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The cornea is the front of the eye. Its inner cell layer, called the endothelium, is important because it is closely related to the light
transparency of the cornea. An in vivo observation of this layer is performed by using specular microscopy to evaluate the health of
the cells: a high spatial density will result in a good transparency. Thus, the main criterion required by ophthalmologists is the cell
density of the cornea endothelium, mainly obtained by an image segmentation process. Different methods can perform the image
segmentation of these cells, and the three most performing methods are studied here.The question for the ophthalmologists is how
to choose the best algorithm and to obtain the best possible results with it. This paper presents a methodology to compare these
algorithms together. Moreover, by the way of geometric dissimilarity criteria, the algorithms are tuned up, and the best parameter
values are thus proposed to the expert ophthalmologists.

1. Introduction

1.1. Human Eye and Cornea. The eye is the first sense organ
responsible for human vision. The human eye functions like
a camera to refract light and produce a focused image which
stimulates neural responses transmitted to the brain vision
centers. crystalline lens is made of compacted protein fibers
and is anchored in place by muscles attached to the wall of
the eyeball. Contraction of these muscles causes the lens to
change its shape and curvature, thus improving the focusing
power. Refracted light passes through the eye cavity and
strikes the inner surface at the back, known as the retina.
The retina contains the specialized nerve cells called rods
and cones that detect the intensity and the frequency of the
incoming light. Light stimulates the rods and cones, which
creates neural impulses that are transmitted to the brain
through a network of nerve cells bunched together to form
the optic nerve that exits from the back of the eyeball and
passes to the brain.

1.1.1. The Human Cornea. The cornea is the transparent,
spherical surface covering the front of the eye. It is a powerful
refractive surface, providing about 2/3 of the eye’s focusing
power. Healthy cornea has no blood vessel, which accounts
for its clarity. But it is rich in nerve endings and so it is
extremely sensitive to pain. The tears and aqueous humor, a
watery fluid circulating in the cavity behind it that contains
glucose and several electrolytes, nourish the cornea. The
cornea is a highly organized tissue consisting of cells and
protein arranged in three main layers:

(i) epithelium: this is the outermost layer comprising
about 10% of the total thickness. Along with the tear
film that bathes the outer surface of the eye, it provides
a protective function preventing the entry of foreign
material into the eye;

(ii) stroma: it makes up to 90% of the corneal thickness. It
consists primarily of water (78%) and layered collagen
fibers (16%) that give the cornea its strength, elasticity,
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and shape. It also contains cells scattered between
the fibers that produce the stromal constituents. The
lattice-like arrangement and uniform spacing of the
collagen fibers are essential for corneal transparency;

(iii) endothelium: this is the innermost layer facing the
aqueous and consists of a single layer of hexagonal
cells. It pumpswater out of the cornea and hence plays
a vital role in keeping it in a dehydrated state.Without
this pumping action, the stroma would accumulate
water and become hazy and finally opaque (corneal
oedema) leading to loss of vision.

1.1.2. Physiology of the Human Corneal Endothelium. The
cornea must remain transparent to refract light properly and
the corneal endothelium ensures the integrity and trans-
parency of the cornea.

The corneal endothelium consists of a single layer of
closely packed, flat, hexagonally shaped cells covering the
back surface of the cornea. In the human cornea at birth,
there are more than 4000 cells/mm2. With age, the number
of endothelial cells gradually decreases, but because they
cannot regenerate, neighboring cells spread out to fill the
gap leading to an alteration of cell shape (pleomorphism)
and size (polymegathism). The mean endothelial cell density
(ECD) in adults is generally between 500 and 3500 cells/mm2.
Cell density, as well as variation in size and shape, can be
examined by specular microscopy in living human subjects.
These methods permit early diagnosis of any damage of the
corneal endothelium.

1.2. Principles of Specular Microscopy. Since the cornea is
transparent, cornea cells can easily be observed in vivo with a
specular microscope. This technology comes from the early
1980s. Those optical microscopes can acquire an image of
the cells on a very little surface (0.08mm2 compared to the
endothelium surface of about 100mm2; see Figure 5). The
image is then analyzed by a computer software (embedded
in the microscope) to provide both cell density and mor-
phometry. The physical principle of this type of microscope
is the specular reflection (i.e., the same reflection as for a
mirror). As the light goes through the several different layers
of the cornea, it is reflected at each interface [1, 2]. The
deeper the layer is in the cornea, the darker it appears on
the image. This explains the intensity variations within the
images, which physically corresponds to the superposition of
several different layers.

