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Abstract

PDZ domains recognise short sequence motifs at the extreme C-termini of proteins. A model based on microarray data has
been recently published for predicting the binding preferences of PDZ domains to five residue long C-terminal sequences.
Here we investigated the potential of this predictor for discovering novel protein interactions that involve PDZ domains.
When tested on real negative data assembled from published literature, the predictor displayed a high false positive rate
(FPR). We predicted and experimentally validated interactions between four PDZ domains derived from the human proteins
MAGI1 and SCRIB and 19 peptides derived from human and viral C-termini of proteins. Measured binding intensities did not
correlate with prediction scores, and the high FPR of the predictor was confirmed. Results indicate that limitations of the
predictor may arise from an incomplete model definition and improper training of the model. Taking into account these
limitations, we identified several novel putative interactions between PDZ domains of MAGI1 and SCRIB and the C-termini of
the proteins FZD4, ARHGAP6, NET1, TANC1, GLUT7, MARCH3, MAS, ABC1, DLL1, TMEM215 and CYSLTR2. These proteins are
localised to the membrane or suggested to act close to it and are often involved in G protein signalling. Furthermore, we
showed that, while extension of minimal interacting domains or peptides toward tandem constructs or longer peptides
never suppressed their ability to interact, the measured affinities and inferred specificity patterns often changed
significantly. This suggests that if protein fragments interact, the full length proteins are also likely to interact, albeit possibly
with altered affinities and specificities. Therefore, predictors dealing with protein fragments are promising tools for
discovering protein interaction networks but their application to predict binding preferences within networks may be
limited.
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Introduction

Many of the protein interactions that function in cellular

regulation and signalling are mediated by linear motifs that bind to

globular domains. Such interactions are often specific, yet

transient and therefore of low affinity [1]. The efficient prediction

of such interactions together with their experimental validation

would enormously increase our understanding of the cellular

system. The occurrence of specific types of globular domains in

protein sequences can mostly be predicted with high accuracy [2]

[3] and promising work on linear motif predictions are published

[4][5]. However, the correct prediction of which instance of a

linear motif will bind to which instance of a type of globular

domain, hence the specificity in domain - linear motif interactions,

remains one of the hot topics in computational biology.

Approaches for predicting domain-linear motif interactions

have very often focussed on PDZ-peptide interactions. PDZs are a

very abundant class of globular domains with 267 occurrences in

the human proteome [6]. Human proteins often contain several

copies of PDZs (up to 13) in their sequence. PDZs bind with a well

defined pocket to linear motifs that are mostly situated at the

extreme C-termini of proteins. The last residue (referred to as

position p0) in PDZ-binding motifs is usually Val or Leu. The

third last peptide residue (position p-2) can be either Thr or Ser

(class I), hydrophobic (class II), or Glu or Asp (class III), thereby

defining three main categories of PDZ-binding motifs [7][8]. 339

experimentally verified PDZ-peptide interactions are currently

annotated in the PDZbase [9] and 212 PDZ structures are listed in

the ADAN database [10] indicating that PDZs are very well

experimentally studied.

PDZs are implicated in the regulation of cell polarity, cell

adhesion and intercellular communication [11]. The PDZ-

containing proteins MAGI1 (Membrane-associated guanylate

kinase inverted 1) and SCRIB (human Scribble) are in the centre

of this study. MAGI1, which has six PDZ domains, was found to

be located to adherens and tight junctions in epithelial [12] and

endothelial cells [13], where it seems to be involved in the

maintenance of the junctions and in cell signal propagation.

SCRIB, which has four PDZ domains, is known to be involved in

the establishment of adherens [14] and tight junctions [15] as well

as in the regulation of cell polarity and cell migration [16]. Some

data indicate that deregulation of MAGI1 [17] or SCRIB [18] can
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promote cell proliferation and tumorigenesis. Interestingly,

proteins from different viruses were shown to bind via their C-

terminal sequences to MAGI1 or SCRIB and to interfere with

their cellular functions for promoting viral replication [19] [20].

For instance, the oncoprotein E6 produced by the human

papillomaviruses (HPV) responsible for cervical cancer contains

a PDZ-binding motif, which interacts with PDZ domains of

MAGI1 and SCRIB [21] [22]. Deletion of this motif in HPV16 E6

impaired its capacity to promote cancer in transgenic mice [23]

indicating that binding of E6 to MAGI1 and SCRIB might be

implicated in the development of cervical cancer. Therefore, it

would be important to better understand the signalling pathways,

such as those of cell growth and apoptosis, that are regulated by

MAGI1 and SCRIB and that are disrupted upon infection with

oncoviruses such as HPV.

Until recently, only specific case studies had been published on

the specificity of PDZ-peptide interactions, and the iSPOT tool

[24] was for a long time the only attempt to predict PDZ-peptide

interactions on a broader scale. In 2007 and 2008, two groups

published outstanding large-scale studies on PDZ interactions

providing insights into PDZ interaction specificities and strategies

for their prediction [25] [26] [27]. Tonikian et al. [25] applied

phage display to determine the binding profiles of 28 C. elegans and

54 H. sapiens PDZ domains using 10 billion random peptides.

Stiffler et al. [26] applied microarrays and fluorescence polarisation

to measure binding affinities between 157 mouse PDZ domains

and 217 mouse peptides. All interactions and non-interactions

(absence of interactions) determined by Stiffler et al. were used by

Chen et al. [27] as training data for a PDZ interaction predictor.

The prediction model was defined using the structure of the a1-

syntrophin PDZ domain bound to a seven residue-long peptide of

which five are visible in the structure [28]. The model consists of

38 position pairs of domain and peptide residues that were seen to

interact with each other in this particular structure. The training

data was used in a Bayesian approach to obtain sub-scores for the

occurrence of all possible combinations of amino acid pairs at

these 38 position pairs. These sub-scores quantify the positive,

neutral or negative contribution of a pair of amino acids at a

certain position to the overall interaction between a PDZ domain

and a peptide. The sum of the 38 sub-scores for a given PDZ-

peptide pair represents the final score, which was suggested to

indicate the binding strength of the potential interaction in

question.

A very critical point for the development of protein interaction

predictors is the availability of real negative interaction datasets

[29]. Stiffler et al. [26] provide a negative PDZ interaction dataset,

which has already been used to significantly improve PDZ

interaction prediction quality [30][31]. However, this negative

dataset is the only one existing so far, which implies that PDZ

interaction predictors trained with data of Stiffler et al. [26], such

as the predictor of Chen et al. [27], cannot be tested on an

independent negative dataset.

The numerous existing predictors for PDZ-peptide interaction

specificities focus on the core PDZ domain or binding pocket of

the PDZ and mostly on four or five residue long peptides [27] [30]

[31] [32] [33] [34] [35]. Generally, it is assumed that interaction

specificity predictions based on such protein fragments are also

valid in the context of full length protein interactions and hence

can be used to predict protein-protein interaction (PPI) networks.

However, an increasing amount of biological studies on PDZ

domains suggest that peptide residues upstream of the last five

residues and domain residues outside of the binding pocket

influence binding affinity and specificity [36] [37] [38] [39] [40].

Linker regions flanking the core PDZ domain as well as

neighbouring domains, have also been found to influence binding

[41] [42]. The term supramodule was introduced for neighbouring

PDZs that are separated by particularly short linker sequences and

that were shown to significantly influence each other’s peptide

binding (for a review see [43]).

