechanical assessment has become
important for knee joint problem diagnosis; it provides quan-
titative information about the structure and motion of the
knee joint to complement the common orthopaedic physical
evaluation for more accurate diagnosis [21].

Knee joint movement data are first collected, using some
measurement device, and characteristic features are extra-
cted/selected for analysis. Biomechanical gait data analysis
in clinical decision-making presents several difficulties. First,
one is faced with large amounts of highly complex, multidi-
mensional, highly variable, and time-dependent data [22].
Most of the data appear as temporal waveforms, i.e., time
series. Second, reducing the amount of data and selecting
its key features are a crucial step that can influence the results
of the subsequent pattern classification. Time series parame-
trization and data transformation are two common ways to
extract and select features to describe the data [23]. Finally,
analysis involves a quantitative comparison of time series, a
problem which may require complex processes to achieve
stable and accurate results [24]. Chau achieved a two-part
critical review of analytical techniques for gait data analysis
[22, 25], and Ferber et al. investigated data science tech-
niques [26]. In a nutshell, quantitative analysis methods of
knee joint biomechanical gait data include statistical and
Machine Learning (ML) techniques. A number of studies
have addressed gait pattern classification, but the literature
dealing specifically with knee joint biomechanical gait data
classification is scarce.

Here following is a literature review and critical evalua-
tion of the published literature on knee joint biomechanical
gait data classification for computer-aided systems. We
addressed the three major issues of knee joint biomechanical
gait data classification we mentioned earlier, namely, (1) data
acquisition, (2) feature extraction and selection, and (3) clas-
sification. The remainder of this paper, as the roadmap given
in Figure 2 shows, is organized as follows: Section 2 describes
the search strategy we adopted for the literature review on
knee joint biomechanical gait data classification. Section 3
provides a survey of pattern classification techniques for knee
joint biomechanical gait data. Contributions and limitations
of these studies as well as directions for future research are
presented in Section 4.

2. Methods

We conducted a literature search on April 2019 using four
electronic databases (PubMed, IEEE Xplore, Science Direct,
and Google Scholar). We performed the search strategy using
the following keywords (identical for all databases): “knee”,
“gait”, and “classification”. 1,211 studies on knee joint biome-
chanical gait data classification have been selected. We also
searched other reliable online articles such as thesis and book
chapters for potentially eligible studies. In addition, review of
all references cited by the selected articles and more insight
into other relevant authors’ reports yielded an additional 22
articles for possible inclusion.

After evaluation of titles and abstracts, 59 articles were
identified for possible inclusion. Removal of duplicates left
63 potential reports, from which 32 articles were excluded
after full-text screening, as they did not meet the following
inclusion/exclusion criteria. Articles included in the review
were those published in peer-reviewed journals and confer-
ence proceedings and were written in either English or
French. In addition, only studies conducted on the knee joint
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and where pattern recognition methods were performed on
knee joint biomechanical data were eligible for inclusion.
Kinematic, kinetic, spatiotemporal, and EMG parameters
were biomechanical variables of interest. Studies relating to
ankle, hip, limb, or foot and studies dealing with biometrics,
inertial sensors, imaging, cerebral palsy, and Parkinson’s
disease were excluded. The search process is demonstrated
using the flow diagram shown in Figure 3. All selected
abstracts and full texts were indexed in Zotero software for
subsequent analysis. As a result, we retained 31 full-text
reports for full review, from which brought out information
on the study participants, the data parameters (kinematic,
kinetic, spatiotemporal, and EMG), and the research conclu-
sions and contributions.

Next, we describe the full review results in terms of the
basic constituent step of analysis as mentioned earlier,
namely, (1) data acquisition, (2) feature extraction and selec-
tion, and (3) classification.

3. Results

We divided the 31 selected articles, which fulfilled the litera-
ture search inclusion criteria, into two distinct groups,

according to data representation and classification tech-
niques. We discuss briefly these categories in the following
subsections, and a comparison table (Table 1) is given that
inform on data acquisition techniques and accuracies. Note
that we organized the reviews by relationship and group, so
that works using similar methods are grouped together, and
introduced in the chronological order of the publishing date.