1.3. Quality Criteria of the Corneal Endothelium. It is neces-
sary to evaluate the quality of the human corneal endothe-
lium in several circumstances (for example, after accidents,
surgery, or trauma). The main cause is corneal grafting.

The two criteria required for the evaluation are

(i) the endothelial cell density (ECD, in cells/mm2):
there are several threshold values: for example, an
ECD lower than 400 cells/mm2 does not enable
maintaining the cornea transparency. An ECD lower

than 1000 cells/mm2 is a contraindication for using
intraocular lens implants.

(ii) the morphometry of endothelial cells: their size regu-
larity (called the polymegathism, i.e., the variation of
areas of the cells) and their shape regularity (called
the pleomorphism, i.e., the percentage of hexagon-
like cells) induce a good quality of the cornea.

2. Three Image Segmentation Methods

Different methods exist to perform the segmentation of
images of endothelial cells. Among those, three methods give
the better results [3]. The present paper first recalls their
related algorithms and will then compare their results with
regard to several criteria.

The presented algorithms have a common structure. First,
they filter the original image. Second, they aim to find some
markers of the cells, and then they perform a morphological
operation (a watershed; see [6]) to get closed contours for
each cell. Notice that these three algorithms make important
use of mathematical morphology operators (see, e.g., [7]).

2.1. Vincent and Masters’ Method. This method has been
proposed in [4]. It is based on the fact that cell borders’
intensities are lower than the cell interiors’ intensities and
represent somehow a local maximum of intensity that is
retrieved by a morphological operation called a ℎ-maxima
[7]. To avoid the problem of noise, a first filtering process is
performed by the way of amorphological alternate sequential
filter. It involves two parameters.

(i) ℎ is a value for the ℎ-maxima operation (an intensity)
that gives the final markers of the cells.

(ii) 𝑜 is the order of the morphological alternate sequen-
tial filter.

The algorithm is summarized in Algorithm 1.

2.2. Angulo andMatou’sMethod. Thismethod ismore recent
than the previous one [5]. The cell markers are detected
by the mean of a distance map after some filtering process
(performed by amorphological opening and amorphological
top-hat). The difference with Vincent andMasters’ algorithm
is that a first segmentation of the contours is performed and
then is improved by the use of the watershed [6]. Algorithm 2
details the algorithm. Five parameters are required.The three
first ones, 𝑠

1
, 𝑠
2
, and 𝑔, are used for the filtering process. The

last two ones, 𝑡 and ℎ, are used to get the markers that will be
used by the watershed.

2.3. Gavet and Pinoli’s Method. This is the most recent
method proposed in [3]. The improvements to the other
methods come from the fact that the first segmentation of
the borders of the cells better performs due to the elimination
of nonlinear parts of the skeleton (see details of Algorithms
2 and 3). The Gavet and Pinoli’s method requires five
parameters, and its algorithm is summarized in Algorithm 3.
After a filtering process (parameter 𝑜), the contours are first
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Data: 𝐼𝑛𝑝𝑢𝑡 ← Greyscale image of cornea endothelial cells.
𝑜 ← Order of alternate sequential filter.
ℎ ← Value for the ℎ-maxima.
Result: 𝑆: Segmentation of the cornea endothelial cells.
(1) begin
(2) ASF ← Alternate Sequential Filter of order 𝑜 of 𝐼𝑛𝑝𝑢𝑡;
(3) 𝑀 ← ℎ-maxima of ASF and binarization (threshold 0);
(4) 𝑊 ← Watershed constrained by 𝑀 on Input image;
(5) 𝑆 ← Pruning of 𝑊 to eliminate the lines touching the borders of the image;
(6) end

Algorithm 1: Vincent and Masters’s algorithm for detecting the human corneal endothelium cells [4].

Data: 𝐼𝑛𝑝𝑢𝑡 ← Greyscale image of cornea endothelial cells.
𝑠
1
, 𝑠
2
← Structuring element sizes.