Based on these observations, several questions are raised: First

of all, how correct are PDZ interaction predictors in theory and in

practice? Second, to which extent can specificity predictions based

on protein fragments be transferred to full length proteins and how

much influence do extensions of protein fragments have on affinity

and specificity of the corresponding interaction? Third, can

existing PDZ interaction predictors be used to extend our

knowledge on PPI networks mediated by PDZ-peptide interac-

tions? Here, we attempted to answer these questions by focussing

on the well studied predictor published by Chen et al. [27]. First,

we aimed at assessing its prediction quality in silico by using test

datasets assembled by ourselves that consisted of real positive and

negative interaction data for various PDZ domains. Then, by

concentrating on PDZ domains of MAGI1 and SCRIB, we

performed proteome-wide interaction predictions and experimen-

tally validated a subset of those, allowing us to also assess the

prediction quality in vitro. We also assessed how binding was

influenced by extended protein fragments, i.e. peptides and PDZ

constructs longer than those considered by the predictor. Finally,

discovered interactors for MAGI1 and SCRIB were analysed with

regard to new biological functions that can be linked to MAGI1

and SCRIB and that might be perturbed in tumours induced by

oncoviruses or other factors. In total, this analysis allowed to

highlight the power and limits of PPI network predictions

involving PDZ domains, to uncover possible ways of improve-

ments, and to obtain further insights into the mechanisms that

define affinity and specificity of PDZ-peptide interactions.

Results

Development of real negative test datasets for
benchmarking PDZ interaction predictors

We aimed at assessing the performance of the PDZ interaction

predictor published by Chen et al. [27] with independent datasets

of human PDZ-peptide interactions from low-throughput exper-

imental studies. We assembled three test datasets (see Dataset S1)

containing interactions and non-interactions involving 95 different

human PDZ domains. The first test dataset contained 174 PDZ-

ligand interactions including 109 human interactions from

PDZbase [9] (a resource of experimentally verified PDZ-ligand

interactions) plus 65 interactions that we manually collected from

literature, mainly dealing with PDZ domains from MAGI1, 2 and

3. The PDZ domains from MAGI1, 2 and 3 are identical between

human, mouse and rat when concentrating on the 16 domain

amino acid positions used for predictions by Chen et al. Therefore,

we included in the datasets interactions that we expect to occur

between human proteins although they were originally described

in the literature using rat and mouse PDZ domains.

The second and third test dataset contain negative interaction

data that were assembled from published literature as follows. We

took advantage of the particular characteristic of PDZ domains to

occur as repeats within proteins (as illustrated in Figure 1). In order

to experimentally determine the PDZ domain to which a peptide

will bind out of the PDZ domains of a particular protein, each

PDZ domain of the protein is tested separately for binding to the

peptide. This approach usually yields one genuine interaction and

many non-interactions. These non-interactions were annotated

into one negative test set that in total contained 446 human non-

interactions involving peptides bearing a PDZ-binding motif. The

Predicting PDZ-Motif Interactions
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third test dataset contains 133 human non-interactions collected

from the literature where the peptide has a disrupted PDZ-binding

motif due to introduced mutations (substitutions or deletions).

These real negative experimental data can be expected, as argued

by Smialowski et al. [29], to outperform artificial negative data

(such as randomised protein interactions) in terms of training and

test performance.

Benchmarking the PDZ-ligand interaction predictor of
Chen et al.

When tested on the three established test datasets (Table 1) the

predictor of Chen et al. obtained a sensitivity of 75.3% in agreement

with that indicated by Chen et al. (76.5%) [27]. By contrast, the false

positive rate (FPR) based on non-interactions with PDZ-binding

motifs is about 48%, which is considerably higher than the FPR

indicated by Chen et al. (24%). Furthermore, the FPR obtained for

non-interactions without PDZ-binding motifs is about 26%, which

represents a weak performance with regard to the relatively

straightforward task to discriminate between peptides that bear a

prototypical PDZ-binding motif or not. We then analysed

separately, within our test datasets, the data involving human

PDZ domains that are either orthologous or not orthologous to the

mouse PDZ domains present in the training set of Chen et al.

Sensitivity and FPR of these subsets show that the predictor tends to

be over-optimistic for PDZ domains that are orthologous to

domains present in the training data, and over-pessimistic for

PDZ domains that are not orthologous to any domain present in the

training data (third and fourth column in Table 1).

Our test datasets contain a large portion of interactions and

non-interactions involving PDZ domains from MAGI1, 2 and 3.

We separately calculated the sensitivity and FPRs of the predictor

for subsets of the test datasets consisting only of PDZ domains of

MAGI1, 2 and 3 (fifth column in Table 1). The results are

considerably different from those obtained with the full datasets,

indicating that the MAGI subset does over-influence the

calculations.

Prediction of natural PDZ-peptide interactions using the
predictor of Chen et al.

The predictor of Chen et al. [27] was applied to PDZ domains of

MAGI1 and SCRIB (see Figure 1 for the domain organisation of

these proteins) with the aim of predicting, from the entire human

proteome, natural interacting partners for these PDZs. For most

domains, the numbers of predicted hits (proteins) were very high

(Table 2, second column). An important proportion of these hits

might be false positives in relation to the previously observed high

FPR (Table 1). Indeed, one third of the C-terminal sequences of

the returned hits had a non-hydrophobic amino acid at peptide

Figure 1. PDZ domains of MAGI1 and SCRIB. MAGI1 has 6 PDZ domains numbered from 1 to 6. SCRIB has 4 PDZ domains numbered from 1 to
4. The PDZ domains that were used for interaction measurements by SPR are highlighted in black and used domain boundaries are indicated.
doi:10.1371/journal.pone.0025376.g001

Table 1. Performance of predictor of Chen et al. for different
test data sets.

complete
test data traininga

non-
trainingb MAGI1,2,3c

sensitivityd 75.3% (174) 90.7% (97) 55.8% (77) 65.9% (41)

FPR PDZe 48.2% (446) 53.5% (213) 43.3% (233) 17.5% (240)

FPR NoPDZf 25.6% (133) 27.6% (58) 24.0% (75) 4.0% (50)

atest data containing only (non)-interactions with PDZ domains orthologous to
those from the training data of Chen et al.

btest data containing only (non)-interactions with PDZ domains that were not
orthologous to those in the training data of Chen et al.

ctest data containing only (non)-interactions with PDZ domains from MAGI1, 2
and 3 proteins. These subsets were analysed to verify that the
overrepresentation of PDZ domains from these proteins did not introduce a
bias in calculated sensitivity and specificities.

dpercentage of interactions that were correctly predicted.
epercentage of non-interactions with PDZ-binding motif that were not correctly
predicted.

fpercentage of non-interactions without PDZ-binding motif that were not
correctly predicted.

The numbers in brackets represent the total number of items in the respective
test data set.
doi:10.1371/journal.pone.0025376.t001

Predicting PDZ-Motif Interactions
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position p0, in contradiction with most published literature

concerning PDZ-binding sequence requirements. We analysed

the amino acid composition of the pool of peptide sequences used

to train the predictor of Chen et al. (Table S1) and observed that

this pool of sequences had only V, L, I, F, C or A at position p0.

This is due to the fact that the entire training pool of Chen et al.

contained exclusively peptides that bound at least to one PDZ

domain in the experiments of Stiffler et al. [26] and hence

represent PDZ-binding sequences. In the training process, Chen

et al. allocated zero (representing a neutral value) to all amino acids

that were never seen at particular peptide positions. Whereas this

strategy is sound when applying the predictor to peptides matching

the general PDZ-binding consensus, it may lead to the selection of

irrelevant peptides when querying an entire proteome. To take this

issue into account, we applied an additional filter to accept only

peptides ending with either C, Y, F, L, I, M, V, W or A, i.e.

residues that were observed at position p0 in artificial or natural

PDZ-binding peptides. This filter rejected 20 to 60% of the initial

hits (Table 2, third column) and was systematically used further on

in our study. Detailed information on the predicted interactions is

provided in Dataset S2.

