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Abstract: Background and Objectives: To date, only one study has investigated the association between
the rs616147 polymorphism of the Myelin-associated Oligodendrocyte Basic Protein (MOBP) locus and
Amyotrophic Lateral Sclerosis (ALS). Materials and Methods: A case-control study was performed.
Patients with definite sporadic ALS were prospectively and consecutively recruited from the inpatient
and outpatient clinics of the Neurology Department of the General University Hospital of Larissa,
Central Greece. Community based, age and sex matched healthy individuals with a free personal and
family history constituted the control group. Results: A total of 155 patients with definite sporadic
ALS and an equal number of healthy controls were genotyped. The power of our sample size was
slightly above 80% and MOBP rs616147 was determined to be in Hardy-Weinberg Equilibrium
among healthy participants (p = 1.00). According to the univariate analysis, there was no significant
relationship between rs616147 and ALS [log-additive OR = 0.85 (0.61, 1.19), over-dominant OR = 0.73
(0.46, 1.15), recessive OR = 1.02 (0.50, 2.09), dominant OR = 0.74 (0.47, 1.16), co-dominant OR1 = 0.71
(0.44, 1.14) and co-dominant OR2 = 0.88 (0.42, 1.84). Additionally, the effect of rs616147 on the age
of ALS onset was determined insignificant using both unadjusted and adjusted (sex, site of onset)
cox-proportional models. Finally, rs616147 was not related to the site of ALS onset. Conclusions: Our
study is the first to report the absence of an association between MOBP rs616147 and ALS among
individuals of Greek ancestry. Additional, larger nationwide and multi-ethnic studies are warranted
to shed light on the connection between rs616147 and ALS.

Keywords: Motor Neuron Disease (MND); Amyotrophic Lateral Sclerosis (ALS); Myelin-associated
Oligodendrocyte Basic Protein (MOBP); rs616147

1. Introduction

Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disorder that
mainly affects the upper and lower motor neurons, while about half of the patients present
cognitive decline during the course of the disease [1]. The worldwide prevalence of ALS
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is estimated approximately between 4 and 5 patients per 100,000 individuals, whereas its
incidence corresponds to about 1 to 2 new cases per 100,000 person-years [2]. ALS is more
common among males and its prevalence follows an upward trend towards the 7th and 8th
decades of life [2]. The mean survival of ALS patients is estimated between 2 and 4 years
for most populations [2]. The only FDA-approved treatments; riluzole and edaravone,
provide only small benefits regarding the median survival and clinical progress of the
disease [3,4].

ALS pathology is characterized by degeneration of motor neurons in the cortex, brain-
stem motor nuclei and spinal anterior horns [5]. Multiple mechanisms have been associated
with potential motor neurotoxicity in ALS; oxidative stress, mitochondrial dysfunction,
glutamate-induced excitotoxicity, protein misfolding and aggregation, impaired axonal
transportation and microglia-related mechanisms have been incriminated, but a definite
conclusion for the underlying pathophysiology of ALS has not been reached [6]. Genetic
and environmental parameters, as well as genetic-environmental interactions, are consid-
ered to contribute to the overall risk of the disease [7]. About 5–10% of the ALS cases are
estimated to be of familial incidence, while the rest of the cases are sporadic [8]. The most
important mutations associated with the familial form of the disease are related to the
C9orf72 and SOD1 genes, as well as the FUS/TLS and TDP43 RNA binding proteins [6].
Genetic factors are considered to play an important role in the incidence of sporadic
ALS too [5]. One previous Genome-wide association study (GWAS) has specifically re-
vealed (among others) an association with a new genetic locus, MOBP (Myelin-associated
Oligodendrocyte Basic Protein) at 3p22.1, and particularly the rs616147 Single Nucleotide
Polymorphism (SNP) [9].

MOBP, like myelin basic protein (MBP), is produced by oligodendrocytes and is lo-
cated in the major dense line of Central Nervous System (CNS) myelin [10]. Although it
is hypothesized that MOBP contributes to the compacting and stabilization of the myelin
sheath through MOBP-MBP interactions, its definite function remains unclear [10]. Oligo-
dendrocytes and myelination processes have a crucial role in several neurodegenerative
diseases such as Multiple Sclerosis (MS) [11] and Alzheimer’ s Disease (AD) [12], while
MOBP in particular has been associated with both of the aforementioned entities [13–15].
Furthermore, there is a relationship between Single Nucleotide Polymorphisms (SNPs) in
the MOBP genetic locus and frontotemporal dementia (FTD) [16], a disease strongly related
to ALS [1], as well as progressive supranuclear palsy (PSP), an entity of the frontotemporal
lobar degeneration (FTLD) spectrum pathology [17].