𝑔 ← Size of Gaussian filter.
𝑡 ← Threshold value.
ℎ ← Value for the ℎ-maxima.
Result: 𝑆: Segmentation of the cornea endothelial cells.
(1) begin
(2) 𝐺 ← Gaussian filter of 𝐼𝑛𝑝𝑢𝑡;
(3) 𝑂 ← Opening of 𝐺 with 𝑠

1
;

(4) 𝑇 ← Top-Hat of 𝑂 with 𝑠
2
;

(5) 𝐵 ← Binarization of 𝑇 with threshold 𝑡;
(6) 𝑆 ← Skeletonization of 𝑇;
(7) DM ← Distance Map from 𝑠𝑘𝑒𝑙;
(8) 𝑀 ← ℎ-maxima of DM (markers);
(9) 𝑊 ← Watershed constrained by the markers 𝑀 in the inverse of DM;
(10) 𝑆 ← Pruning of 𝑊 to eliminate the lines touching the borders of the image;
(11) end

Algorithm 2: Angulo and Matou’s algorithm for detecting the cells [5].

Data: 𝐼𝑛𝑝𝑢𝑡 ← Greyscale image of corneal endothelial cells.
𝑜 ← Order of alternate sequential filter.
𝑡
𝑠
← Length of segments.

𝑐 ← Structuring element size for a closing operation.
𝑠 ← Structuring element size for an opening operation.
Result: Segmentation of the cornea endothelial cells.
(1) begin
(2) ASF ← Alternate Sequential Filter of size 𝑜 of 𝐼𝑛𝑝𝑢𝑡;
(3) 𝑅 ← (𝐼𝑛𝑝𝑢𝑡−ASF) < 0 (residu computation);
(4) 𝑈 ← Supremum (union) of Openings of 𝑅 by segments of length 𝑡

𝑠
;

(5) 𝐶 ← Closing of 𝑈 (size 𝑐);
(6) SK ← Skeletonization of 𝐶;
(7) DM ← Distance Map of SK;
(8) 𝑀 ← Regional Maxima of DM;
(9) 𝑀

2
← Opening of 𝑀 of size 𝑠;

(10) 𝑊 ← watershed constrained by markers 𝑀
2
on inverse of DM;

(11) 𝑆 ← Pruning of 𝑊 to eliminate the lines touching the borders of the image;
(12) end

Algorithm 3: Gavet and Pinoli’s algorithm for detecting the cornea endothelial cells.
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Table 1: Summary of the control parameters of the three presented
image segmentation algorithms.

Method Parameters 𝑝 Description

Vincent and Masters
Algorithm 1

{𝑜, ℎ}
𝑜: order of filter
ℎ: ℎ-maxima

Angulo and Matou
Algorithm 2

{𝑠
1
, 𝑔, 𝑠
2
, 𝑡, ℎ}

𝑠
1
: opening

𝑔: Gaussian filter
𝑠
2
: top-hat

𝑡: threshold
ℎ: ℎ-maxima

Gavet and Pinoli
Algorithm 3

{𝑐, 𝑡
𝑠
, 𝑜, 𝑠}

𝑐: closing
𝑡
𝑠
: length of segments
𝑜: order of filter

𝑠: opening

roughly detected by the use of the openings by segments
(parameters 𝑡

𝑠
and then 𝑜, 𝑐, and 𝑒). This operators intend to

detect linear cell contours.Then, these contours are corrected
by the mean of a distance map and a constrained watershed
(parameter 𝑠), as proposed by the two previous methods.

2.4. Summary of the Control Parameters. Table 1 summaries
the control parameters used by the three presented image
segmentation methods. The main problem here is how to
select the values of these parameters. The following section
will try to answer this problem by using two comparison
criteria (namely, the dissimilarity criteria 𝜖 and fom) and by
using them on an image database to find the best parameter
values.

3. Image Segmentation Evaluation

The evaluation of a segmentation quality is a common prob-
lem encountered when developing a segmentation method.
Like the segmentation methods themselves, the image seg-
mentation evaluation criteria can be classified into region-
based or contour-based approaches, although they usually
can be adapted from one class to the other.The segmentation
processes of the corneal endothelium result in the contours
of the cells, but the proposed comparison methods are also
suitable for segmented regions.

This paper deals with supervised segmentation evalua-
tion, that is, involving a criterion that compares the result of
the segmentation process to a ground truth image (usually
manually segmented by an expert of the application field).
This is usually preferred to unsupervised evaluation (where
some kind of intraregion homogeneity is involved), but the
bias introduced by the expert does not have to be neglected
(see Section 3.4).