3.1. Biomechanical Data Acquisition. Knee joint biomechan-
ical gait data are collected during a walk session using record-
ing equipment and software. Current data acquisition
methods have been reviewed in [27]. In brief, a subject walks
on a force platform that records the GRFs. Markers, active or
passive, are generally fixed onto the human body segments
and viewed by a motion capture system that records their
three-dimensional (3D) trajectories. In a common setup,
cameras collect data points representing the 3D coordinates
of each marker during a treadmill session. These data (or tra-
jectories) are transformed using rigid-body kinematics into
knee joint angles, which describe the relative motion between
knee segments over time, such as the angular displacement of
the tibia with respect to the femur [28]. Joint angles com-
bined with GRFs and inverse dynamic relations are then used

Flexion
(+)

Abduction
(+)

Adduction
(−)

Extension
(−)

Internal
(−)

Internal
(+)

TibiaFibula

F

Femur

Figure 1: The knee joint coordinate system as defined by Grood and Suntay.
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to calculate joint moments in the three anatomical planes.
In addition to temporal changes of joint angles and force
data, spatiotemporal parameters of the gait such as veloc-
ity, cadence, stride length, and step length are recorded.
Electrical activity (EMG) for specific muscular groups is
recorded using surface electrodes positioned on the subject
skin. The fifth column of Table 1 lists different knee joint
biomechanical gait data acquisition techniques used in the
analyzed literature.

Spatiotemporal parameters are static numerical values,
whereas kinematic, kinetic, and EMG parameters are repre-
sented as a set of time series waveforms. That is, the data
are reported in two-dimensional charts, where the abscissa
defines the percentage of the gait cycle (GC), i.e., the time
interval from heel contact of one foot to the next heel contact
of the same foot [29]. The ordinate corresponds to the
biomechanical measure of interest. Figure 4 illustrates the
waveform of the knee joint flexion angle for a normal subject
as normalized to 100% of the GC.

The GC involves two main phases, the stance phase when
the foot is in contact with the ground and the swing phase
when the foot is not in contact with the ground, as illustrated
in Figure 5. The stance phase generally corresponds to the
first 60% of the GC, and the swing phase to the remaining last
40%. The stance phase is further composed of a period of
double stance during the first and last 10% of the stance
phase, when both feet contact the ground, and a period of
single stance during the remainder of the stance phase when
only one foot is in contact with the ground. The swing phase
also has three parts: the initial swing, the mid swing, and the
terminal swing.

The gait data of human motion is generally characterized
by high dimensionality, time dependency, high variability,
significant correlation, and nonlinearity [22].

Figure 6 illustrates both high dimensionality and variabil-
ity within an asymptomatic (AS) population sample. The
variability stems from either the anthropometric differences
between subjects (i.e., intersubject variability), the differences
in the data acquisition methodology (motion capture
systems, walking speed, data processing, etc.) [30], and the
presence of several different patterns in the AS gait data
(i.e., intrasubject variability). Kadaba et al. reported that
intrasubject repeatability was excellent for kinematic data in
the sagittal plane both within a test day as well as between test
days [31]. Huber et al. demonstrated that EMG signals
exhibit high intersubject and intrasubject variability [32].
Repeatability of gait analysis studies performed across multi-
ple trials, sessions, and laboratories was analyzed [33]. Delu-
zio et al. recognized the strong correlations between the time
samples of gait waveforms [34]. Moreover, differences and
similarities between gait curves were assessed [35]. Bejek
et al. showed several nonlinear relationships between gait
parameters [36]. After they are recorded, the time series
waveforms are preprocessed to extract and select features of
representation, and finally, classified.

3.2. Feature Extraction and Selection. A crucial step in knee
joint biomechanical data analysis is feature extraction and
selection to identify a set of informative and discriminatory
features. There are two broad approaches to feature extrac-
tion: local and global. These have been described and dis-
cussed in [37]. A local method consists of describing the
biomechanical data based on some specific points extracted
from the biomechanical waveform. In this case, the outcomes
are reported as their summary statistics (e.g., mean, variance,
correlation, and range) or a parametrization (discrete vari-
ables and peak amplitudes) involving measures on a single
biomechanical gait data. For example, the typical knee joint
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Records excluded
(n = 1152)

Records after titles and abstracts
screening
(n = 59)

