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Identification of transcription 
factors dictating blood cell 
development using a bidirectional 
transcription network‑based 
computational framework
B. M. H. Heuts1,4, S. Arza‑Apalategi2,4, S. Frölich3, S. M. Bergevoet2, S. N. van den Oever1, 
S. J. van Heeringen3, B. A. van der Reijden2,4* & J. H. A. Martens1,4*

Advanced computational methods exploit gene expression and epigenetic datasets to predict 
gene regulatory networks controlled by transcription factors (TFs). These methods have identified 
cell fate determining TFs but require large amounts of reference data and experimental expertise. 
Here, we present an easy to use network‑based computational framework that exploits enhancers 
defined by bidirectional transcription, using as sole input CAGE sequencing data to correctly 
predict TFs key to various human cell types. Next, we applied this Analysis Algorithm for Networks 
Specified by Enhancers based on CAGE (ANANSE‑CAGE) to predict TFs driving red and white blood 
cell development, and THP‑1 leukemia cell immortalization. Further, we predicted TFs that are 
differentially important to either cell line‑ or primary‑ associated MLL‑AF9‑driven gene programs, and 
in primary MLL‑AF9 acute leukemia. Our approach identified experimentally validated as well as thus 
far unexplored TFs in these processes. ANANSE‑CAGE will be useful to identify transcription factors 
that are key to any cell fate change using only CAGE‑seq data as input.

DNA-binding proteins known as transcription factors (TFs) have crucial roles in gene expression  regulation1. 
TFs can bind to specific cis-regulatory elements, such as enhancers and promoters, controlling transcriptomic 
machinery. Upon DNA binding, TFs can induce complex and dynamic cellular processes, ranging from cell fate 
determination, cellular reprogramming and cell cycle progression, to disease progression, and  carcinogenesis2.

The powerful regulatory nature of TFs is exemplified by lineage-specific hematopoiesis; tight control of 
lineage-determining TFs will direct precursor cells to specific mature lineages. For example, GATA-1/2 or GFI-1B 
are essential for megakaryocyte/erythrocyte development, and SPI1 for  myelopoiesis3,4. Also in leukemogenesis 
TFs have a major role. Acute myeloid leukemias (AMLs) are often plagued by recurrent mutations involving 
proteins with DNA binding  properties5. Prime examples are EVI1 (MECOM), CEBPA, RUNX1, and  HOXA96–8.

Despite major advances in computational  biology9, predicting mammalian TFs key to cell fate determination 
is still challenging. The cell’s constituents, such as DNA, RNA, and proteins, form complex regulatory networks 
and cannot be understood correctly if only discrete individual components are examined. To construct a reliable 
TF prediction model, the cell’s molecular state needs to be interrogated on a multitude of -omics disciplines. So 
far, different approaches have been developed to predict key TFs, some are either based on (differential) gene 
 expression10,11 and/or co-expression  information12. Other include state-of-the-art integrative strategies, such as 
integrating TF binding site  information13. Unfortunately, systematic chromatin immunoprecipitation sequenc-
ing (ChIP-seq) for every TF in every cell type is a laborious and, at present, an unrealistic task. Predicting TF 
binding is therefore an excellent alternative to uncovering key TFs governing cell fate.
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Cutting edge TF prediction incorporates (predicted) transcription factor binding sites and interactions 
between TF and their downstream target gene(s), also known as Gene Regulatory Networks (GRNs). Collectively, 
(predicted) TF binding site and GRN information can be used to predict key TFs in one cell state compared to 
another. This control in comparison design has been shown to be valuable in TF  prediction14, even more so when 
incorporating TF binding profiles at enhancer  regions15. For example, enhancer GRN-based method Analysis 
Algorithm for Networks Specified by Enhancers (ANANSE) is demonstrated to be a powerful tool for studying 
regulatory mechanisms. However, in order to use ANANSE to its full potential RNA-, ATAC-, and ChIP-seq 
(H3K27ac) data is required for at least two cell types.

Ideally, we want to reduce the necessity of multiple experimental setups while improving TF prediction by 
integrating information based on cis-regulatory elements, such as promoters, promoter-proximal regulatory 
elements, or enhancer elements, especially, when biological material is limited. One technique that uncovers a 
wide range of central gene regulatory elements is Cap Analysis Gene Expression sequencing (CAGE-seq)16. The 
method of capturing 5’-end steady-state capped RNAs identifies mRNA transcription start sites (TSSs), includ-
ing non-characterized alternative TSSs, which are often tissue- and cell type-specific17; TSSs of long non-coding 
RNAs (lncRNAs); promoters accompanied by upstream antisense RNA (uaRNA); and enhancer RNAs (eRNAs). 
The latter two are characterized by bidirectional  transcription18,19.