As shown in Table 2 (third column), some domains (e.g.

MAGI1-5/6 - the fifth out of six PDZ domains of MAGI1)

appeared to be very promiscuous as they had a very high number

of hits, whereas others (e.g. MAGI1-4/6) had very few hits or even

no hit at all (MAGI1-1/6). Within both MAGI1 and SCRIB, the

PDZ domains obtaining the highest numbers of hits (MAGI1-5/6,

2/6 and 6/6, and SCRIB-2/4 and 3/4) were also the ones that

obtained the highest scores (Table 2, fourth column). This might

be correlated with our observation that scores obtained by

different domains were distributed over different ranges

(Figure 2). While investigating why some domains (e.g. MAGI1-

5/6) showed higher scores and higher numbers of hits, we

observed that particular peptide residues contributed very high

subscores to the overall score for a domain-peptide pair. For

instance, the occurrence of a Thr at position p-2 (a characteristic

common to all class I PDZ-binding motifs) contributed a value of

0.64 to the prediction score for binding to MAGI1-5/6, while the

overall value sufficient for a peptide to be classified as a hit by the

preditor is 0.5. This means that any peptide possessing a Thr at

position p-2 and residues at other positions that confer a predicted

globally neutral effect for binding, would be classified as a binder

for the MAGI1-5/6 domain. At present, we do not know whether

this characteristic of MAGI1-5/6 is biologically meaningful or

whether it just reflects some bias of the predictor’s algorithm.

Indeed, the predictions differ from published biological data

(Table 2, fifth column), which indicate that the PDZ domain of

MAGI1 attracting most binders is MAGI1-6/6, rather than

MAGI1-5/6.

We also observed (Table S2) that numerous proteins were

predicted to bind to more than one PDZ domain of MAGI1 or

SCRIB, indicating that not only PDZ domains, but also C-

terminal peptides, are considered to be promiscuous by the

predictor. This may just originate from the lack of specificity of the

predictor as already pointed out before in our analysis (see

Table 1). However some PDZ-peptide interactions may indeed be

really promiscuous and the predictor may be able to detect this

trend.

Structure-based analysis of domain amino acid positions
implicated in peptide binding

In the prediction model of Chen et al. 16 domain and 5 peptide

positions were selected for being implicated in specific binding of

peptides to PDZs. This selection was based on one structure, a1-

syntrophin [28] (Figure 3). The structural information on PDZs

has considerably grown during the last years mainly due to

structural genomics initiatives. Here, we comparatively analysed

42 structural complexes of 24 different PDZ domains to get a more

general overview about amino acids involved in peptide

recognition. Figure 4 shows that the set of domain amino acids

found at less than 5 Å from the peptide in the various structures

we analysed often differs from the set defined by Chen et al. in the

structure of a1-syntrophin (these positions are indicated with

asterisks above the alignment). For instance, domain positions

Leu37 (a1 helix) and Thr74 ( a2–b5 loop) in a1-syntrophin

(Figure 4), chosen by Chen et al., were only selected once in the 23

other PDZ domains we analysed. Conversely, our approach (see

Methods) selected more amino acids on a2 helix. In addition,

while Chen et al. did not select any amino acid upstream of the

GLGF-motif, our approach often selected residues in that region,

especially a conserved positively charged position (Arg or Lys)

within the b1-b2 loop. The role of this amino acid for peptide

binding is discussed in several studies [44] [45] [46]. Finally, our

Table 2. Numbers of human proteins predicted to bind to PDZ domains of MAGI1 and SCRIB using the predictor of Chen et al.

PDZ domain unfiltered hits filtered hitsa
num. prots. with
highest scoreb num. publ. bindersc

MAGI1-1/6 0 0 0 1

MAGI1-2/6 457 300 93 4

MAGI1-3/6 160 107 0 1

MAGI1-4/6 43 30 0 3

MAGI1-5/6 1151 623 562 3

MAGI1-6/6 219 179 87 6

SCRIB-1/4 204 89 1 4

SCRIB-2/4 429 203 98 1

SCRIB-3/4 744 293 237 5

SCRIB-4/4 354 113 3 1

aproteins without residue C, Y, F, L, I, M, V, W or A at peptide position p0 were filtered out.
bnumbers of proteins, which were predicted (after filtering) to bind to that domain and scored highest for that domain in comparison to the other domains.
cnumbers of published mammal binders that we could identify from literature for each PDZ domain.
doi:10.1371/journal.pone.0025376.t002

Predicting PDZ-Motif Interactions
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analysis often selected amino acids of the b2-b3 loop, whereas only

one residue of that loop was selected in Chen et al.’s study. The

selection of residues of the b2-b3 loop indicates that residues

upstream position p-4 are proximal to this loop and therefore may

also contribute to binding (Figure 3). Altogether, we suggest that

more domain and peptide positions than those defined by Chen

et al. may influence binding specificity.

Experimental validation of predicted MAGI1-peptide and
SCRIB-peptide interactions

From predictions obtained with the predictor of Chen et al. we

selected 17 human and three viral peptides for interaction

measurements against five PDZ constructs: the four single PDZ

domains MAGI1-2/6, MAGI1-3/6, SCRIB-3/4, SCRIB-4/4,

and the tandem construct SCRIB-34/4 (Figure 1). The 17 human

peptides were selected based on different criteria: First, we selected

peptides that were predicted to bind promiscuously to all four

single PDZ domains. Second, we systematically included the two

best predicted hits for each of the four PDZ domains. Third, we

preferred proteins already shown to interact with PDZ domains.

Further selection criteria were sequence diversity within the set of

selected peptides and biological functions related to known

functions of MAGI1 and SCRIB. These were inferred from Gene

Ontology annotations (Ensembl v52 [47]) and information

provided by UniProt [48]. The three viral peptides correspond

to the C-terminus of HTLV1 Tax1, HPV16 E6, and a mutated

form of HPV16 E6 (further on called 16E6L/V), where Leu at

position p0 was mutated to Val. The latter peptide was already

assayed against MAGI1 and SCRIB PDZ domains in previous

SPR studies performed by our group, and therefore we used it as

positive control for the present study. Table S3 provides detailed

information about the 19 proteins.

For each of these 19 proteins two peptides were designed, both of

ten amino acids in length. One peptide, called ‘‘long’’, encompassed

the last ten wild type residues of the protein (e.g. VMRLQSETSV

for VANG2). The other peptide, called ‘‘short’’, encompassed the

last five wild type amino acids of the protein preceded by a

GSGAG sequence (e.g. GSGAGSETSV for VANG2). This

GSGAG sequence, composed of small neutral residues, was

included to prevent the biotin tag N-terminally attached to the

peptides to influence the binding to the PDZ domain. The ‘‘short’’

peptides, in which only the last five residues vary and correspond

to natural proteins, would allow us to experimentally validate

interaction predictions obtained with the predictor of Chen et al.

that considers the last five residues in the prediction model. The

long peptides (as well as the tandem PDZ construct) would allow

us to address changes in binding affinity and specificity that might

occur when using extended protein fragments.

We opted for the surface plasmon resonance (SPR) method to

measure these 190 (19 proteins62 peptide versions65 PDZ

constructs) interactions. In SPR various concentrations of

‘‘analytes’’ (here, PDZ domains fused to the Maltose Binding

Protein (MBP)) flow over surfaces presenting attached ‘‘ligands’’

(here, biotinylated peptides). The amount of analyte interacting

with the ligand is measured and quantified in response units (RU).