Additional records identified
through other sources
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Figure 3: Flow of article inclusion/exclusion throughout the review process.
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flexion/extension waveform included a stance phase peak
flexion angle (Pflex1), a swing phase peak flexion angle
(Pflex2), and a minimum value (Pflex3), which could be
extracted as illustrated in Figure 7. Several biomechanical
studies on discriminating patients with knee joint OA from
the normal subjects using local approaches are available in
the literature. The maximum knee flexion and abduction

angles were analyzed [38]. Parameters from angle, force,
moments, and acceleration, in the sagittal, frontal, and trans-
verse planes, were used [39] to distinguish the gait of the knee
with medial OA from a normal gait. In another study, five
characteristics, namely, the sagittal/frontal/transverse plane
range of motion along with the peak vertical GRFs and
cadence, were used [40, 41]. The GRF magnitudes, the time
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Figure 4: The waveform of the knee flexion angle for a normal subject is shown normalized to 100% of the gait cycle.
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for peak GRFs, and the subjects’ velocity were measured for
vertical, posterior, and anterior peaks [42]. The kinematic
waveforms were characterized using 14 points of interest
[37]. In [43], specific kinematic parameters, such as knee
angle at initial foot contact, peak angles, minimal angles,
and angle range, were extracted, which concord with those
identified in the knee joint gait literature [44, 45]. In recent
studies, a set of 70 features were extracted from 3D kinematic
patterns based on variables routinely assessed in clinical
biomechanical studies of knee OA populations, such as max-
imums, minimums, varus and valgus thrust, angles at initial
contact, mean values, and range of motion throughout GCs
or GC subphases [46–48]. Within these features, a set of 14
features have been identified as diagnostic and burden of
disease biomarkers for knee OA characterization.

The local approach representation presents the ability to
reduce biomechanical data into smaller meaningful features
in a simple way, without compromising an accuracy rate.
However, the selection process of parameters from wave-
forms is subject to limitations: (1) it depends highly on expert
opinion that can often be contradictory and uncertain, (2) it
can be time-consuming, (3) it can introduce a subjective bias
in feature extraction, (4) it neglects the temporal information
in biomechanical waveforms, and (5) it may omit important
information contained in the full original waveform.

In contrast to local approaches, global schemes take the
entire biomechanical waveform over a gait cycle into account
to extract and select the features of representation. In the
following, waveform methods for global feature extraction
such as Singular Value Decomposition (SVD), Principal
Component Analysis (PCA), and Wavelet Transform (WT)
are outlined. SVD is a matrix factorization method into
weighted matrices. It is used to reduce the dimension of
high-dimensional data while retaining the most discriminant
features, i.e., without losing information in any significant
way. SVD was used to characterize the kinematic waveform
while also identifying gait subcycles for a better discrimina-
tion between the AS and OA groups and for assessing the
severity of the disease of OA patients into KL1-2 and KL3-4
categories according to the Kellgren and Lawrence (KL) scale

[37, 49]. For AS/OA classification, the analysis showed that
the most discriminant subcycle was during the stance phase.
Concerning the knee joint OA severity assessment, the most
discriminant subcycle was during the swing phase of the
frontal kinematic waveforms and the success rate was 93.2%.

The main purpose of PCA is to summarize the most
important information in the data by representing the vari-
ables in a limited number of optimal principal components
(PCs). These features are optimal in the sense that they
explain as much as possible of the variation present in the
original variables [50]. For the discrimination of the normal
and end-stage knee OA subjects, PCA was developed for
waveform measures and discrete measures [51, 52]. In
another study, PCA was developed for kinetic and kinematic
waveforms [53]. The variables identified by the Dempster-
Shafer Theory of evidence (DST) classifier [54, 55] as the best
features to distinguish the OA subjects from the normal
subjects are those that are often cited to be clinically relevant.
For the discrimination of the Anterior Cruciate Ligament
Reconstructed (ACL-R) subjects and healthy subjects, PCA
was applied on kinematic waveforms [56]. The ACL-R
subjects had a mean of 12 ± 2 months time from surgery
and had incurred a complete ACL tear. All ACL-R subjects
had a unilateral tear of their ligament, with no previous liga-
ment injury of either knee and no history of knee surgery.
Differences were found between groups in the frontal and
transverse planes. Then, the PCs of the three planes were
retained for classifying the status of normality using Logistic
Regression (LR).

Only the frontal plane kinematics had high importance
for classifying the status of normality. PCA was also used to
extract meaningful pattern representative of the AS gait to
separate the entire kinematic waveforms in the sagittal, trans-
verse, and frontal planes into homogenous groups [57].