Here, we created an open source computational workflow that incorporates the enhancer network-based 
method ANANSE with the CAGE-seq analysis framework called  CAGEfightR15,16 (ANANSE-CAGE). We dem-
onstrated a strong correlation between bidirectional transcription and cis-regulatory elements, and its use in 
predicting cell type-specific TF binding profiles. Supervised modelling was used to improve TF binding pre-
diction and cell conversion simulations were used to validate our findings. Next, we identified key TFs during 
induced erythroid differentiation, myeloid differentiation, and we predicted TFs important for immortalisation 
of MLL-AF9-driven leukemic cells. Subsequently, we predicted key TFs unique in either cell line- or primary- 
associated MLL-AF9-driven immortalisation, and key TFs in primary AML. The results demonstrated the wide 
use case of ANANSE-CAGE for studying development and pathology of haematological systems and its potential 
for uncovering novel key TFs and developing hypotheses.

Results
Bidirectional transcription initiation identifies active chromatin regions. 5’-end capped RNA 
capturing methods, such as CAGE-seq, quantifies two types of transcription initiation events: one is defined as 
unidirectional transcription initiation, associated with Transcription Start Sites (TSSs), and the other is classified 
as bidirectional transcription initiation, which mark enhancer-associated regions (Fig. 1a).

To distinguish uni- and bidirectional transcription patterns, we quantified CAGE-defined TSSs (CTSSs) into 
Tag Clusters (TCs) using a slice-reduce approach in the myeloid leukemia cell line  K56216. TCs manifesting gene 
expression were identified by an array of transcription events on the same strand, the expression of which was 
profiled to confirm this unidirectional transcription pattern (Fig. 1b, top). Similarly, distinct divergent transcrip-
tion initiation patterns that were characterized by bidirectional transcription initiation at opposing strands were 
profiled (Fig. 1b, bottom and Fig. 1c). Using TCs expressed in at least 2 samples and removing weakly expressing 
TCs, our stringent criteria identified 2,876 high confidence bidirectional transcription regions.

Next, we investigated the various genomic loci that were accompanied by these bidirectional sites. In total 
2,182 regions adjoined its nearest gene with an absolute distance between 0 and 5 kb (Fig. 1d). The remaining 689 
regions were found in distal regions. We used UCSC’s Known Genes to annotate the relevant genomic regions 
(Fig. 1e). In total 1,957 bidirectional events were associated with proximal and promoter regions.

To confirm activity at bidirectional regions, we systematically calculated the number of intersecting regions 
between enhancer-specific histone modifications, H3 lysine 4 mono-methylation (H3K4me1) and histone H3 
lysine 27 acetylation (H3K27ac), and bidirectional transcription regions. Nearly all bidirectional regions were 

Figure 1.  Bidirectional transcription initiation in cis-regulatory elements, including enhancers. (a) A schematic 
overview of the computational framework. First, bidirectional regions and gene expression are defined by 
 CAGEfightR16. Gene expression is measured by summing all CAGE Tag Clusters (TCs) expressed per gene. 
Then, ANANSE is used to calculate a TF binding probability (binding score) by logistic regression using three 
types of data: enhancer intensity score in TPM (bidirectional regions), TF motif scores, and the average ReMap 
2022 ChIP-seq  coverage15,21, using Eq. (1). Gene expression (TPM), binding score, weighted distance to TSS, 
and genome-wide TF motif activity are then used to determine gene regulatory networks and its respective 
interaction score. The influence score is calculated based on differential expression (log2 fold change), edge 
distance from TF, and the interaction score of the source cell type and target cell type. The influence score 
represents how well the differences between two cell states can be explained by a TF, thus inferring importance 
for a cell’s state. The equations to calculate the scores, logistic regression, and GRNs were previously described 
by Xu et al.15. (b) Representation of summed CAGE-defined Transcription Start Sites (CTSS) expression at 
unidirectional (top) and bidirectional (bottom) transcription clusters. The orange color depicts the forward 
DNA strand ( + ) and in grey the reverse ( − ). (c) CAGE-seq tags representing bidirectional transcription in 
K562 cells for two separate genomic regions. (d) Bar graph representation of associated bidirectional regions 
with its closest gene. Y-axis shows the fraction of regions associated for its respective increment of kilobases 
(kb). (e) Number of bidirectional regions in K562 cells associated with various genomic locations. (f) Genome-
wide co-occurrence (intersection size) of H3K4me1, H3K27ac, and bidirectional regions (Bi. regions) in K562 
cells. The black dots represent intersection between the two ChIP-seq marks and bidirectional transcription. The 
set size represent the total amount of regions included.
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either associated with both H3K4me1 and H3K27ac or H3K27ac alone (Fig. 1f), in line with enhancer stud-
ies using K562  cells20. In addition, we performed similar analyses for four other human cell lines: GM12878, 
HeLaS3, HepG2, and H1-hESC (Supplementary Fig. S1 and Supplementary Fig. S2a,b,c,d), corroborating these 
observations. Note that for all cell lines, the number of identified bidirectional regions is > tenfold lower than 
the regions marked by histone modifications (Supplementary Fig. S2e). Taken together, we identified a defined 
set of cis-regulatory elements associated with active chromatin modifications and bidirectional transcription 
in different cell systems.