3.1. Basic Notations. The following notations are first intro-
duced: 𝐼

𝑅
and 𝐼
𝑋
represent two binary images that correspond

to a reference segmentationmethod 𝑅 and the evaluated

segmentation method 𝑋, respectively. Both 𝐼
𝑅
and 𝐼

𝑋
are

considered as sets of contours. In this paper, 𝑅 and 𝑋

may be employed for 𝐼
𝑅
and 𝐼

𝑋
in order to alleviate the

notations and more deeply for emphasizing the geometrical
problems. A point 𝑝 ∈ 𝐼

𝑋
or 𝑝 ∈ 𝐼

𝑅
means a point present in

the related segmented binary image.

3.2. Classical Dissimilarity Criteria. This paper will not
present an exhaustive view of supervised evaluation of seg-
mentation criteria. The reader can have a look at [8] for a
more complete presentation and a comparison.

The two detailed criteria have been chosen because they
are tolerant towards spatial variations. One could also use
other frequently used criteria proposed in the literature [9–
11], like the Hausdorff distance, the Dice coefficient (also
known as the Jaccard index), or classification criteria (speci-
ficity, sensibility). The main drawback of these criteria is
that a small noise (like a misdetected point) implies a high
comparison value. This is why people introduced a distance
ponderation, like the 𝑝th point in the Hausdorff distance, or
the following figure of merit.

The figure of merit [12, 13] is defined by

fom
𝑅
(𝑋) = 1 −

1

max {# (𝑀) , # (𝑋)}
∑
𝑝∈𝑋

1

1 + 𝑑2 (𝑝, 𝑅)
, (1)

where 𝑑(𝑝, 𝑅) is the Euclidean distance from the pixel 𝑝 ∈

𝑋 to the closest pixel of 𝑅, and # is the number of pixels of
the considered segmentation result 𝑅 or result 𝑋 (which are
nonempty images, at least for 𝑅).

3.2.1. Partitioning. An image segmentation process refers to
the action of partitioning the spatial domain of an image
into adjacent regions, each of them preserving a certain
homogeneity following a given criterion. Thus, a computer
program is able to answer the following binary question: is
this pixel inside the region of interest or not?

To formalize this mathematically, let S be a binary
image resulting from a segmentation process, defined by the
number of regions (number of labels 𝐿, 𝐾 = [1; 𝐿]) that
partitions the spatial domain 𝐷 and by the setR of adjacent
regionsR

𝑖
that fulfill 𝐷:

∀ (𝑖, 𝑗) ∈ 𝐾, 𝑖 ̸= 𝑗, R
𝑖
∩ R
𝑗
= 0,

R = ⋃R
𝑖
, 𝑖 ∈ 𝐾.

(2)

This paper deals with the case where contours are
detected and the segmentation result is a binary image; that
is, 𝐿 = 2, 𝐾 = [1; 2] (label 1 stands for the background and
label 2 for the detected contours).

3.3.The 𝜖Dissimilarity Criterion. The 𝜖 dissimilarity criterion
is based on the symmetric difference Δ of sets, but this latter
lacks some tolerance, which is introduced by the Minkowski
addition.
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3.3.1. Symmetric Difference Set. First, let us recall that the
symmetric difference set between two segmentations 𝑅 and
𝑋 (𝑅 ⊂ 𝐷 and 𝑋 ⊂ 𝐷), denoted by Δ(𝑅,𝑋), is defined by

Δ (𝑅,𝑋) = (𝑅 ∪ 𝑋) \ (𝑅 ∩ 𝑋)

= (𝑅 \ 𝑋) ∪ (𝑋 \ 𝑅) .
(3)

3.3.2. Minkowski Addition. The Minkowski addition [14]
defines an algebraic operation between sets in the 𝑛-
dimensional Euclidean space R𝑛. It will be used to spatially
“enlarge” the segmentations 𝑋 or 𝑅 to be compared in order
to be less sensitive to small spatial variations or noises.

If 𝑋 is a set (segmentation result) and 𝐵 is another set
(generally the unit ball), the Minkowski sum of 𝑋 and 𝐵,
denoted by 𝑋 ⊕ 𝐵, is then defined by

𝑋 ⊕ 𝐵 = {𝑥 + 𝑏 | 𝑥 ∈ 𝑋, 𝑏 ∈ 𝐵}

𝑋 ⊕ 𝐵 = ⋃
𝑏∈𝐵

{𝑥 + 𝑏 | 𝑥 ∈ 𝑋} ,
(4)

where ⊕ is the Minkowski addition symbol. In the field of
mathematical morphology [7], it is equivalent to the dilation,
and 𝐵 is called a structuring element (for example, the unit
ball).