Oligodendrocytes and myelination are considered important in the pathogenesis of
ALS, as well. This argument is supported by changes in the composition of myelin (even
demyelination) [18,19] and relevant pathological findings (including dysfunction, degen-
eration, defective regeneration) in grey matter oligodendrocytes of ALS subjects [20,21].
Given this background, MOBP could be potentially implicated in the pathogenesis of ALS.
To date, only the above mentioned GWAS has identified MOBP, and the rs616147 SNP
(an intron variant -adenosine-guanosine replacement- of the MOBP gene), as a potentially
ALS-associated locus [9]. Therefore, a case-control study was performed to assess the repli-
cability of the association between rs616147 and sporadic ALS in patients of Greek ethnicity.

2. Materials and Methods

A case control design was implemented in order to investigate the effect of MOBP
rs616147 on the development of ALS. The study protocol was approved by the Ethics Com-
mittee of the University of Thessaly (59295/23-01-2017) and written informed consent was
obtained from all the participants. Reporting conforms with the STROBE (Strengthening
the Reporting of Observational Studies in Epidemiology) reporting guidelines [22].

2.1. Participants and Settings

The present study involved the same participant set as two previously published
articles [23,24]. Patients were prospectively and consecutively recruited from the inpatient
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and outpatient clinics of the Neurology Department of the General University Hospital of
Larissa, Central Greece (which is affiliated with the University of Thessaly). The diagnosis
of ALS was performed by a consultant neurologist according to the El Escorial criteria [25].
Community-based healthy controls were individually (1:1) matched with cases for the
parameters of age (±2 years) and sex. The eligibility criteria are provided in detail below:

2.1.1. Inclusion Criteria for ALS Volunteers

Age > 18 years
Greek ethnicity
Ability to provide informed consent
A diagnosis of Definite sporadic ALS based on the El Escorial criteria

2.1.2. Exclusion Criteria for ALS Volunteers

Personal medical history of other neurodegenerative diseases
Family medical history of Motor Neuron Disease (MND) and FTD

2.1.3. Inclusion Criteria for Healthy Volunteers

Age > 18 years
Greek ethnicity
Individual 1:1 matching for age (±2 years) and sex with the ALS individuals—enrolled

from the same community as the cases
Ability to provide informed consent
No history of ALS or other neurological diseases

2.1.4. Exclusion Criteria for Healthy Volunteers

Family medical history of Motor Neuron Disease (MND) and FTD

2.2. DNA Isolation and Genotyping

DNA was extracted using the method of salting out, which has been previously
described [26–28]. Isolated DNA originated from peripheral blood leucocytes. Collected
samples were genotyped for the MOBP rs616147 variant using the TaqMan allele-specific
discrimination assays on an ABO PRISM 7900 Sequence Detection System. Analysis of the
results was performed with the SDS software (Applied Biosystems, Foster City, CA, USA).
The genotype call rate was 99.03% (307/310, 152 ALS patients and 155 healthy controls).

2.3. Additional Data Extraction

For the ALS group, additional data were prospectively collected using standardized
data abstraction In the present article emphasis was only placed on age of onset, sex and
site of disease onset, categorized as bulbar, limb and mixed onset.

2.4. Outcome Measures and Statistical Analysis

The primary outcome of our study was the investigation of a potential association
between MOBP rs616147 and ALS. The effect of MOBP rs616147 on the age of ALS onset
was defined as the secondary outcome. Finally, an exploratory analysis was performed to
investigate for a potential association between rs616147 and site of ALS onset.