Curated transcription factor binding, motif scores, and bidirectional transcription activity 
accurately predict TF binding sites. In order to investigate whether the bidirectional regions can func-
tion as a predictive measure for TF binding sites, we turned to logistic regression modelling. Specifically, a 
combination of four classifiers were modelled and tested: bidirectional transcription intensity (TPM); TF motif 
z-scores; average binding signal of TFs across cell types from the curated TF ChIP-seq database ReMap  202221; 
and H3K27ac ChIP-seq signals in GM12878, HeLaS3, HepG2, H1-hESC, and K562 cells from  ENCODE22. The 
predictive power of this set of models was determined (Fig. 2a) using the measure Precision Recall (PR) Area 
Under Curve (AUC), which is a performance measure when evaluating binary classifiers on imbalanced data-
sets. All models performed significantly higher compared to the random baseline, i.e. random guessing (median 
PR AUC 0.19, Wilcoxon Test). Out of the four classifiers, the average binding signal of TFs from ReMap 2022 
contributed proportionally the most to the performance. The model including bidirectional TPM, motif scores, 
and average binding signal of TFs from ReMap showed the highest median (median PR AUC 0.44, P Wil-
coxon < 3e-21), thus improved performance the most. Furthermore, a general model was trained which can be 
applied to all TFs that were not included in the supervised training (Fig. 2b). The general model also significantly 
improved performance (median PR AUC 0.42, P Wilcoxon < 1e-20). These results demonstrated that we signifi-
cantly improved TF binding prediction at bidirectional regions using logistic regression modelling.

Bidirectional transcription events predict key transcription factors for cellular reprogram‑
ming. To demonstrate the predictive capacity of ANANSE-CAGE, we assessed how our TF predictions com-
pare to well-known experimentally validated TFs for a number of cellular reprogramming strategies. To this 
end, we established differential GRNs using CAGE-seq data from FANTOM5: fibroblasts (source cell type) and 
five different conversion cell types, including  macrophages23,  keratinocytes24, astrocyte derived from the cer-
ebral  cortex25, human induced pluripotent stem cells (hiPSCs)26,27, and  hepatocytes28,29. In almost every case, 
we predicted the entire set of experimentally validated TFs (Fig. 2c, TFs in bold). For example, expression of 
SPI1, CEBPA, and CEBPB converted fibroblasts into macrophage-like  cells23. The ANANSE-CAGE framework 
identified SPI1, CEBPA, and CEBPB within the top most important TFs for this conversion, corroborating these 
results. Likewise, established factors important in keratinocyte conversion (TP63, GRHL2, TFAP2A, and MYC) 
were amongst the top predicted TFs, confirming our predictions (Supplementary Table S1).

To further explore the performance of ANANSE-CAGE in its ability to rank predicted TFs, we compared our 
method with other TF prediction methods: ANANSE, Mogrify, LISA, BART, VIPER, CellNet, and the method 
of D’Alessio et al.11,14,15,30–33. Similarly, these methods rank predicted TFs, though with a different algorithm or 
type of data. We included three different performance metrics to confirm performance in five conversion strate-
gies (macrophages, keratinocytes, astrocyte derived from the cerebral cortex, hiPSCs, and hepatocytes). First, by 
determining the fraction of (validated) TFs ranked in the top 10 highest scoring TFs per cell conversion strategy, 
we demonstrated the methods ability to rank (confirmed) important TFs. ANANSE-CAGE outcompeted nearly 
all other reported methods in this regard (Fig. 2d). Second, by examining the mean rank of all validated TFs 
per conversion, we illustrated the overall ranking performance. Similarly, ANANSE-CAGE exceled in ranking 
these validated TFs (Fig. 2e), with the majority ranking in the top 30 and nearly all in the top 50 (Supplemen-
tary Table S1). Third, when evaluating the PR AUC (Fig. 2f), a measure for evaluating prediction performance, 
ANANSE-CAGE was again amongst the highest performing methods.

Taken together, we showed that CAGE-defined bidirectional transcription regions can serve in prioritiz-
ing biologically relevant TFs using the ANANSE algorithm. Information about bidirectional transcription can 
significantly improve TF binding prediction as well as establish a prediction method that seems to outperform 
various other prediction methods.