The intensity of this signal is proportional to the binding strength

of the assayed interaction (Figure 5A). KD were obtained using a

1:1 interaction model. However, these calculated KD were rather

inaccurate especially for weak interactions. Therefore, we

Figure 2. Score distribution of human C-terminal peptides predicted to bind to MAGI1 PDZ domains. Predictions were prefiltered for
peptides having either C, Y, F, L, I, M, V, W or A at peptide position p0. Prediction scores were rounded to two decimal places and the frequencies of
occurrence of scores within each interval were determined for each PDZ domain of MAGI1.
doi:10.1371/journal.pone.0025376.g002

Predicting PDZ-Motif Interactions
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preferred to rank the binding strengths of the 190 interactions

using normalised RU signals at equilibrium (Req) rather than KD

(see Methods for details). These normalised Req values were

plotted in form of a heat map (Figure 5B). Table S4 contains

experimental data for all SPR measurements performed in this

study.

Nine out of nine published interactions (including 16E6L/V)

were confirmed by our experimental data, of which three out of

four published KD could be confirmed as well, all being high

affinity interactions (see Table S3 for more details). This

demonstrates the validity of our experimental SPR setup for

testing PDZ-peptide interactions.

Peptides do not bind as promiscuously as predicted to
PDZ domains

Most tested peptides had been predicted to bind promiscuously

to all four single PDZ domains (see Figure 5B, zeros indicate the

very few PDZ-peptide pairs predicted not to interact). In practice,

the peptides turned out to be much more selective than predicted.

Only one peptide, TAX1 (derived from a viral protein), was found

to interact with the four PDZ domains, and only at the condition

of taking a very weak interaction into account. Even when we

discarded the SCRIB-4/4 domain (which bound only one peptide

as will be discussed later), we observed that, out of the 16 peptides

predicted to bind the remaining three single PDZ domains, only 8

could be confirmed (see Figure 5B, underlined peptide names),

again only at the expense of accepting very low interaction signals.

This appears to confirm the high false positive rate of the predictor

of Chen et al. that we have previously noticed (Table 1).

The prediction scores do not correlate with interaction
affinities

Chen et al. have observed a correlation between prediction

scores and binding affinities. In our set of data (19 short peptides

vs. 4 single PDZ domains), we did not observe such correlation (for

MAGI1-2/6 Pearson correlation coefficient r = 0.44 p-val-

ue = 0.07, for MAGI1-3/6 r = 0.13 p-value = 0.64, for SCRIB-3/

4 r = 0.1 p-value = 0.69, for SCRIB-4/4 r = 20.08 p-value = 0.74)

(Figure 6). In particular, the two best predicted hits for each PDZ

domain turned out to be non-interactions or very weak

interactions in all cases except one (Figure 5B, rectangles).

SCRIB-4/4 may display very specific binding preferences
SCRIB-4/4 was found to significantly bind to only one peptide,

TAX1, despite of the fact that SCRIB-4/4 was predicted to bind

to 15 out of the 19 peptides tested (Figure 5B). Remarkably, Zhang

et al. [49] previously noticed that the SCRIB-4/4 domain did not

bind any peptide in a phage display experiment. They interpreted

this observation by suggesting that recombinant SCRIB-4/4 might

be less stable than other PDZ domains. This possibility can be

excluded, since we produced highly concentrated folded SCRIB-

4/4 for NMR studies (data not shown), and the NMR structure of

folded SCRIB-4/4 was solved by the RIKEN Structural

Genomics Initiative (PDB code: 1UJU). We suggest that SCRIB-

4/4 displays very specific peptide binding preferences, which can

be inferred from analysis of available protein structures. We

retrieved from the PDB the experimental structures of MAGI1-2/

6, MAGI1-3/6 and SCRIB-4/4, and modelled the structure of

SCRIB-3/4 (see Methods). The surface electrostatics representa-

tions of the four PDZ domains (Figure 7A) show that, in

comparison to the other three PDZ domains, SCRIB-4/4

possesses many positive charges surrounding the peptide binding

pocket. This should favour peptide sequences with negatively

charged residues at position 21 and 23.

The ‘‘GLGF-loop’’, which precedes the b2 strand, coordinates

the C-terminal carboxyl group of the peptide and also influences

the width of the pocket accomodating the hydrophobic residue at

p0 [45]. The first glycine of the ‘‘GLGF-loop’’ is replaced by a

bulky arginine residue in SCRIB-4/4 (Figure 7B). This may

sterically prevent binding of a peptide presenting a large

hydrophobic side chain at p0 and might explain the shallow

appearance of the pocket accommodating the peptide residue p0

(Figure 7A). These size and charge constraints may impose

sequence properties only found in TAX1 (ETEV) out of the 19

peptides tested.

Different preferences of PDZ domains for residues at
peptide position p0

Our interaction data reveal different binding preferences of the

PDZ domains for specific hydrophobic amino acids at peptide

position p0 (Figure 5B and Figure 8, see green residues at p0 in

peptide sequences). SCRIB-3/4 seems to accept larger hydropho-

bic residues at p0 with a preference of leucine over valine. Indeed,

SCRIB-3/4 binds stronger to wild type 16E6 as compared to the

Figure 3. Structure of the PDZ domain of a1-syntrophin used as
reference by Chen et al. Residues coloured in blue represent the
domain positions that are considered in the prediction model of Chen
et al. The backbone and Cb atoms of the bound peptide are
represented as sticks in pink. The pink dashed line indicates where
peptide residues upstream position p-4 would be situated in the
structure. (PDBcode: 2PDZ).
doi:10.1371/journal.pone.0025376.g003
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single mutant 16E6L/V, where the last residue of 16E6 has been

mutated from leucine to valine. In contrast, MAGI1-2/6 binds

stronger 16E6L/V than wild type 16E6, showing that MAGI1-2/6

preferentially accommodates valine in comparison to leucine. This

was also observed by Thomas et al. [50] using full length E6

proteins. MAGI1-3/6 only accepts valine.

These different preferences for amino acids at p0 might be again

correlated with amino acid variations in the conserved ‘‘GLGF-

loop’’. The alignment in Figure 7B shows that the two conserved

hydrophobic positions of the ‘‘GLGF-loop’’ are occupied by

phenylalanine residues in both MAGI1-2/6 and MAGI1-3/6 vs.

two leucine residues in SCRIB-3/4. This might contribute to a

wider pocket in SCRIB-3/4, explaining the preference of this

domain for a C-terminal leucine in the bound peptide.

These different preferences for residues at p0 were only partially

correctly predicted for MAGI1-2/6 and MAGI1-3/6 by the

predictor of Chen et al. The predictor failed to predict these amino

acid preferences for SCRIB-3/4 (see Dataset S2).

Binding affinities and specificities change for extended
interaction fragments

We observed that the tandem construct SCRIB-34/4 bound

several peptides with higher affinity as compared to the single

domain constructs SCRIB-3/4 and SCRIB-4/4 (Figure 5B). This

increase seemed not to depend on the sequence of the peptides.

In addition, we observed that the long peptides often bound

PDZ domains with different affinities as compared to the short

peptides (Figure 5B). As highlighted in Figure 3, the additional

wild type residues present in the long peptides, upstream position

p-4, are likely to engage interactions with residues in the b2-b3

loop of the PDZ domains. Figure 8 shows part of the structures of

the PDZ domains MAGI1-2/6, MAGI1-3/6 and SCRIB-3/4

comprising the region, where the b2-b3 loop is situated (see

Figure 7B for an alignment). Next to the structures, the differences

in RU signals between long and short peptides are ranked from the

greatest difference to the lowest. MAGI1-2/6 has four negatively

charged residues in the b2-b3 loop and shows strong increases in

affinity for long peptides having positively charged residues at

peptide positions upstream p-4. The closer these positively charged

residues are positioned to p-4, the bigger is the increase in affinity

for long versions of peptides. By contrast, negative charges at these

peptide positions appear to be disadvantageous (Figure 8A).