Another approach is to transform the input into a fre-
quency domain to extract features, such as the WT domain.
The WT representation allows a waveform characterization
locally both in time and frequency simultaneously. To distin-
guish AS from knee joint OA gait patterns with a Kellgren
and Lawrence (KL) [58] grade of 1, 2, 3, or 4 at the medial
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Figure 7: Example of representation of points of interest on kinematic waveforms.
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tibiofemoral compartment, a discriminant feature represen-
tation based on a wavelet decomposition was computed from
the kinetic waveforms [59, 60]. The best discrimination rate
was achieved using the anterior-posterior and the medial-
lateral components of motion. In other studies, ACL-
deficient patients, waiting for ligament reconstruction of
the ACL, were distinguished from the AS population subjects
using features computed from a discrete Daubechies wavelet
decomposition of the kinematic and kinetic waveforms [61].
The abduction/adduction, tibial internal-external rotation,
and the flexion-extension joint moments were identified as
the most discriminant features, i.e., features that would best
characterize the ACL population. A wavelet representation
of kinematic data extracted in each plane separately (sagittal,
frontal, and transverse planes) has been used to train a
sample-encoding Kohonen network to distinguish between
two types of knee OA pathologies, namely, Patellofemoral
and tibiofemoral [62]. These studies confirm the benefit of
using frequency domain transformations to reduce and ana-
lyze knee biomechanical gait waveforms.

Transform methods are in general objective and robust
because (1) data from the entire gait cycle are considered
and (2) feature extraction does not require a user interven-
tion as the transformation is computed automatically over
the whole biomechanical waveform.

3.3. Classification: Statistical and ML Methods. Biomechani-
cal data classification is aimed at distinguishing automatically
between the normal subjects and pathological knee patients.
Two broad types of approaches can be distinguished: statisti-
cal methods and ML methods. Statistical methods have been
applied to characterize usually small groups of subjects and to
discover discriminant features or attributes. They typically
use parametric tests such as the Student t-test, univariate
Analysis of Variance (ANOVA), or multivariate (MANOVA
andWilkes’ λ), as well as theMann-WhitneyU test. ANOVA
has been used to analyze knee flexion, abduction, and
rotation angle parameters during three daily activities to
know whether there were statistically significant differences
between normal and OA groups at different disease severity
levels [38]. A Student t-test has been performed to investigate
the differences between workers exposed to Knee Straining
(KS) postures and non-KS for gait kinematic variables (peak,
ranges, and minimum values) [43]. Statistical techniques are
usually performed on local features, a representation that is
subject to the limitations mentioned in Section 3.2. More-
over, these techniques are not readily applicable to feature
combinations, to a large number of variables, or to subject
rather than group classification. They can also lead to classi-
fication ambiguity due to group effects.

ML methods, rather than statistical methods, are used
when larger amounts of data are available [63]. They can be
divided into two broad categories: supervised and unsuper-
vised learning methods. Unsupervised learning consists of
discovering a structure in the organization of unlabelled data.
Clustering is a typical unsupervised learning method. Few
studies have investigated it for knee biomechanical patterns.
The K-means algorithm has been used to discover clusters
in EMG data, during a walking session, of the normal and

ACL-injured subjects [64]. The mean and the standard devi-
ation of each cluster were used to verify the clustering valid-
ity. The PC clustering model was applied to the frontal,
sagittal, and transverse plane kinematic data [57], which led
to the identification of four distinct patterns in a normal gait.
The clustering quality has been verified based on the analysis
of the silhouette width and with statistical evaluation by
hypothesis testing. The density-based spatial clustering of
applications with noise (DBSCAN) algorithm has been
applied to the frontal, sagittal, and transverse plane kinematic
data, which led to the identification of two representation
patterns for each plane. Cluster divisions are evaluated using
the silhouette index, the Dunn index, and connectivity [65].

Classification by supervised learning methods uses
labelled data, rather than unlabelled as with unsupervised
learning schemes. We focus here on knee biomechanical gait
classification. Current supervised classifiers can be divided
into four types.