Identifying essential transcription factors during early, late, and definitive erythropoiesis. To 
identify key TFs that drive erythroid differentiation, we applied ANANSE-CAGE to three stages of K562 hemin 
induced differentiation program: early (3.5  h), late (24  h) and definitive (96  h) (Fig.  3a and Supplementary 
Table S1). For each assay the influence scores are determined, a measure for importance of how a TF can explain 
transcriptional differences between two cell states. As an example, we depicted high influential TFs during early 
erythroid differentiation (Fig. 3b). Gene expression differences, amongst other factors (see Fig. 1a), contrib-
ute to calculating the influence score of predicted TFs. However, log2fold changes alone do not infer impor-
tance, see for example ZNF263 (Fig. 3b and Supplementary Table S1). In fact, this is a power of this prediction 
method. Likely, (high) gene expression changes are not always necessary for a TF to exert its function, as long 
as the respective TF is able to bind to the DNA. Next, we performed k-means clustering on the inferred scores 
of the predicted TFs (Supplementary Fig. 2f.). This revealed seven clusters of TFs that show similar temporal 
importance across the erythroid differentiation (Fig. 3c and Supplementary Table S2). Well documented TFs 
important in erythropoiesis, such as GATA1, GATA2, TAL1, KLF1, and GFI1B confirm our  results34–36. TFs that 
have a thus far unknown role during erythroid differentiation also clustered according to temporal importance, 
e.g. HIVEP1 (early), MLXIP (late), FOXK2 (late-definitive), and RFX7 (definitive). Interestingly, GWAS stud-
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Figure 2.  TF binding prediction performance and key TF prediction in cell conversion strategies. (a) TF 
binding prediction evaluation by Precision-Recall (PR) Area Under the Curve (AUC) in a boxplot. The 
performance of 230 TFs in five cell lines is cross-validated and plotted. Performance is compared to random 
sampling. All individual models perform significantly better than the random sampling method: TF motif 
z-scores (P Wilcoxon < 7.08e-07), average ReMap coverage (P Wilcoxon < 4.82e-18), bidirectional TPM (P 
Wilcoxon < 7.79e-05), and H3K27ac ChIP-seq (P Wilcoxon < 3.25e-03). Combined models are represented 
by the black dots. Similarly, all combined models perform significantly better than random sampling: TF 
motif scores, average ReMap coverage, and bidirectional TPM (P Wilcoxon < 3.08e-21); TF motif scores, 
average ReMap coverage, and H3K27ac ChIP-seq (P Wilcoxon < 2.30e-20); TF motif scores, average ReMap 
coverage, bidirectional TPM, and H3K27ac ChIP-seq (P Wilcoxon < 6.79e-21). The whiskers represent standard 
deviation, edges depict the inter-quartile ranges, and the black centre line illustrates the median. The model 
with the highest median score is depicted in red. (b) PR AUC for generalised models to predict TF binding 
for all other TFs in a boxplot. Performance is compared to random sampling as in (a). All general models 
perform significantly better than the random sampling method: TF motif scores, average ReMap coverage, and 
bidirectional TPM (P Wilcoxon < 1.02e-20); TF motif scores, average ReMap coverage, and H3K27ac ChIP-seq 
(P Wilcoxon < 7.98e-21); TF motif scores, average ReMap coverage, bidirectional TPM, and H3K27ac ChIP-seq 
(P Wilcoxon < 6.14e-21), visualized as in (a). (c) Summary of experimentally validated TFs in cell conversion 
strategies: skin fibroblasts to five different target cell types. TF predicted by ANANSE-CAGE are highlighted 
in bold. (d) Boxplot representing the fraction of (experimentally validated) TFs that are ranked in the top 10 
per cell conversion strategy. Y-axis depicts the various TF prediction methods that are able to rank predicted 
TFs based upon their respective algorithm. Individual conversion types are depicted as dots. ANANSE-CAGE 
is depicted in red and other TF prediction methods are shown in grey. The whiskers represent standard 
deviation and edges depict the inter-quartile ranges. The plus sign represent the mean and the black centre line 
the median. (e) Boxplot representing the average inferred TF rank per cell conversion strategy for each of the 
TF prediction methods, visualized as in (d). (f) The PR AUC of the five cell conversions shown as a boxplot, 
visualized as in (d).
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ies suggest HIVEP1, MLXIP, FOXK2, and RFX7 to affect red blood cell  phenotypes37,38. Together, we observed 
predictions that not only correlate well with known literature, it also provides a rich and instructive set of factors 
potentially essential for erythropoiesis that can be further explored.

Discovering immortalisation‑associated transcription factors in a MLL‑AF9‑driven leukemic 
cell line. One advantage of ANANSE-CAGE is that it can predict and rank important TFs in one cell state 
compared to another, e.g. comparing untreated to treated conditions, or vice versa. Here, we set out to pre-
dict important TFs in immortalisation of MLL-AF9-driven leukemic cells (untreated condition) and in early 
myeloid differentiation (treated condition). First, TFs that drive normal myeloid differentiation were deter-
mined. For this, we used a GSK-LSD1 inhibitor to induce myeloid differentiation in MLL-AF9 positive THP-1 
 cells39. Lysine-specific demethylase 1 (LSD1) is capable of interacting with MLL-AF9, sustaining leukemogenic 
potential of MLL-AF9 leukemic cells. Pharmaceutical inhibition of LSD1 results in induction of differentia-
tion in these leukemic cells. This inhibition leads to monocyte differentiation accompanied with upregulated 
CD86 expression, a myeloid differentiation  marker40. To validate the LSD1 inhibition, we first quantified CD86 
 expression40. Using RNA-seq and flow cytometry we observed a steady increase in CD86 expression over the 
course of 24 h (Fig. 4a and Supplementary Fig. S3a-b), in line with previous  reports41.