MAGI1-3/6 did not show significant differences in affinity and

specificity between short and long peptides. This observation may

be explained by the fact that the b2-b3 loop contains four

consecutive glycine residues unlikely to influence peptide binding

(Figure 8B). SCRIB-3/4 shows an unspecific increase in affinity for

many long peptide versions. The b2-b3 loop of SCRIB-3/4 is

twice as long as for the other two PDZ domains and contains

amino acids of diverse physico-chemical properties (Figure 8C).

This loop might be able to adapt conformationally to many

different sequences upstream of peptide position p-4, therefore

providing advantageous contacts in most cases.

Discussion

In this study we addressed the problem of predicting naturally

occurring protein interactions mediated by PDZ domains and

PDZ-binding peptides using the predictor of Chen et al. [27]. We

analysed the predictor using theoretical and practical approaches.

An important step for a fair assessment of prediction qualities is the

application of real test datasets independent from the training

data. To ensure this, we assembled a novel dataset of real negative

PDZ-peptide interactions from the literature, which might turn

out to be very useful for further development of PDZ interaction

predictors.

Both the in silico and in vitro tests indicated that prediction

accuracies were weak. We could demonstrate that the predictor of

Figure 4. Atomic distance-based selection of peptide-contacting domain positions in different PDZ-peptide structures. For each PDZ
domain of the alignment, we extracted from available structural data all domain residues that had at least one atom within a distance of 5 Å to
bound peptide atoms. Blue letters indicate residues, which have been selected both, by Chen et al. and our approach. Red letters indicate residues,
which have been selected by our approach but not by the model of Chen et al. Asterisks above the alignment indicate the PDZ residues chosen by
Chen et al. to be close to peptide residues based on the structure a1-syntrophin (SNTA1, first line of alignment). Arrows and rectangles above the
alignment indicate the positions of conserved b-sheets and a-helices, respectively. Note that the sequence of the Par6 PDZ domain occurs twice in
the alignment, corresponding to two different structures of Par6, one bound to an internal peptide, the other one bound to a regular C-terminal
peptide.
doi:10.1371/journal.pone.0025376.g004
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Chen et al. displays a high FPR, as recently suggested by Hui and

Bader [30] and that predictions are biased towards the training

interaction data. Prediction scores seemed not to correlate with

interaction affinities, and amino acid preferences at peptide

position p0 were only partially correctly predicted. These

limitations may result from both an incomplete model definition

and inadequate training of the model. Regarding model definition,

we showed that PDZ domains display significant structural

variation, so that the model of Chen et al., which is based on a

single PDZ-peptide structure, may have excluded residues that are

important for peptide binding. Regarding model training, the

interaction dataset of Stiffler et al. [26] provided values for only

about one third of the vast number of the model’s parameters

(20620638 = 15200). The other two thirds of the parameters were

given by default the value zero, assuming that they are neither

positively nor negatively contributing to PDZ-peptide interaction

affinities. This allowed in particular for the tolerance of

disadvantageous amino acids or over-weighting of advantageous

yet non-specific residues in peptides and PDZ domains. This

problem was intensified by the fact that the negative training data

Figure 5. Overview of SPR experimental data. A: Representative sensorgrams for strong and weak interactions as well as non-interactions. An
increase of the signal for injection of MBP-PDZ analyte is indicative of binding. (i) The higher the analyte concentration, the higher the Req up to
saturation, indicative of a specific interaction. (ii) For weak interactions the highest analyte concentration, which was injected due to device
limitations, did not allow to reach saturation. (iii) Sensorgrams for non-interactions display no change in signal. B: Overview of measured RU signals
and comparison to predictions. Normalised RU signals determined for a 10 mM concentration of MBP-PDZ were extracted from SPR sensorgrams and
plotted as heatmap for 19 peptides in short and long versions vs. the five PDZ constructs MAGI1-2/6, MAGI1-3/6, SCRIB-3/4, SCRIB-4/4 and SCRIB-34/4.
An approximate range of KD is indicated at the right side of the heatmap. 05 and 10 indicate short and long versions of peptides, respectively.
ND = not determined. Signals of short peptides interacting with single PDZ constructs were compared to interaction predictions performed with the
predictor of Chen et al. [27]. Rectangles and dashed rectangles indicate the first and second best hit for each PDZ domain, respectively, out of a
proteome-wide screen. PDZ-peptide pairs that were predicted not to interact are labelled with zero. All other pairs of short peptides and single PDZ
constructs were predicted to interact. Peptide names that are underlined indicate short peptides that were predicted and confirmed experimentally
to bind to at least three of the four single PDZ domains. 16E6L/V served as control.
doi:10.1371/journal.pone.0025376.g005
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only consisted of peptides that displayed PDZ-binding motifs

limiting again the sequence space covered. To turn around these

limitations, it might be relevant to reduce the number of

parameters that have to be trained by grouping amino acids

according to their various physico-chemical properties [51].

Additionally, a filter should be applied that removes all predicted

interactions with very unlikely PDZ-binding sequences, as has

been done in the present study.

The predictor of Chen et al. is based on minimal interacting

fragments corresponding to single PDZ domains and five residue-

long peptides. We investigated how extensions of these minimal

fragments would influence binding. The peptides that showed

binding to SCRIB-3/4 generally displayed an increase in binding

affinity in the presence of the tandem construct SCRIB-34/4.

Since the isolated SCRIB-4/4 domain hardly bound to any

peptide, we hypothesise that SCRIB-4/4 contributed indirectly to

the increase in affinity of the SCRIB-3/4 domain for its target

peptides, maybe by stabilising its structure. Such a long range

effect might be favoured by the fact that the linker sequence

between the two domains is particularly short (around 10 residues).

These observations indicate that SCRIB-34/4 may represent a

supramodule as defined by Feng and Zhang [43]. In a recent

structure-function study, we have also demonstrated that the

affinity of the MAGI1-2/6 PDZ domain to its peptidic target is

modulated by the sequence of the C-terminal flanking region of

the core structure of the PDZ domain [41].

Analysis of structures of PDZ-peptide complexes from the PDB

showed that peptide residues upstream of p-4 are proximal to the

b2-b3 loop of PDZ domains, and SPR measurements showed that

the same residues modulated binding. These observations confirm

previous findings [36] [37] [38] [39] [40]. Moreover, we observed

that the b2-b3 loop of different PDZ domains can display very

different effects on affinity and specificity of peptide binding. The

observation that flanking sequences surrounding a motif modulate

its interactions with the target domain may also account for other

classes of domain-peptide complexes [52].

Taken together, our results suggest that extensions of protein

fragments may lead to changes in affinity and specificity. However,

when comparing binding intensities obtained for long versus short

peptide constructs or for single versus tandem PDZ domains,

protein fragment extensions were never found to change an

experimentally significant interaction into a non-interaction, nor

vice-versa. Therefore, we hypothesise that whenever an interaction

is detected between minimal fragments, it is likely that the full

length proteins will also interact, albeit possibly with different

affinities. Unfortunately, affinity measurements could not be

undertaken with full length proteins to provide more evidence

for this hypothesis due to experimental limitations in handling

large proteins in vitro.