3.3.3. Definition. In [15], each pixel in the segmentation result
is attributed a distance value to the reference segmentation,
and a histogram of these distances is thus computed. Then, a
statistical analysis of this histogram is performed. In the same
spirit, we propose a dissimilarity criterion that is tolerant
towards small spatial variations. The 𝜖 dissimilarity criterion
with the tolerance 𝜌 applied to segmented images is defined
in the case of discrete images (𝑅 is the reference segmentation
result and 𝑋 is the considered segmented image) by [8]

𝜖
𝜌

𝑅
(𝑋) =

# {(𝑋 \ (𝑅 ⊕ 𝜌𝑁)) ∪ (𝑅 \ (𝑋 ⊕ 𝜌𝑁))}

# {𝑅 ⊕ 𝜌𝑁}
(5)

with𝑁 being the structuring element of radius 1 (typically the
unit ball) and # designating the number of pixels in the set
(# is the cardinal operator, counting the number of nonzero
valued pixels in the set𝑋 or set 𝑅). Practically, 𝜌 is the radius
of the ball used to dilate the binary images, thus forming a
tolerance tube around the original set 𝑋 or set 𝑅. This paper
will propose a way of selecting the right value for 𝜌.

The main properties of 𝜖 are

(i) 𝜖
𝜌

𝑅
(𝑅) = 0, which means that when 𝑅 is compared to

itself, the numerical result is 0;
(ii) 𝜖
𝜌

𝑅
(𝑅) →
𝜌→∞

0, which means that if the tolerance
increases, the numerical value tends to 0;

(iii) 𝜌 is the tolerance value; thus, 𝜖 is tolerant towards
small spatial variations (like translations, rotations,
and over- and undersegmentations).

3.3.4. Discussion about the Notion of Metric. The usual con-
cept to compare mathematical objects is the metric notion,

Errors made by an expert ophthalmologist in log scale
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Figure 1:Method for fixing the tolerance parameter. In this example,
𝜌 is in pixels, and there is a strong gap between no tolerance (𝜌 = 0)
and a tolerance of one pixel (𝜌 = 1). The scale is logarithmic.

defined by four axioms (identity, separation, symmetry, and
triangle inequality; see [16]). If a metric has important
mathematical properties, it has been proved that the human
visual system does not follow them [17, 18]. For example, the
human visual system does not always consider two distinct
objects as different (the separation property is thus not
verified). This is also true for the triangle inequality and the
symmetry property [8]. It is important to notice that 𝜖 is not a
metric: separation, symmetry, and triangle inequality are not
verified. This is why it is called a dissimilarity criterion.

3.4. Bias in Experts Manual Segmentation: Choice of the
Tolerance Value. The problem of the experts reference seg-
mentation is crucial because subject to variations between
experts and sometimes also for one expert. To deal with
this problem, some articles use an average result, like [19].
Some others do not take these into account and use only one
reference segmentation as an absolute truth. The proposed 𝜖

dissimilarity criterion deals with this problem by the choice
of the tolerance parameter 𝜌. The 𝜌 value will in fact reflect
the precision of the manual segmentation of the expert.

For one original gray-tone image, the experts have man-
ually drawn their segmented image several times, and the
𝜖 dissimilarity criterion has been used to compare every
manually segmented image to the others. The mean value of
the 𝜖 dissimilarity criterion is represented in Figure 1. The
reader can consider that an expert will always (try to) draw
the contours at the same location within a certain spatial
tolerance (i.e., within the tolerance tube), depending on the
image size and the precision of the drawing tool. In the
Figure 1, if an error is fixed at a maximum of 𝜖 = 0.05, the
application should then use a tolerance value of 𝜌 = 2.

Thus, the 𝜖 dissimilarity criterion is able to deal with the
bias in the experts reference segmentation as well with the
noises present in the segmentation results themselves. The
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next section will focus on cornea endothelium images and
their segmentations.

4. Image Segmentation Method Tuning

The different segmentation algorithms presented in the pre-
vious sections require to setup the values of the so-called
control parameters. The choice of the control parameter
values for a specific application issue is generally not triv-
ial, especially for nonimage analysis experts. This section
explains the generic way of selecting the best parameters
in average for the considered three image segmentation
methods.