3.3.1. Tree-Based Classifiers. Tree-based classifiers are com-
mon, mainly because they are easy to interpret and imple-
ment. Five studies investigated tree-based classification.
Regression Trees (RTs) have been applied to feature-based
OA (with predominantly medial compartment knee OA)
vs. non-OA discrimination and to grade OA severity
(according to the KL grades 1 to 4) [47, 48]. The success rate
of the RT classifier was 86% to distinguish KL1-2 from KL3-4
grades, 88.2% for KL1 from KL2 grades, and 88% for KL3
from KL4 grades. A regression model, the Classification
and Regression Tree (CART), was used to classify patients
with knee OA (bilateral OA, left knee OA, and right knee
OA) according to disease severity (OA grades 1-4) using spa-
tiotemporal gait analysis [66, 67]. Spatiotemporal parameters
include velocity, cadence, step and stride lengths, base of sup-
port (BOS), step time, swing time, stance time, single limb
support (SLS) time, and double limb support (DLS) time.
The accuracy of the classification was 90.8% for males and
89.5% for females. All misclassifications were off by a margin
of error of 1, e.g., grade 1 can be misclassified as grade 2, but
never as grade 3 or 4. The most differentiating variables for
classification are stride length and cadence. Using features
extracted from the waveforms, another study investigated
CART to classify surgical versus nonsurgical patients with a
primary diagnosis of moderate to severe knee OA and sched-
uled for arthroplasty consult [46].

3.3.2. Support Vector Machine (SVM). An SVM is a discrim-
inative classifier formally defined by a separating hyperplane.
SVMs have been initially developed for binary classification.
The multiclass SVM is an extension of the binary SVM to
more than two classes. Using a multiclass SVM on vertical
and anterior-posterior GRFs, Levinger et al. classified
patients with different knee pathologies: Patellofemoral Pain
Syndrome (PFPS), knee OA, and patients after Total Knee
Replacement (TKR) [42]. A follow-up investigation applied
SVMs to distinguish between the spatiotemporal gait param-
eters (walking velocity, cadence, stride length, stride time,
step time, step length, single support time, and double
support time) of OA patients who had undergone unilateral
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knee replacement surgery and healthy controls [68, 69]. Only
two features have sufficient discriminative power to accu-
rately classify the two groups. A Decision Tree- (DT-) based
multiclass SVM has been applied to separate AS and OA
patients and assess OA severity according to the KL scale by
employing GRF measurements [70]. Results show that class
(AS) of asymptotic gait (healthy) signals is almost perfectly
separable, achieving the testing percentage of 97%. The
majority of errors occur in moderate (OA) and severe (OA)
arthritis categories. In particular, five moderate OA gaits are
misclassified as severe OA and one as AS leading to 89.09%
testing rate. Further, five severe OA gait signals are classified
as moderate OA, which corresponds to a performance of
91.52%. An SVM was also trained to distinguish kinematics
of patients with an ACL-injured knee from the healthy sub-
jects [71]. ACL patients had either a knee extension or flexion
deficit or a combination of both in the affected limb, but were
able to walk without a walking aid for a minimum of 10m,
and sustained a complete unilateral ACL rupture within a
period of 21 days (13 (SD 5) days) prior to the experiment.

3.3.3. The Bayes Classifier. Two studies applied a Bayes clas-
sifier on PCs of GRFs to distinguish the knee OA subjects
(OA can affect the medial or lateral tibiofemoral compart-
ment or the patellofemoral or combination of these) from
the healthy subjects [72] and to determine if workers exposed
to KS have knee kinematic data that resemble those of knee
OA patients rather than of non-KS workers on the first 20-
GC percentages of the kinematic waveforms [73].

3.3.4. Artificial Neural Network (ANN). One study applied
ANN to classify knee joint biomechanical gait data. This
study trained a Multilayer Perceptron (MLP) with kinetic,
kinematic, and spatiotemporal features (walking velocity,
single support, and step length) to distinguish the healthy
subjects from knee OA subjects [74]. It included two experi-
ments and reported the accuracy rates. In the first experi-
ment, the data set was partitioned into five subsets and five
MLPs were correspondingly trained and tested. Then, com-
bination rules produced the final classification. In the second
experiment, the entire data set is used to train an MLP.

4. Discussion and Conclusions

Reliable diagnosis of knee joint pathologies can be a complex
task, requiring in many cases a combination of roentgeno-
graphic data (magnetic resonance imaging and computed
tomography) and clinical tests. This complexity mirrors that
of the joint and its six degrees of freedom motion. The liter-
ature review shows that pattern classification of knee joint
biomechanical data can assist diagnosis and, therefore, lessen
the burden of this complexity.