Our experimental data showed that many peptides bound

weakly, with affinities much weaker than 20 mM, to several of the

PDZ domains tested. These observations are consistent with

results of Wiedemann et al. [53], who predicted that for a KD

cutoff as low as 50 mM, hundreds of ligands would bind to three

distinct PDZ domains with largely overlapping specificity ranges.

It is often stated that interactions stop to be biologically relevant

when their affinity dissociation constants exceed a given threshold

(e.g. 100 mM). Such statements may have to be reconsidered when

dealing with affinities determined from protein fragments, such as

PDZ-peptide interactions, because as our data indicates, weak and

promiscuous interactions might become stronger and more

specific when moving from short protein fragments towards full

length proteins.

Based on the results presented here we suggest FZD4,

TMEM215 and ARHGAP6 as new interactors for MAGI1;

TANC1, GLUT7, DLL1, MAS and NET1 as new interactors for

SCRIB; and ABC1, MARCH3 and CYSLTR2 as new interactors

for both MAGI1 and SCRIB. Remarkably, several of these

Figure 6. Comparing predicted to measured interaction intensities. The measured interaction intensities (in RU) between short versions of
peptides and the PDZ domains MAGI1-2/6, MAGI1-3/6, SCRIB-3/4 and SCRIB-4/4 were plotted against the prediction scores obtained for the PDZ-
peptide pairs with the predictor of Chen et al. The prediction scores did not correlate with measured signals. Note that SPR measurements were
mostly performed for PDZ-peptide pairs that were predicted to bind to each other, explaining why the left region of the graph is empty.
doi:10.1371/journal.pone.0025376.g006
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proteins are proven or putative membrane proteins (FZD4,

TMEM215, GLUT7, ABC1, MARCH3, MAS, CYSLTR2,

DLL1) while the three remaining ones (ARHGAP6, TANC1,

NET1) are involved in activities localised to the membrane.

Indeed, SCRIB and MAGI1 were already known to localise to the

membrane where they interact with numerous proteins involved in

signal transmission, and more particularly in G protein mediated

signalling. On the one hand, MAGI1 had been shown to interact

with NET1 [54] [40], a guanine nucleotide exchange factor (GEF)

specific for the small G protein RhoA, as well as with PDZ-GEF1

[55], another GEF specific for the small G proteins Rap1A,

Rap1B and Rap2B. MAGI3, a close paralog of MAGI1, has been

shown to interact with the G protein coupled receptors (GPCRs)

FZD4 [56] and LPAR2 [57], and to interact with the integral

membrane protein VANG2 leading to the activation of the JNK

pathway via the small G protein Rac [56]. On the other hand,

SCRIB had been found to interact with two GEFs, bPIX [58] and

ARHGEF16 [49], leading to activation of the small RhoA family

G proteins Rac1 or Cdc42 [59] [60]. SCRIB has also been shown

to interact with TSHR (a GPCR) [61].

In line with these published findings, several of the novel

putative interactors of MAGI1 and SCRIB that we identified are

also involved in G protein signalling. FZD4, CYSLTR2 and MAS

are GPCRs; NET1 is a GEF; ARHGAP6 is a GAP (G protein

activating protein); ABC1 is a membrane transporter known to

recruit two GEFs (PDZRhoGEF and LARG) involved in Cdc42

and RhoA signalling [62] [63]. Therefore, our data reinforce the

view that MAGI1 and SCRIB act as scaffolds that assemble

proteins close to membranes to regulate G protein signalling. A

remarkable instance is MAGI1 which, as indicated by our data,

might be able to recruit simultaneously, via neighbouring PDZ

domains, a GEF (NET1) and a GAP (ARHGAP6) that are both

specific for the small GTPase RhoA, while possessing inverse

enzymatic activities (Figure 9).

MAGI1 and SCRIB are known to participate to the regulation

of neuronal synapses via interaction with numerous proteins [64]

[60] [65] [66]. Accordingly, TANC1, which was in our hands the

strongest cellular binder of SCRIB, is a scaffold component

protein in post-synaptic density regions [67]. Some other

interactions suggested by our work seem to provide novel links

between MAGI1 and SCRIB and pathways in which they were

not yet known to participate: Wnt/JNK pathway regulation

(FZD4), Notch pathway regulation (DLL1) [68], immune response

(CYSLTR2) [69], iron uptake (MARCH3) [70], blood vessel

regulation (MAS) [71], glucose transport (GLUT7) [72]. These

new interactions can provide interesting starting points for

exploration of potential new in vivo functions of MAGI1 and

SCRIB that might be perturbed upon infection with HPV.

In this work, we showed that inferring protein interaction

networks from predictions based on interacting protein fragments

should involve at least two very distinct steps. The first step

requires accurate prediction of interactions between the isolated

protein fragments considered by the predictor. The predictor we

used here for completing this step turned out to be rather

inaccurate. There is much room for improving this step, in

particular by integrating the wealth of structural information

recently accumulated about protein domains, especially PDZs.

The second step requires correct extrapolation of predicted

fragment interactions to interactions between full length proteins.

Our data indicate that such an extrapolation may be possible

qualitatively, but not necessarily quantitatively. Therefore, while

inferring protein interaction networks from minimal interacting

fragment predictions appears as a reasonable perspective, more

refined predictions addressing binding specificities in these

networks remain a challenging, yet fascinating prospect.

Materials and Methods

The programming and data analysis was done using python

(www.python.org), biopython [73], gnuplot (www.gnuplot.info)

and PyMOL (www.pymol.org). We used the same human

proteome as described in Luck et al. [74] to perform the

proteome-wide screens in this study.

Figure 7. Structural particularities of SCRIB-4/4 in comparison
to the three PDZ domains MAGI1-2/6, MAGI1-3/6, and SCRIB-3/
4. A. The three experimental structures and one model (SCRIB-3/4) are
shown in surface representation with red and blue indicating the
electrostatic potentials. The structures are displayed in the same
orientation as the PDZ domain in Figure 3. The peptide that was
crystallised in complex with MAGI1-2/6 is shown in black. (PDB codes:
2I04, 3BPU, 1UJU for MAGI1-2/6, MAGI1-3/6, and SCRIB-4/4, respectively.
The structure of SCRIB-3/4 was modelled from that of DLG4-1/3 (2KA9)
using Modeller [79].) SCRIB-4/4 has a particularly positively charged
surface around the peptide binding pocket in comparison to the other
three domains. In addition, the pocket accommodating the hydropho-
bic residue at peptide position p0 is particularly shallow in SCRIB-4/4.
These characteristics may explain the high ligand specificity displayed
by SCRIB-4/4. B. Extract of the sequence alignment of the four PDZs
illustrating differences within the GLGF-loop and the b2-b3 loop. SCRIB-
4/4 presents a bulky R residue instead of a G in the GLGF-loop probably
reducing the available space within the pocket.
doi:10.1371/journal.pone.0025376.g007
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Figure 8. Influence of the b2-b3 loop of PDZ domains on peptide binding. Columns indicate from left to right the names of the peptides,
their sequences, the interaction intensities in RU for peptides with five and ten wildtype residues, and the interaction intensity difference between
both. Peptides with five wildtype residues had the five N-terminal residues replaced with GSGAG. For each PDZ the part of the structure containing
the b2-b3 loop is shown with loop side chains represented as sticks. Amino acids in the sequences and structures are coloured as follows:
red = negative charge, blue = positive charge, yellow = polar, green = hydrophobic. A. MAGI1-2/6 binds with increased affinity to peptides with
positive charges upstream p-4 probably due to four negative charges in the loop (pdb code: 2I04). B. MAGI1-3/6 does not show any difference in
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Prediction quality assessment
We assessed the performance of the predictor of Chen et al. [27]

by applying the commonly used measures Sensitivity (SE) and False

Positive Rate (FPR) of the ROC analysis. Here, the sensitivity is

defined as the percentage of PDZ-peptide interactions that were

correctly predicted ( = True Positives (TP)) and is calculated as

follows:

SE~
TP

TPzFN
:100 ð1Þ

where FN specifies the number of False Negatives (PDZ-peptide

interactions not correctly predicted). The False Positive Rate is

defined as the percentage of PDZ-peptide non-interactions that

were not correctly predicted ( = False Positives (FP)) and is

calculated as follows:

FPR~
FP

TNzFP
:100 ð2Þ

where TN specifies the number of True Negatives (PDZ-peptide

non-interactions correctly predicted).