Prior to testing the effect of rs616147 on ALS the study quality was evaluated by testing
the healthy controls for the Hardy-Weinberg equilibrium (HWE). The statistical power of
our sample was estimated with the CaTS Power Calculator for Genetic Studies (Center for
Statistical Genetics, University of Michigan, Ann Arbor, MI, USA) [29]. The association
between rs616147 and ALS was examined using the SNPStats software for the dominant,
recessive, co-dominant, over-dominant and log-additive models of inheritance [30]. In case
of more than one significant genetic models the degree of dominance (h-index) would be
calculated to ‘quantify’ the mode of inheritance [31]. Cox proportional hazards models
(unadjusted and adjusted for sex) were used for the examination of the effect of rs616147
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on the age of ALS onset (overall and according to the site of ALS onset). A 5% threshold
was set for the definition of statistical significance. Both unadjusted and adjusted effect
sizes (Odds Ratio -OR-, Hazard Ratio -HR-) and their precision (95% Confidence Interval
-95% CI-) are presented. Cox proportional hazards regression was carried out with the IBM
SPSS Statistics Software version 23.0 for Windows (SPSS Inc., Chicago, IL, USA). Finally,
the association between rs616147 and site of ALS onset (limb or bulbar) was examined
using the SNPStats software, for the dominant, recessive, co-dominant, over-dominant and
log-additive models of inheritance.

3. Results

All of the patients and controls that were invited to participate in the study responded
positively and completed the study processes. A total of 155 patients with definite sporadic
ALS and an equal number of age (±2 years) and sex matched healthy controls were
recruited. As noted above, the genotype call rate was 99.03%, with a total of 152 ALS
patients and 155 healthy controls ultimately having available genetic data. The power
of our sample size was slightly above 80% to find a significant association (p < 0.05)
between MOBP rs616147 and ALS, given a minor (A) allele frequency of 32% [32], a disease
prevalence of 5/100,000 [2], and an estimated relative risk of 1.60. Patient characteristics
are presented in Table 1. MOBP rs616147 was determined to be in HWE among healthy
participants (p = 1.00). Allelic and genotypic frequencies are provided in Table 2. The minor
allele (A) frequencies were 29% and 33% for the cases and controls, respectively.

Table 1. Characteristics of the ALS participants.

Assessed Parameters Measurements

Age (mean years ± SD, median (IQR)) 63.74 ± 11.30, 65 (57, 72)
Sex (Female/Male) 77/78

Site of Onset (Bulbar/Spinal/Mixed) 50/97/8
ALS: Amyotrophic Lateral Sclerosis; SD: standard deviation; IQR: interquartile range.

Table 2. Allelic and genotypic frequencies for MOBP rs616147 in ALS patients and healthy controls.

ALS Patients (%) Healthy Controls (%) Total Participants (%)

Genotypes 152 155 307
A/A 17 (11%) 17 (11%) 34 (11%)
G/A 55 (36%) 68 (44%) 123 (40%)
G/G 80 (53%) 70 (45%) 150 (49%)

Alleles 304 310 614
A 89 (29%) 102 (33%) 191 (31%)
G 215 (71%) 208 (67%) 423 (69%)

MOBP: Myelin-associated Oligodendrocyte Basic Protein; ALS: Amyotrophic Lateral Sclerosis.

According to the univariate analysis, there was no significant relationship between
MOBP rs616147 and ALS (primary outcome measure) with respect to every mode of
inheritance; log-additive OR = 0.85 (0.61, 1.19), over-dominant OR = 0.73 (0.46, 1.15),
recessive OR = 1.02 (0.50, 2.09), dominant OR = 0.74 (0.47, 1.16), co-dominant OR1 = 0.71
(0.44, 1.14) and co-dominant OR2 = 0.88 (0.42, 1.84) (Table 3).
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Table 3. Single locus association of MOBP rs616147 with ALS.

Mode of Inheritance Genotype Odds Ratio (95% Confidence Interval) p-Value

Co-dominant G/G 1.00 0.37
G/A 0.71 (0.44, 1.14) NA
A/A 0.88 (0.42, 1.84) NA

Dominant G/G 1.00 0.19
G/A-AA 0.74 (0.47, 1.16) NA

Recessive G/A-G/G 1.00 0.95
A/A 1.02 (0.50, 2.09) NA

Over-dominant G/G-A/A 1.00 0.17
G/A 0.73 (0.46, 1.15) NA

Log-additive - 0.85 (0.61, 1.19) 0.35
MOBP: Myelin-associated Oligodendrocyte Basic Protein; ALS: Amyotrophic Lateral Sclerosis; NA: not applicable.