Next, to determine early gene programs induced by LSD1 inhibition, we performed CAGE-seq analysis before 
and after 8 h GSK-LSD1 treatment and analysed the differentially expressed genes (Fig. 4b). This revealed 29 
genes to be upregulated (P < 0.05, log2 fold change > 2) after GSK-LSD1 treatment and only 3 downregulated 
genes (P < 0.05, log2 fold change <  − 2). Despite the few differentially expressed genes (log2 fold change > 2) we 
were able to confirm significant higher CD86 expression upon GSK-LSD1 treatment, even at this very early 
timepoint. Importantly, CAGE-seq allowed the identification of bidirectional transcription sites (Supplementary 
Fig. S3c,d,e) and its corresponding expression values in addition to the gene expression information to generate 
a ranked list of putative driving key TFs.

We examined whether factors related to induced myeloid differentiation were predicted using ANANSE-
CAGE. Among the top ranked TFs we find KLF4, GFI1, and SPI1 (Fig. 4c and Supplementary Table S1). KLF4, 
SPI1, and GFI1 are known critical regulators of monocyte  differentiation39,42. Generally, ETS family TFs are 
recognized as key factors in governing  haematopoiesis43. Here, we observed ETV1 to be amongst the highest 
scoring factors as well as showing high differential expression, leading to the hypothesis that ETV1 is important 
in GSK-lSD1 induced myelopoiesis.

In contrast to factors key in induced myeloid differentiation, we also predicted a set of TFs important in 
maintaining THP-1 cell immortalisation by determining differential GRNs between induced THP-1 (source 
type) and wild-type THP-1 (target type) (Fig. 4d and supplementary Table S1). Between the key TFs we found 
MYC , a well-known proto-oncogene involved in cell cycle regulatory  mechanisms44, while other identified fac-
tors, such as OLIG1 and RFX8, do not have a reported role in MLL-AF9 driven leukemic cells. Though the high 
scores predict a potential role in THP-1’s oncogenic program for these novel factors. In summary, we find key 
TFs in MLL-AF9 driven immortalisation that can be further explored in more dedicated assays.

Figure 3.  Temporal TFs during normal erythroid differentiation. (a) A schematic overview of k-means 
clustering of the inferred influence scores for three timepoints: early (3.5 h), late (24 h), and definitive (96 h). 
The top arrows represent the three ANANSE-CAGE analyses necessary for the unsupervised clustering. The 
scatterplots are a schematic representation of the scatterplot generated by ANANSE-CAGE depicting influence 
score, an inferred score for how well differences in two cell states can be explained by a TF, and log2 fold change. 
(b) Scatterplot representing inferred influence scores and log2 fold change. The color and size of the individual 
dots represent an approximation for the number of target genes that are calculated from the number of edges in 
differential GRNs. The dotted line represents a visual cut-off for highlighting the top ranked TFs. (c) Heatmap 
showing seven clusters of TFs during erythroid differentiation. The value in each square represents the average 
influence score of each cluster at each timepoint. To the right nine TFs from each cluster is depicted. More TFs 
are summarized in Supplementary Table S2. The color intensity represents the average influence scores.
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Transcription factor prediction in MLL‑AF9 positive primary AMLs. Although cell lines provide 
excellent models to study cell transformation, their genetic makeup and gene regulatory networks may differ 
from primary cells. Unfortunately, in most cases, availability of primary AML material is limited. To identify 
important differential TFs between cell line- or primary- associated MLL-AF9-driven gene programs, we per-
formed ANANSE-CAGE again in two directions. First, TFs that drive primary MLL-AF9 immortalisation was 
determined, with THP-1 cells as source cell type. This revealed MECOM, MEIS1, and ERG (Fig. 5a and Sup-
plementary Table S1), that have been reported to contribute to transformation and aggressiveness of MLL-AF9-
driven  leukemia45. Furthermore, we predicted MLL-AF9 targets FOS,  FOSB46, and KLF6. The latter of which 
has not yet been described in MLL-AF9 AML. Second, we performed ANANSE-CAGE to predict TFs unique to 
THP-1 by comparing GRNs between primary samples (source type) and THP-1 cells (target type). Surprisingly, 
most of the top ranked factors were associated with neural and craniofacial development (BARX1, BHLHE22, 
OTX1, SP9, ALX1, and HMX3) (Fig. 5b and Supplementary Table S1)47,48. These results give us more insights 
into which TFs regulate key gene programs to keep THP-1 cells indefinite in cell culture, in contrast to primary 
AML cells.