A few studies have addressed knee joint pathology classi-
fication based on knee biomechanical data. We note that the
subject is of recent interest in research because all of the
relevant literature dates from 2000 up (second column of
Table 1). The 31 studies retained for the literature review
have in common the methodology adopted for the classifica-
tion of normal and pathological knee function.

4.1. Biomechanical Data Acquisition. Biomechanical gait data
are collected using a gait measurement setup usually com-
posed of force plates, a set of markers fixed on an attachment
device, and a motion capture system. The acquired data con-
sists of spatiotemporal parameters, kinematics and kinetic
measurements, and EMG (in the form of time-dependent
functions (time series) with the abscissa as percentage of
the GC and the ordinate as the gait measurement of interest).
Most of the reviewed studies have used either spatiotemporal
gait analysis, kinematic, kinetic, or combination of those
features to be fed into machine classifiers to distinguish
between individuals with and without knee pathology. There
is a wide variety of biomechanical data acquisition systems
from different laboratories, some listed in column 5 of
Table 1. However, the heterogeneity of these biomechanical
data acquisition systems hinders interoperability and sharing
of biomechanical gait data among collaborative laboratories.
Most of the reviewed studies have concentrated on patients
having OA because it is the most common disease affecting
the knee joint [75]. Spatiotemporal parameters, which span
the time and distance dimensions, are more descriptive and
easier to interpret clinically [76] and, as such, have been used
to differentiate between the healthy individuals and patients
with pathological knees. In particular, the single limb support
(SLS) was shown to be a good discriminatory indicator for
OA [77, 78]. However, spatiotemporal parameters do not
include measurements of joint motion and can miss impor-
tant information as a result. Moreover, such parameters are
not specific enough to reliably detect the subtle biomechani-
cal differences involved in knee OA [79]. It has also been
demonstrated that spatiotemporal variables are not good
parameters to differentiate knee gait biomechanics of the
ACL-R subjects from the healthy ones and should not be
used as criteria to determine the return to sports after ACL-
R, since the ACL-R group did not show differences in spatio-
temporal gait parameters related to a control group [80].
Consequently, gait investigations for knee OA understanding
were mostly based on three-dimensional kinetic and kine-
matic patterns. Traditionally, kinetics, particularly the exter-
nal knee adduction moment, has been used to assess the
progression and severity of knee OA. However, their mea-
surement needs sophisticated setups, which are, generally,
available only in specialized gait study laboratories. One of
the instruments used to analyze the kinetics of different
human body joints is the force plate or force platform. How-
ever, force plates are usually expensive and appear to be more
suited to research than to the clinical environment [81].
Kinematic data, instead, are acquired in a normal clinical
setting, using generally a commercially available treadmill
and a simple noninvasive knee attachment system. Hence,
in order to facilitate the use of biomechanical evaluations in
the clinical environment, biomechanical investigations of
the knee were limited in most of the reviewed studies to the
kinematic parameters.

4.2. Feature Extraction and Selection. The most serious
impediments for the clinical application of knee biomechan-
ical gait data are the high data dimension and the significant
data variability. Variability stems from differences in data
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collection methodologies and the presence of several differ-
ent biomechanical patterns inherent to individuals. The high
variability of biomechanical gait data and the curse of dimen-
sionality have constrained most studies to apply directly tra-
ditional analytics. Further difficulties may stem from the
need for an expert interpretation. Therefore, it is crucial to
develop more efficient, automatic, and objective techniques
for dimensionality reduction. Current studies agree that
appropriate data representations of biomechanical data and
pattern recognition paradigms can overcome the aforemen-
tioned difficulties to produce reliable systems which can clas-
sify knee pathologies. The literature review shows that data
dimensionality reduction is useful. It is aimed at simplifying
the biomechanical data without loss of information for clas-
sification. Both local and global features can serve dimen-
sionality reduction. Local features most often considered
are characteristic points on the data waveforms, such as
peaks. Being sensitive to the high variability of knee biome-
chanical patterns, characteristic point selection can be sub-
jective and rely on human expert knowledge, elicited from
clinical professionals for instance. It can also overlook mean-
ingful information since their definition relies only on local
temporal neighborhoods. Even though local feature repre-
sentation may be simpler for clinicians to understand and
interpret, the most widely and readily applicable is the global
features, which consider the entire GC. Both transforming
the data to a frequency domain, as with wavelet decomposi-
tions, and principal component analysis (PCA) representa-
tions have often been successful. PCA methods allow the
results to be interpreted by visualization, which is quite con-
venient. The features elicited by PCA often agree with the
most clinically relevant features, which is a strong vote for
the scheme. The literature review reveals that in spite of the
relevance of domain transform and PCA representations of
data, the resulting feature vector potency largely depends
on the input data. One popular approach to feature selection
consists of using particular classifiers, the NNC, for instance,
to classify the features from which to select a subset, by cross
validation on test-and-training divisions of data, and where
the most performing features are retained. Of course,
although this method provides the best performing dis-
criminatory features for the specific classifier used, there
is no guarantee that this selected set will perform best with
other classifiers.