Implementation, test, and application of the predictor of
Chen et al.

Chen et al. [27] trained the predictor in two different ways,

called the binary and affinity mode, of which each of them can be

used separately to apply the predictor. For the binary mode the

affinity to short and long peptides, possibly due to four ‘‘neutral’’ glycines in the loop (pdb code: 3BPU). C. SCRIB-3/4 shows rather an unspecific
increase in affinity for long peptides. The loop is very long and contains residues of all physico-chemical types.
doi:10.1371/journal.pone.0025376.g008

Figure 9. Suggested model for MAGI1 scaffolding function in Rho GTPase mediated signalling. Our data showed that PDZ2 and PDZ3 of
MAGI1 bind preferentially to the C-termini of NET1 (green) and ARHGAP6 (red), respectively. NET1 is a guanine nucleotide exchange factor (GEF),
which transfers a phosphate group (PO 3{

4 ) to the small GTPase RhoA, which in its GTP-bound form (yellow) is predominantly associated with the
membrane and stimulates downstream signalling pathways. ARHGAP6 is a GTPase-activating protein (GAP), which induces RhoA to release a
phosphate group, resulting in the shutdown of RhoA signalling. Inactivated GDP-bound RhoA (blue) is mostly present in the cytoplasm. This indicates
that MAGI1 recruits, via two adjacent PDZ domains, one activator and one inhibitor of the RhoA signalling pathway. Remarkably, the four last residues
of the two proteins NET1 and ARHGAP6 are identical, hence the distinct binding preferences of the two C-terminal peptides for PDZ2 and PDZ3 must
be defined by residues upstream.
doi:10.1371/journal.pone.0025376.g009
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predictor was trained without consideration of measured binding

affinities (e.g. the training data was simply split into interactions

and non-interactions). In the affinity mode, binding affinities were

directly included in the training process. For all predictions

performed in this study, the binary mode was used. No

information about performance qualities was provided by Chen

et al. for the affinity mode. We performed a comparison of both

modes that revealed extremely different predictions with the

binary mode providing more reliable results (data not shown). The

predictor returns a score for each PDZ-peptide pair, which can be

used to estimate the likeliness that the PDZ domain will bind the

respective peptide. The higher the score, the more likely the

interaction. Here, we used a score cutoff of 0.5, which should yield

a sensitivity of 76% and FPR of 24% as specified by Chen et al.

Each of the 95 human PDZ domains in the test datasets were

added to the alignment of mouse PDZ domains provided by Chen

et al. in order to define the 16 amino acid positions on which

predictions are based. Mafft [75] was used to obtain a preliminary

alignment, which was corrected manually using Jalview [76] and

structural information, if available. The alignment is provided in

Dataset S3.

The training set containing 93 peptides of Chen et al. was not

provided in the publication. The set of peptides from the training

data was reconstructed as described by Chen et al. taking every

peptide that was seen at least once in an interaction with a PDZ

domain in the experimental data obtained by Stiffler et al. [26].

This revealed 108 peptides.

In Text S1 and Dataset S4 we provide guidelines and

programming code, respectively, for users of the predictor of

Chen et al., who wish to follow our developed protocol.

PDZ pocket analysis
Available structures of PDZ-ligand complexes were analysed in

order to assess important domain residues for ligand recognition.

A keyword search with ‘‘PDZ’’ in the PDB [77] revealed 267

structures. Crystal structures were excluded, if the PDB files did

not contain coordinates of the full complex but just of one chain

(e.g. PDB code 2EGN). After manual inspection, a final set of 42

structures with PDZ-peptide complexes was retained for further

analysis representing 24 unique PDZ domains. For each PDZ

domain all structural models obtained by NMR and all complexes

shown in the crystal obtained by X-ray were taken into

consideration for the determination of all domain residues that

are in close proximity to bound peptides. A domain-peptide

residue pair was only accepted, if in all complexes of this particular

PDZ domain the distance between the two amino acids was in

average below a defined threshold. Three different distance

measures were implemented: Ca distances, distances between

residue’s centre of mass, and minimal atom distances between

residues. Different thresholds were tested from 0 to 40 Å. The

distance measure and cutoff that represented best the selection of

the 16 domain amino acids in a-syntrophin of Chen et al. [27] was

chosen: minimal atom distance with a threshold of 5 Å.

The PDZ sequences shown in Figure 4 were extracted from the

following PDB entries and chains: SNTA1_1/1 (2PDZ A),

AFAD_1/1 (2AIN A), APBA1_1/2 (1U38 A), ARHGC_1/1

(2OS6 A), DLG1_2/3 (2AWW A), DLG1_3/3 (2I0I C),

DLG4_3/3 (1TP5 A), EM55_1/1 (2EJY A), GRIP1_1/7 (2QT5

A), GRIP1_6/7 (1N7F B), HTRA1_1/1 (2JOA A), INAD_1/5

(1IHJ A), LAP2_1/1 (1N7T A), MAGI1_2/6 (2KPL A),

NOS1_1/1 (1B8Q A), PAR6_1/1 (1RZX A), PAR6i_1/1 (1X8S

A), PARD3_3/3 (2K20 A), PICK1_1/1 (2PKU A), PTN13_2/5

(1D5G A), RIMS1_1/1 (1ZUB A), SHAN1_1/1 (1Q3P B),

TIP1_1/1 (3DIW A), SYNT1_1/2 (1W9E A), SYNT1_2/2

(1V1T A).

Structure modelling
The structure of the PDZ domain SCRIB-3/4 was modelled

using the program Modeller 9v7. The structure template was

obtained by querying the PDB with the sequence of SCRIB-3/4

(using the BLAST option) and choosing the structure with the best

sequence match (PDZ domain DLG4-1/3, PDB-code 2KA9, 45%

sequence identity, e-value 1.0E-11). Modeller was run using the

automodel routine and default options. Model quality was assessed

using the output information of Modeller and visual inspection. A

model of SCRIB-3/4 of intermediate quality was sufficient for the

purpose of this study.

cDNA constructs
The cDNA encoding residues 448–572 and 613–752 of mouse

MAGI-1 (UniProt acc.: Q6RHR9-1) encoding for MAGI1-2/6

(100% identical to human MAGI1-2/6) and MAGI1-3/6 (99%

identical to human MAGI1-3/6) PDZ domains, respectively, were

inserted into the NcoI/KpnI sites of the pETM-41 expression

vector (EMBL) containing a 66His-MBP tag followed by a TEV

protease cleavage site. A similar cloning strategy was adopted for

cDNA bearing residues 997–1093, 1097–1193 and 997–1193 of

human SCRIB (Uniprot acc.: Q14160-1) encoding for SCRIB-3/

4, SCRIB-4/4 PDZ domains and SCRIB-34/4 tandem PDZ

construct, respectively.