To extend the approach on primary material, we compared our primary MLL-AF9 AML samples with publicly 
available primary CD14 + monocytes, and vice versa (Fig. 5c, Supplementary Fig. S3f,g,h,i and Supplementary 
Table S1). We analysed which TFs are predicted to be enriched in MLL-AF9 blasts and revealed a set of TFs that 
are well documented to have a role in MLL-AF9 leukemias, such as MECOM (EVI1), but also HOXA9, and 

Figure 4.  Key TFs in GSK-LSD1 induced early myeloid differentiation and immortalisation. (a) Bar graph 
depicting normalized (RPKM) CD86 expression (RNA-seq) in THP-1 after GSK-LSD1 induction (0 h, 8 h, 
and 24 h). (b) Differential expression of GSK-LSD1 induced THP-1 between 0 and 8 h (CAGE-seq). Y-axis 
depicts -log of the padj values and x-axis the log2 fold change. Dotted lines signify a cut-off for significance 
(padj < 0.05) and an absolute log2 fold change > 2. Genes significantly differentially expressed with a log2 fold 
change higher than 2 are depicted in red. (c) Scatterplot representing log2 fold change and inferred influence 
scores, an inferred score for how well differences in two cell states can be explained by a TF, in early myeloid 
differentiation. The color and size of the individual dots represent an approximation for the number of target 
genes that are calculated from the number of edges in differential GRNs. The dotted line represents a visual cut-
off for highlighting the top ranked TFs. (d) Identification of TFs in THP-1 immortalisation, visualized similarly 
to (f).
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 HOXA76,49. Interestingly, this also identified a highly conserved member of the MYB family MYBL2, reported 
to be associated with poor patient outcome in various cancers, including  AML50. In summary, we predicted TFs 
differentially important between cell line- or primary- associated MLL-AF9-driven gene programs, and in pri-
mary MLL-AF9 AML. Indeed, many of these predicted TFs have been well described in literature in the context 
of MLL-AF9 AML. In addition, ANANSE-CAGE predicted novel key TFs providing an instructive set of factors 
that can be further explored in the future.

Discussion
Here, to allow advanced predictability while retaining minimal experimental requirements, we developed a com-
putational framework that predicts important TFs in hematopoietic development and disease with a bidirectional 
transcription network-based prediction algorithm using only CAGE-seq data as input.

We report correlation of enhancer-specific histone modifications with CAGE-defined bidirectional transcrip-
tion initiation. Indeed, by predicting TFs key in keratinocyte conversion we were able to predict TP63 as the 
highest influential TF, which predominantly binds to  enhancers51. Enhancer associated genomic regions are not 
only important in regulating tissue-specific gene expression but also in  disease52.

We applied our framework to cell type conversion strategies, differentiation, and disease. Though this frame-
work can be applied to a widespread of organisms and cell systems, we highlighted its use in hematopoietic 
systems, e.g. erythroid differentiation, early myelopoiesis, THP1 immortalisation, and focus on key differences 
between cell line- or primary- associated MLL-AF9-driven TF expression. In particular, we revealed TFs key in 
MLL-AF9 AML, e.g. MECOM, HOXA9, and  HOXA76,49. High expression of MECOM is associated with high-
risk AML and holds an important prognostic value. Currently, standardized treatment protocols are limited in 
inducing remission, especially for malignancies with high heterogeneity in genetic and cytogenetic abnormali-
ties. Targeted therapy can therefore be an excellent alternative for patients that require a more untraditional 
treatment strategy. A computational framework as described here can serve a purpose in uncovering molecular 
mechanisms in disease and is therefore a great tool for generating novel entry-points in tackling a heterogeneous 
disease such as acute myeloid leukemia.

Importantly, our method does not require a large set of samples or multiple genome-wide measurements 
to provide high prediction performance. It does not depend on large collections of reference data, making it a 
profitable method to use with new data. The rich epigenomic and transcriptomic landscape that is important in 
understanding hematological disease can be examined using just a single transcriptome-based Next Generation 
Sequencing technique. The framework is widely applicable to other cell systems and organisms. ANANSE-CAGE 
is open-sourced and available to expand upon (https:// github. com/ vanhe ering en- lab/ ANANSE).