4.3. Classification. There are currently several classification
methods of knee biomechanical data, namely, ANNs, SVMs,
DTs, and the Bayesian classifier. These work well with multi-
dimensional data. Also, they can be used to extract important
pathology-related features when combined with feature
extraction, hence assisting diagnosis for more accuracy. The
most often used supervised learning classifier is the SVM.
By contrast, investigations with ANN are scarce. When the
target classes are unavailable, i.e., with unlabeled data, clus-
tering is the means of classification. These classifiers have
been successful in identifying groups from biomechanical
data and able to rank features by power of discrimination.
Very large volumes of data are generally acquired for analysis
in any given biomechanical study, in some cases to the point

where one can consider treating what is often called a “big
data” problem [82]. However, most studies in the field of
knee biomechanics generally involve only a few variables
and low subject numbers (e.g., 5-30 subjects). So, it is ques-
tionable whether these methods are efficient in this case,
since generalization is the central challenge in ML. Although
most of the studies continue to involve only a small cohort of
subjects in the analysis, a larger cohort of the subject could
improve the classifier’s performance. Generalization capabil-
ities of the classification scheme have not been confirmed.
Moreover, classification involved recognizing pathological
biomechanical patterns of the knee from the healthy and
control subjects. In other words, biomechanical studies
assume that all subjects to be classified belong to exactly
one of the two well-defined classes (pathological or AS).
However, the vast majority of normal human actions do
not belong to the well-defined classes. It may not be accurate
enough to classify an individual as AS or pathological, and a
refined diagnosis may be a requirement. Moreover, it is not
clear from these studies that the same technique would be
useful for discriminating patients with other pathologies or
patients with more than one pathology. All of these factors
explain in large part why clinicians have not yet fully adopted
the analysis of biomechanical data as a diagnostic aid.

4.4. Performance Measures. It is essential to compare sys-
tematically and thoroughly the performance of the ML
algorithms currently in use, given their potential for biome-
chanical data classification for knee pathology diagnosis.
Accuracy metrics were extracted from the reviewed studies,
when supervised learning techniques are used. However, it
is difficult to provide a like-by-like comparison between
these studies, due to the lack of interoperability between
the often different acquisition systems used in different lab-
oratories, as explained in Section 4.1. Execution time and
computational complexity have not been computed in the
reviewed articles.

4.5. Future Work. The studies mentioned in this review may
serve as guides for stating and solving a complex classifica-
tion problem, where we can classify knee biomechanical data
into different disease-related classes with a larger number of
training samples. The use of a computer-aided system based
on ML techniques, specifically ANNs, is a promising pros-
pect in the field of knee biomechanical data classification.
The basic need is to design the right set of features for knee
biomechanical data classification and then provide these fea-
tures to a classifier. However, the feature representation that
provides optimal classification performance is still an open
issue. One solution may be deep learning which is motivated
by the failure of traditional algorithms to generalize well on
knee joint biomechanical data classification task. Deep neural
networks have shown a great performance in image, text,
and audio classification problems compared to conven-
tional methods.

The advantage of deep neural networks is that they have
an automatic feature extraction component from raw, com-
plex, and high-dimensional data. Learned representations
often result in a much better performance than can be
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obtained with hand-crafted representations. Moreover, the
resulting feature vectors are generic and transferable. As a
result, deep neural networks generalize well to new input
data. We hypothesize that the use of deep neural networks
will be quite useful for the automatic classification of knee
kinematic data.
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