Additionally, the effect of rs616147 on the age of ALS onset was investigated (Table 4).
Both crude (G/G vs. G/A; HR = 1.12 (0.80, 1.59), G/G vs. A/A; HR = 0.91 (0.54, 1.54)) and
sex-adjusted (G/G vs. G/A; HR = 1.11 (0.79, 1.56), G/G vs. A/A; HR = 0.94 (0.55, 1.60))
cox-proportional hazards models provided evidence indicative of no association between
rs616147 and age of ALS onset (the effect of sex on the age of ALS onset was determined
insignificant; HR = 1.37 (0.96, 1.84)). Subgroup analyses based on the site of onset, repro-
duced the insignificant associations, both when unadjusted and adjusted for sex (the effect
of sex on the age of ALS onset was determined insignificant regarding the limb onset ALS;
HR; 1.44, (0.85, 2.44), but significant regarding the bulbar onset ALS; HR = 3.43 (1.29, 9.09),
with male sex presenting later onset of the disease) (Table 5).

Table 4. Single locus association of MOBP rs616147 with the age of ALS onset (crude and adjusted
for sex).

Genotype
Univariate Multivariate

Hazard Ratio (95% CI) p-Value Hazard Ratio (95% CI) p-Value

G/G 1.00 NA 1.00 NA
G/A 1.12 (0.80, 1.59) 0.51 1.11 (0.79, 1.56) 0.56
A/A 0.91 (0.54, 1.54) 0.71 0.94 (0.55, 1.60) 0.82

MOBP: Myelin-associated Oligodendrocyte Basic Protein; ALS: Amyotrophic Lateral Sclerosis; CI: confidence interval;
NA: not applicable.

Table 5. Single locus association of MOBP rs616147 with the age of ALS onset (crude and adjusted for sex) according to the
site of onset (bulbar of limb).

Genotype

Bulbar Onset Limb Onset

Univariate Multivariate Univariate Multivariate

HR (95% CI) p-Value HR (95% CI) p-Value HR (95%CI) p-Value HR (95% CI) p-Value

G/G 1.00 NA 1.00 NA 1.00 NA 1.00 NA
G/A 1.46 (0.68, 3.14) 0.34 1.67 (0.77, 3.65) 0.20 1.57 (0.91, 2.70) 0.11 1.57 (0.91, 2.72) 0.10
A/A 1.10 (0.31, 3.87) 0.88 1.29 (0.36, 4.60) 0.69 1.77 (0.77, 4.10) 0.18 1.77 (0.76, 4.09) 0.18

MOBP: Myelin-associated Oligodendrocyte Basic Protein; ALS: Amyotrophic Lateral Sclerosis; HR: Hazard Ratio; CI: Confidence Interval;
NA: not applicable.

Finally, no association was found between rs616147 and site of ALS onset (Table 6).
Limb onset (vs. bulbar and mixed onset) and bulbar onset (vs. limb and mixed) were
separately analysed.
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Table 6. Single locus association of MOBP rs616147 with site of ALS onset.
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Mode of Inheritance Genotype Odds Ratio (95%
Confidence Interval) p-Value

Co-dominant G/G 1.00 0.72
G/A 0.77 (0.41, 1.44) NA
A/A 0.90 (0.34, 2.39) NA

Dominant G/G 1.00 0.45
G/A-AA 0.80 (0.44, 1.43) NA

Recessive G/A-G/G 1.00 0.98
A/A 1.01 (0.40, 2.58) NA

Over-dominant G/G-A/A 1.00 0.43
G/A 0.79 (0.43, 1.43) NA

Log-additive - 0.88 (0.57, 1.37) 0.58
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Mode of Inheritance Genotype Odds Ratio (95%
Confidence Interval) p-Value

Co-dominant G/G 1.00 0.88
G/A 0.84 (0.37, 1.87) NA
A/A 0.77 (0.20, 2.96) NA

Dominant G/G 1.00 0.62
G/A-AA 0.82 (0.38, 1.76) NA

Recessive G/A-G/G 1.00 0.79
A/A 0.84 (0.23, 3.05) NA

Over-dominant G/G-A/A 1.00 0.74
G/A 0.88 (0.40, 1.90) NA

Log-additive - 0.86 (0.48, 1.55) 0.62
MOBP: Myelin-associated Oligodendrocyte Basic Protein; ALS: Amyotrophic Lateral Sclerosis; NA: not applicable.