Naturally, there are limitations associated with our approach. First and foremost, the resourcefulness of this 
framework is dependent on the number of biological replicates and heterogeneity between these replicates. 
We apply a strict filtering strategy that removes lowly expressed CAGE tags and preserve CAGE tag clusters 
that are expressed in 2 or more samples. Ideally three biological replicates is advised to identify high confident 
bidirectional regions, though not necessary. Highly heterogeneous samples will reduce the amount of high con-
fidence bidirectional regions and will therefore limit the enhancer-target interaction prediction. Notably, this 
method makes use of differential networks, so determining the source and target cell type is important. TFs can 
be inferred as unimportant when these TFs are similarly expressed in both cell types. Also, this network-based 
method determines enhancer-target interaction based on distance and not genomic distance screenings. Besides, 
only TFs with a role in activation are implemented in this framework. Lastly, the best performing model for 

Figure 5.  Identification of TFs in MLL-AF9-driven leukemia. (a) Scatterplot depicting log2 fold change and 
inferred influence scores, an inferred score for how well differences in two cell states can be explained by a TF, 
in primary MLL-AF9-driven samples when compared to MLL-AF9-driven THP-1 cells. The color and size 
of the individual dots represent an approximation for the number of target genes that are calculated from the 
number of edges in differential GRNs. The dotted line represents a visual cut-off for highlighting the top ranked 
TFs. (b) Identification of TFs in MLL-AF9-driven THP-1 cells compared to primary MLL-AF9-driven samples, 
visualized similarly to (a). (c) Identification of TFs in MLL-AF9 AML compared to primary CD14 + monocytes, 
visualized similarly to (a).

https://github.com/vanheeringen-lab/ANANSE
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logistic regression includes assemblies hg19 and hg38. Other assemblies will use a lower performing model until 
more assemblies are supported. Though novel predicted TFs need to be explored in more dedicated assays, this 
computational workflow is powerful in providing insights into TF mediated regulatory mechanisms.

In conclusion, we demonstrated a low-requirement and high performing computation framework to predict 
important TFs in hematopoietic development and disease. By exploiting bidirectional transcription initiation 
we can identify epigenomic as well as transcriptomic landscapes important for determining gene regulatory 
networks. We demonstrate the wide applicability and informativity of this technique in hematopoietic systems, 
showcasing an open-sourced and powerful tool for understanding molecular regulatory mechanisms and disease.

Materials and methods
Cell culture, RNA extraction, and RNA‑seq. The leukemic cell line THP-1 (ATCC) was maintained in 
RPMI 1640 (Gibco, Thermo Fisher Scientific) supplemented with 10% heat-inactivated fetal calf serum (FCS) 
at a density between 2E5 and 1E6. The cells were kept in a humidified incubator at 37 °C in 5%  CO2 and tested 
negative for mycoplasma. Cells were treated with 0.2 µM GSK-LSD1 (Signa-Aldrich) for 8 h and RNA was iso-
lated using Mini RNA Isolation II Kit (Zymo Research).

Library generation was performed on 500 ng RNA (singlicate) using KAPA RNA HyperPrep Kit with Ribo-
Erase (HMR) (Kapa Biosystems) with RNA fragmentation of approximately 300 bp fragments for 6 min at 
94 °C. Library size distribution was measured using High Sensitivity DNA analysis (Agilent) on an Agilent 2100 
Bioanalyzer and its corresponding software. Libraries with average sizes with approximately 300–400 bp were 
used for sequencing with a NextSeq 500 system (Illumina).

The fastq files (GSE204710) were mapped to the reference human genome hg38 through the Seq2science 
pipeline (https:// github. com/ vanhe ering en- lab/ seq2s cience) (STAR as default aligner).

CAGE‑seq. CAGE libraries were prepared using 2  µg total RNA from wildtype and GSK-LSD1 treated 
THP-1 cells and from blast cells of three MLL-AF9 AML patients. Kabushiki Kaisha DNAFORM performed 
CAGE sequencing on an Illumina system and basic data pre-processing. Fastq files (GSE204708, GSE204707) 
were mapped using the BWA and HISAT2 aligners to hg38. Post-mapping processing involved converting BAM 
to CTSS BED files (https:// fantom. gsc. riken. jp/5/ sstar/ Proto cols: HeliS copeC AGE_ read_ align ment). Genome 
coordinates were converted between assemblies using UCSC’s utility program liftOver.

Publicly available datasets. CAGE-seq data for GM12878, HeLaS3, HepG2, H1-hESC, K562, fibro-
blasts (skin), astrocytes (cerebral cortex), hepatocytes, human iPSCs, keratinocytes, macrophages, K562 Hemin 
induced time course, and primary CD14 + monocytes were obtained from the FANTOM5 collection (https:// 
fantom. gsc. riken. jp/5/ sstar/ Browse_ sampl es)53. Publicly available ChIP-seq data was downloaded from the 
ENCODE portal (https:// www. encod eproj ect. org)22. All datasets (hg19) are summarized in Supplementary 
Table S3.

Bidirectional regions characterisation. Bidirectional regions were characterized using  deepTools54, 
 intervene55, and  GREAT56. Absolute distance to TSSs were determined by associating genomic regions with sin-
gle nearest gene. Also, genomic regions not associated with any genes were removed. CAGE tags were visualised 
using the UCSC Genome  Browser57.