4.1. Method

4.1.1. Definitions. Let 𝑝 be the control parameters set of a
given algorithm 𝐴. For example, for Algorithm 1, 𝑝 = {𝑠, ℎ}.
Then, 𝐴

𝑝
(𝐼) is the result of the segmentation process by

algorithm 𝐴 with the parameter set 𝑝 on the input image 𝐼.
Let𝐶 denote the criterion used to compare the segmenta-

tion results with the reference. In this paper, 𝐶 will be either
the dissimilarity criterion 𝜖 or criterion fom.

Let 𝑄 be an evaluation function of the quality of the
segmentation, depending on the considered criterion 𝐶,
defined as follows:

𝑄
𝐶
(𝐴
𝑝
, 𝐼) = 𝐶 (𝐴

𝑝
(𝐼) , 𝑅) , (6)

where 𝑅 is the reference segmentation of the image 𝐼. To
simplify the notations, 𝑅 will be used instead of 𝑅(𝐼).

4.1.2. Best Parameter Set. In the following, we consider an
image database ofN gray-tone images, each being associated
with a reference segmented image. What we are looking
for is the best parameter set, that is, the parameter set that
will result in the best segmented images considering the
reference 𝑅 and a specific comparison criterion (among the
two considered criteria, fom and 𝜖).

Let 𝑝 be the best parameter set regarding the mean of
all quality values on theN gray-tone images of the database,
yielding to

𝑝 (𝐴, 𝐶) = arg min
𝑝

{
1

N
∑
𝐼

𝑄
𝐶
(𝐴
𝑝
, 𝐼)}

= arg min
𝑝

{mean
𝐼

𝑄
𝐶
(𝐴
𝑝
, 𝐼)} .

(7)

Let 𝑄 be the minimal mean value of 𝑄 on the N images
of the database, yielding

𝑄 (𝐴, 𝐶) = min
𝑝

{
1

N
∑
𝐼

𝑄
𝐶
(𝐴
𝑝
, 𝐼)}

= mean
𝐼

𝑄
𝐶
(𝐴
𝑝
, 𝐼) .

(8)

This way of finding the best parameter set is also called
leave-one-out cross validation.

4.1.3. Trimmed Mean. Some noise may be present in the
computed values (mainly because of a too poor image
quality). To be more tolerant towards these perturbations,
the trimmedmean (sometimes called truncatedmean) is also
employed: in the addressed application issue, given parts of
the sample are discarded at the high end.

If 𝑘 ∈ [0; 0.5] is the percentage of discarded values, then

𝑝
𝑘
(𝐴, 𝐶) = arg min

𝑝

{Tmean
𝐼,𝑘

𝑄
𝐶
(𝐴
𝑝
, 𝐼)} ,

𝑄
𝑘
(𝐴, 𝐶) = min

𝑝
{Tmean
𝐼,𝑘

𝑄
𝐶
(𝐴
𝑝
, 𝐼)} .

(9)

Notice that the trimmed mean corresponds to the classi-
cal mean for 𝑘 = 0; namely,

𝑝
0
= 𝑝

𝑄
0
= 𝑄.

(10)

4.1.4. Median. The median of 𝑄, denoted by med𝑄, is
also a classical way to avoid noise perturbations in such
measurements, yielding to

𝑝 (𝐴, 𝐶) = arg min
𝑝

{med
𝐼

𝑄(𝐴
𝑝
, 𝐼)}

𝑄 (𝐴, 𝐶) = min
𝑝

{med
𝐼

𝑄(𝐴
𝑝
, 𝐼)} .

(11)

4.1.5. Projection. In order to observe the influence of one
control parameter in the segmentation results, it is interesting
to fix every control parameter but the considered one, and
see if there is an impact on the quality of the segmentation.
Let P be a parameter of the set 𝑝. Let 𝑄P

𝑘
be the (trimmed)

mean evolution of 𝑄 when the parameter P is varying and
the other parameters are fixed at values of 𝑝

𝑘
.The parameters

are chosen among those defined in Table 1.

4.1.6. K-Fold Cross Validation. The 𝐾-fold cross-validation
consists in validating the learning process by splitting the
database into 𝐾-folds, using 𝐾 − 1-folds as the learning
database and the last one as the test database [20]. This is
repeated 𝐾 times such that each fold will be used as the
test database. The result is a discrepancy value that reflects
the pertinence of the learning. It will be noticed 𝐶𝑉 in the
different result tables, which is the mean result value over
each test partition.