4. Discussion

The present case-control study investigated the effect of MOBP rs616147 on the devel-
opment of ALS, as well as the age and site of ALS onset. Results were compatible with the
absence of an underlying connection, regarding all outcome measures. Our findings come
in contradiction with the findings of the only other study that examined this association,
a previous very large GWAS [9]. The aforementioned study involved data from a great
number of ALS cohorts originating from Western countries, but a Greek cohort was not
included. Apart from the MOBP rs616147—ALS direct association, a dose-dependent
pharmacogenetic interaction has been recently revealed between the A allele of rs616147
and creatine administration to patients with ALS [33].

The functions of MOBP are not yet completely clarified (the functional significance of
the rs616147 polymorphism as well), but it appears to participate in myelin compaction
and stabilization, through interactions with a structurally similar protein, MBP [10,34,35].
Oligodengroglial dysfunction and myelination disorders are crucial in ALS [36]. Grey
matter oligodendrocytes present substantial degeneration in ALS animal models, while
precursor cells fail to differentiate and compensate for the losses, ultimately leading to
incomplete recovery. The degeneration of oligodendrocytes subsequently causes myelin
abnormalities, such as immature myelin sheaths and demyelinated axons, and, finally, leads
to axonal degeneration. These pathological findings support the notion that myelination
processes (as well as myelination-related loci such as MOBP) are potentially important
for ALS. On the other hand, rs616147, which is an intron variant of the MOBP gene, may
not directly affect the function of MOBP and by extension myelination, rendering the
myelination abnormalities among ALS patients irrelevant.

The association of MOBP with other neurodegenerative diseases is well-established.
To date, autoreactivity against MOBP has been detected among individuals with MS [13,15]
and MOBP immunoreactivity has been detected in the core of Lewy Bodies (LBs) among
patients with Parkinson’ s disease and dementia with LBs [37,38]. MOBP SNPs have been
associated with Apolipoprotein-E e4 positive AD [14], FTD (and the severity of white
matter degeneration [16,39]), PSP [17,40–44], Corticobasal Degeneration [43,44], while
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decreased expression of MOBP was revealed in familial Globular Glial Tauopathy [45] and
differential DNA methylation of MOBP was shown in Multiple System Atrophy [46]. The
implication of MOBP in all these neurodegenerative disorders makes it possible that it is
also involved in the pathophysiology of ALS.

The study, nevertheless, failed to demonstrate the existence of an association. The
present study was the first to examine this SNP among individuals of Greek ethnicity
with sporadic ALS. Therefore, the replicability of our results cannot be tested. At this
stage, it is appropriate to recognize that our study has some limitations, which may be
accountable for the non-significant results. First, the power of our study was slightly
over 80%, which means that there is an almost 20% possibility that we failed to detect a
truly significant association. Additionally, both primary and secondary analyses were not
adjusted for several potential protective or risk-conferring factors, including both genetic
and environmental ones (such as pesticide and metal exposure) [8,47]. Therefore, our results
may be significantly affected by the latent effect of an uncontrolled parameter. Moreover,
both patients and healthy controls (matched for sex and age ±2 years, selected from the
same community) were recruited from a specific geographical area located in Central
Greece. The selection of this sample achieved several advantages by possibly matching
for several undetermined exposures to a variety of environmental factors (e.g., soil and
water metal concentrations) but might have induced an overmatching bias when it comes
to genetic parameters. Finally, the conduction of a GWAS is more appropriate than the
investigation of a single locus for distinguishing disease vulnerability genes in sporadic
maladies. Thus, ideally, a large-scale GWAS with Greek ALS patients should be conducted
to evaluate the association of rs616147 with ALS and individuals of Greek ethnicity.

5. Conclusions

It is warranted that additional studies are performed to shed light to the relation-
ship between MOBP rs616147 and ALS. Larger, nationwide studies will better capture
the underlying connection among individuals of Greek ancestry, while multi-ethnic stud-
ies will reveal the differences among different populations. Finally, it is of substantial
importance that future research addresses the latent effect of significant genetic and envi-
ronmental exposures, that are already considered to confer susceptibility to ALS (at least
lead exposure and possibly pesticide exposure [47]). At the same time, the comprehen-
sive collection of additional clinical information, as well as the complete and transparent
reporting [48,49], will elucidate the potential connection of rs616147 with the treatment-
related and prognostic parameters.
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