CAGE‑seq analyses. CAGE tags were analysed with the R package CAGEfightR v1.14.016. CTSSs were nor-
malized (TPM), pooled, and pre-filtered with default settings. Subsequently, tag clusters were quantified using a 
slice-reduce method. Tag Clusters (TCs) expressed in at least 2 or more libraries were kept and noise or weakly 
expressing TCs were discarded (> 1 TPM). CTSSs within a range of 20 bp on the same strand were systematically 
clustered into unidirectional clusters. Bidirectional transcription was established using a balance threshold of 
0.95 and a window size of 201 bp. Unidirectional TCs were summed per gene annotation (TxDb objects) and 
used for differential expression analysis (DESeq2)58. For more details, a R markdown script is freely available at 
https:// github. com/ vanhe ering en- lab/ ANANSE- CAGE.

ANANSE model training. The model training for bidirectional regions is based on the model training of 
ANANSE for H3K27ac and ATAC-seq data, described previously by Xu et al.15. To train the models we used bidi-
rectional regions for 230 TFs from ReMap 2022 in five cell lines from FANTOM5: GM12878, HeLaS3, HepG2, 
H1-hESC, and  K56221. Only factors defined in Lovering et al. were  used59. The window size was normalized to 
200 bp, centred on the middle of each bidirectional region. Bidirectional TPMs were log-transformed and quan-
tile normalized. To evaluate the model training, including the general model, we performed cross-validation by 
held-out chromosomes and cell types, respectively. PR AUC scores were calculated using only enhancers located 
on held-out chromosomes in held-out cell types. For unavailable TF data, we trained a general model so that we 
can implement the model training for all TFs.

A standard logistic regression model, as implemented in scikit-learn60, was used to predict TF binding using 
three types of data: enhancer intensity score in TPM (bidirectional regions), TF motif scores, and the average 
ReMap 2022 ChIP-seq  coverage21. Equation (1) was used to calculate the binding score.

(1)log
pf ,l

1− pf ,l
= β1Sf ,l + β2ECAGE,l + β3EChIP,l

https://github.com/vanheeringen-lab/seq2science
https://fantom.gsc.riken.jp/5/sstar/Protocols:HeliScopeCAGE_read_alignment
https://fantom.gsc.riken.jp/5/sstar/Browse_samples
https://fantom.gsc.riken.jp/5/sstar/Browse_samples
https://www.encodeproject.org
https://github.com/vanheeringen-lab/ANANSE-CAGE
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Here, pf ,l is the probability of a transcription factor f  binding to enhancer l  . Sf ,l is the highest motif z-score 
of all motifs associated with transcription factor f  in enhancer l  , determined by using  GimmeMotifs61. ECAGE,l 
is the enhancer intensity of enhancer l  , based on log-transformed and quantile normalized bidirectional CAGE-
tags (TPMs). Lastly, EChIP,l is the average ReMap 2022 ChIP-seq signal.

ANANSE‑CAGE implementation. Binding, interaction (including GRNs), and influence scores were 
calculated as previously described by Xu et al.15. TF prediction using CAGE-defined bidirectional regions were 
implemented in the binding prediction module of ANANSE. Putative enhancer regions were normalized to a 
window size of 200 bp, centred on the middle of each region and TPM values were log-transformed and scaled. 
In addition, ReMap 2022 ChIP-seq average coverage was automatically determined for assemblies hg19 and 
hg38. Gene regulatory networks were determined using summed unidirectional TCs per gene. Finally, influence 
scores were calculated using 500 k edges. ANANSE source code including the CAGE module is available from 
https:// github. com/ vanhe ering en- lab/ ANANSE. Jupyter notebooks for supporting analyses and a Rmarkdown 
file describing CTSS processing are provided at https:// github. com/ vanhe ering en- lab/ ANANSE- CAGE.

Hemin induced differentiation time course analysis. We systematically calculated the influence 
scores for each timepoint (3.5 h, 24 h, 96 h) by comparing the respective timepoints to timepoint 0 h. K-means 
clustering was performed  ComplexHeatmap62. Elbow method was used to determine the optimal value of k 
in k-means clustering (Supplementary Fig.  S2). For this, R packages factoextra and nbClust were  used63,64. 
The influence scores of predicted TFs per cluster were averaged to depict their temporal importance in hemin 
induced erythroid differentiation.

Data availability
The datasets analyzed during the current study are available in the Gene Expression Omnibus (GEO) repository 
GEO Series GSE204711. ANANSE source code including the CAGE module is available from https:// github. 
com/ vanhe ering en- lab/ ANANSE. Jupyter notebooks for supporting analyses and a Rmarkdown file describing 
CTSS processing are provided at https:// github. com/ vanhe ering en- lab/ ANANSE- CAGE.
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