The results will be presented in Tables 5, 6, and 7 in
detail. For each method and for each partition, the learned
parameter values are presented as well as the corresponding
result of the criterion value for the test partition. Let 𝑄

𝐶𝑉

𝑖

be the value of the criterion for the partition 𝑖, and 𝑄
𝐶𝑉

=

mean
𝑖
{𝑄
𝐶𝑉

𝑖
}.
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Table 2: Results for Algorithm 1, method of Vincent and Masters, where the control parameters are 𝑝 = {𝑜, ℎ}. See Figure 2 for illustrations.

Criterion Optimal parameters Trimmed mean (𝑘 = 0.5) Median
𝑄
𝐶𝑉

𝑝 𝑄 𝑝
0.5

𝑄
0.5

𝑝 𝑄

𝜖 {2, 12} 0.11 {2, 5} 0.08 {2, 5} 0.10 0.115
fom {2, 19} 0.52 {2, 19} 0.47 {2, 23} 0.50 0.520
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Figure 2: Projection on the optimal values of the control parameters 𝑜 and ℎ for themethod of Vincent andMasters. See Table 2 for numerical
values.

For comparison purposes, we also provide the best
criterion value that could have been obtained on the test
partition, denoted by 𝑄

𝐶𝑉

𝑖
(for partition 𝑖) and by 𝑄

𝐶𝑉 for
the mean on all partitions.The value of𝑄𝐶𝑉 should be only a
little smaller than 𝑄

𝐶𝑉.

4.2. Quantitative Comparison Results. This section presents
the results for the three aforementioned image segmentation
methods.

An image database of N = 30 gray-tone images of the
human corneal endothelium acquired with a specular micro-
scope is employed to evaluate the segmentation processes
realized by the different algorithms. This image database
(see Figure 5) contains gray-tone images and also the related
experts’ segmented images (manually performed).

4.2.1. Vincent and Masters’ Method. The summary of the
optimal control parameters values is presented in Table 2.

It appears that 𝜖 and fom do not provide the same results
for the optimal value of parameter ℎ. One shall notice that the
value of 𝑄ℎ

0.5
does not vary a lot for both 𝜖 and fom criteria

(see Figures 2(b) and 2(c)). This means that the choice of ℎ
appears as not crucial.

4.2.2. Angulo and Matou’s Method. The results are presented
in Table 3. Both 𝜖 and fom give the same results. In addition,
the projections (Figures 3(e) and 3(c)) show that 𝑠

2
and ℎ are

useless. Thus, the top-hat transform can be avoided, and the
ℎ-maxima operation can be replaced by the computation of
the maxima of the distance map.

4.2.3. Gavet andPinoli’sMethod. Thesummary of the optimal
control parameter values is presented in Table 4.

For both fomand 𝜖 criteria, the optimal control parameter
values are identical. The filtering parameter 𝑜 used in the
alternate sequential filtermust be higher than 4.This parame-
ter is linked to the length of an edge of a cell, and, thus, some
corneal endothelium with big cells would get a better result
with a higher value of 𝑜 (this explains the almost constant
values that can be observed in Figure 4(c)).

The control parameter 𝑠used for filteringmarkersmust be
chosen with a low value (less than 7). In this case, the effect is
not really noticeable.
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Table 3: Results for Algorithm 2, method of Angulo and Matou, where the control parameters are 𝑝 = {𝑠
1
, 𝑔, 𝑠
2
, 𝑡, ℎ}. See Figure 3 for

illustrations.

Criterion Optimal parameters Trimmed mean (𝑘 = 0.5) Median
𝑄
𝐶𝑉

𝑝 𝑄 𝑝
0.5

𝑄
0.5

𝑝 𝑄

𝜖 {4, 4, 1, 28, 1} 0.15 {3, 4, 1, 22, 1} 0.08 {4, 3, 1, 16, 1} 0.11 0.150
fom {3, 4, 1, 21, 1} 0.54 {3, 4, 1, 21, 1} 0.46 {3, 4, 1, 8, 1} 0.51 0.525

Table 4: Results for Algorithm 3, method of Gavet and Pinoli, where the control parameters are 𝑝 = {𝑐, 𝑡
𝑠
, 𝑜, 𝑠}. See Figure 4 for illustrations.