Protein sample production
Bacterial over-expression of PDZ domains was performed using

BL21 DE3 Escherichia coli cells in 300 ml of M9 minimal medium

supplemented with 15NH4Cl at 37oC until an OD600 of 0.6 was

reached. Cultures were then adjusted to 0.5 mM isopropyl-D-thio-

galactopyranoside (IPTG) and transferred to 150C overnight.

Plasmid loss was suppressed by adding 15 mg/ml of kanamycin to

the expression media. Expression cultures were harvested by

centrifugation. The pellets were stored at 220oC.

MBP-PDZ domains purification
Bacterial expression of 15N-labeled 66His-MBP-PDZ constructs

were sonicated in buffer A (50 mM Tris-HCl at pH 6.8, 200 mM

NaCl, 1 mM DTT) supplemented with 1 mg/ml DNase I and RNase

A and EDTA-free anti-protease cocktail inhibitor (Roche), cleared by

ultracentrifugation at 60000:g and filtered (Millipore 0.22 mm). MBP-

PDZ extracts were loaded on an amylose column (New England

Biolabs) pre-equilibrated with buffer A. Protein was eluted with buffer

A supplemented with 10 mM maltose. MBP-PDZ samples were then

subjected to a 15 hour ultracentrifugation at 130000:g prior to

loading on a Hiload 16/60 Superdex 75 gel-filtration column

(Amersham Biosciences) pre-equilibrated with buffer B (20 mM

sodium phosphate at pH 6.8, 200 mM NaCl) resulting in pure and

mono-disperse protein samples according to the column calibration.

The concentration of purified MBP-PDZ fusion samples was

evaluated from UV absorption measurements at 280 nm. After

SPR experiments MBP-PDZ fusions were cleaved by TEV and PDZ

domains were separated from MBP by gel size exclusion chroma-

tography. Subsequently, 1H-15N heteronuclear single quantum

coherence (HSQC) spectra were recorded on a 600 MHz Bruker

instrument in order to verify structural integrity of the domains.

Synthetic peptides
The synthetic peptide 16E6L/V (RSSRTRRETQV), corre-

sponding to the last 11 C-terminal residues of HPV16 E6 with the
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last residue L mutated to V, was synthesised by the Chemical

Peptide Synthesis Service, IGBMC, France. Lyophilised peptide

was re-suspended in water, passed on a NAP-5 desalting column

(GE Healthcare) in order to remove residual contaminants. The

desalted peptide was lyophilised prior to its dilution into buffer A.

The peptide was checked by homonuclear 2D NMR experiments

and its concentration estimated to be at 6 mM by measuring the

peptide bond absorption at 205 nm as described previously [40].

All other synthetic peptides with biotin at N-terminus that were

used as ligand in surface plasmon resonance experiments were

synthesised by JPT Peptide Technologies GmbH, Berlin, Ger-

many. Lyophilised peptides were re-suspended in water at a final

concentration at 10 mM. The pH of peptide solution was adjusted

to 6.8.

Surface plasmon resonance (SPR) measurements
Data were collected on a Biacore 2000 instrument (Biacore AB/

GE Healthcare Bio-Sciences Corp., Piscataway, NJ, USA) at

25oC. SPR experiments (ligand immobilisation and binding

measurements) have been performed as described in Fournane

et al. [40]. Briefly, biotinylated peptides (instead of GST-fused

recombinant peptides) were immobilised on CM5 sensorchips on

which Neutravidin was previously attached. The MBP-PDZ

domain analyte was injected at 8 to 10 different concentrations

ranging from 0 up to 30 mM. Data were processed using the

BiaEvaluation 3.2 software (Biacore AB/GE Healthcare Bio-

Sciences Corp.) using ‘‘double referencing’’ [78] in which

sensorgrams were corrected for buffer effects and bulk refractive

index changes. Representative sensorgrams are shown in

Figure 5A.

The steady-state binding signal (Req) was derived by averaging

the signals in a five second window at equilibrium. Steady-state

analysis was performed by fitting the average signal Req as a

function of total MBP-PDZ concentrations, assuming a simple 1:1

interaction binding isotherm model. For many weak interactions

we observed calculated binding affinities (KD) with fits that

produced high x2 suggesting that the KD were likely to be

inaccurate (see Table S4). Reasons for this inaccuracy are likely to

be the following: 1. As previously described [40], several

repetitions of all the measurements are required to determine

accurate KD. In our case, such repetitions were not achievable in

reasonable time due to the large amount of interactions measured

in this study. 2. The highest injected analyte concentration restricts

the maximal KD (weakest interaction) that can be accurately

obtained. 3. A KD is estimated based on a mathematical

extrapolation of observed Req signals leading to additional

uncertainty. Based on these reasons, we considered the calculated

KD not as accurate enough to be used for absolute binding

strength comparison in this study. We rather performed a relative

analysis of binding strengths using directly Req signals which are

not biased by any mathematical assumption. We focussed on Req

signals obtained at 10 mM MBP-PDZ concentration, which have

been systematically measured in duplicate. The Req signal is

directly proportional to the molecular weight of the analyte and

the amount of immobilised ligand. Therefore, the Req signals were

normalised taking those into account before being used for binding

strength comparison. The large amount of raw experimental data,

which have been collected and the methodological approach that

we have developed for their exploitation will be presented and

discussed in detail in a separate, SPR-oriented paper.

Supporting Information

Dataset S1 PDZ interaction and non-interaction test
datasets. The archive contains three files, one for each test

dataset established: interactions, non-interactions with PDZ-

binding motif, and non-interactions without PDZ-binding motif.

First column: PDZ domain, second column: name of binder, third

column: C-terminus of binder.

(BZ2)

Dataset S2 Prediction results of proteome-wide screen
for MAGI1 and SCRIB PDZ-binding ligands using the
predictor of Chen et al. [27]. The prediction results were

performed in binary mode using a cutoff of 0.5 and are provided

without any additional filtering. No result file is provided for the

PDZ domain MAGI1-1/6 because the screen did not reveal any

peptides for this domain.

(BZ2)

Dataset S3 Alignment of human PDZ domains. The

archive contains an alignment in fasta format of 95 PDZ domains.

These include all PDZ domains that occur in the three test datasets

as well as all MAGI1 and SCRIB PDZ domains. Additionally, a

file is provided containing a translation between the PDZ domain

names used in the test datasets and the PDZ domain names used

in the alignment.

(BZ2)

Dataset S4 Implementation of the predictor of Chen
et al. [27]. The archive contains data files and python scripts

necessary to launch the predictor. The only prerequisite for

running the program is an installed python version. Check the

README.txt for more information.

(BZ2)

Table S1 Diversity of amino acids at last five positions
of PDZ-binding peptides in the training data of Chen
et al. [27].

(PDF)

Table S2 Filtered numbers of proteins predicted to
bind to 1, 2, 3, … or all PDZ domains of MAGI1 (6 PDZs)
or SCRIB (4 PDZs).

(PDF)

Table S3 Annotations for all proteins tested experimen-
tally in this work for interaction to MAGI1 and SCRIB.
The table contains UniProt IDs and information about biological

functions of the proteins with regard to PDZ domain binding as

well as published information on interactions with PDZ domain-

containing proteins.

(PDF)

Table S4 Experimental data for all interactions mea-
sured. The table contains ‘‘double referenced’’ and normalised

Req signals obtained for a 10 mM analyte concentration as well as

tentative calculated KD assuming a simple 1:1 interaction binding

isotherm model. These KD have to be considered with caution,

especially for interactions for which weak RU signals were

obtained.

(PDF)

Text S1 Recommendations for application of the pre-
dictor of Chen et al. [27].

(TXT)
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