Criterion Optimal parameters Trimmed mean (𝑘 = 0.5) Median
𝑄
𝐶𝑉

𝑝 𝑄 𝑝
0.5

𝑄
0.5

𝑝 𝑄

𝜖 {2, 7, 4, 6} 0.10 {2, 7, 4, 6} 0.06 {2, 7, 4, 6} 0.08 0.099
fom {2, 7, 4, 7} 0.50 {2, 7, 4, 7} 0.45 {2, 7, 4, 8} 0.49 0.506
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Figure 3: Projection on the optimal values of the control parameters for the method of Angulo and Matou. See Table 3 for numerical values.
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Table 5: Cross-validation information for Algorithm 1, method of Vincent and Masters, with 𝜖 criterion.

Partition number Optimal parameter values 𝑄
𝐶𝑉

𝑖
𝑄
𝐶𝑉

𝑖

1 {2, 8} 0.146 0.118
2 {2, 12} 0.099 0.096
3 {2, 9} 0.110 0.109
4 {2, 12} 0.117 0.115
5 {2, 12} 0.104 0.104
Mean 𝑄

𝐶𝑉
= 0.115 𝑄

𝐶𝑉
= 0.108

Table 6: Cross-validation information for Algorithm 1, method of Vincent and Masters, with fom criterion.

Partition number Optimal parameter values 𝑄
𝐶𝑉

𝑖
𝑄
𝐶𝑉

𝑖

1 {2, 19} 0.512 0.512
2 {2, 18} 0.524 0.510
3 {2, 19} 0.490 0.488
4 {2, 19} 0.533 0.533
5 {2, 19} 0.540 0.540
Mean 𝑄

𝐶𝑉
= 0.520 𝑄

𝐶𝑉
= 0.516

Table 7: Cross-validation information for Algorithm 2, method of Angulo and Matou, with 𝜖 criterion.

Partition number Optimal parameter values 𝑄
𝐶𝑉

𝑖
𝑄
𝐶𝑉

𝑖

1 {4, 5, 1, 25, 1} 0.162 0.148
2 {4, 4, 1, 28, 1} 0.157 0.155
3 {4, 4, 1, 28, 1} 0.141 0.141
4 {4, 4, 1, 28, 1} 0.109 0.109
5 {4, 4, 1, 30, 1} 0.180 0.158
Mean 𝑄

𝐶𝑉
= 0.150 𝑄

𝐶𝑉
= 0.142
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Figure 4: Projection on the optimal values of the control parameters for the method of Gavet and Pinoli. See Table 4 for numerical values.
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Figure 5: Table of the 30 reference segmented images of the database. They have been manually drawn by an expert ophthalmologist from a
human corneal endothelium image database (see Figure 6). These images come from [8].
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Figure 6: Table of the 30 specular microscopy images of corneal endotheliums of the database. They are segmented by the proposed method
and by an ophthalmologist (see Figure 5). These images come from [8].
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Table 8: Cross-validation information for Algorithm 2, method of Angulo and Matou, with fom criterion.

Partition number Optimal parameter values 𝑄
𝐶𝑉

𝑖
𝑄
𝐶𝑉

𝑖

1 {3, 4, 1, 21, 1} 0.510 0.510
2 {3, 4, 1, 21, 1} 0.565 0.558
3 {3, 4, 1, 21, 1} 0.624 0.598
4 {3, 4, 1, 21, 1} 0.448 0.443
5 {3, 4, 1, 21, 1} 0.479 0.479
Mean 𝑄

𝐶𝑉
= 0.525 𝑄

𝐶𝑉
= 0.518

Table 9: Cross-validation information for Algorithm 3, method of Gavet and Pinoli, with 𝜖 criterion.

Partition number Optimal parameter values 𝑄
𝐶𝑉

𝑖
𝑄
𝐶𝑉

𝑖

1 {2, 7, 4, 6} 0.078 0.078
2 {2, 7, 4, 6} 0.100 0.099
3 {2, 7, 4, 5} 0.111 0.093
4 {2, 7, 4, 6} 0.109 0.101
5 {2, 7, 4, 7} 0.100 0.091
Mean 𝑄

𝐶𝑉
= 0.099 𝑄

𝐶𝑉
= 0.092

Table 10: Cross-validation information for Algorithm 3, method of Gavet and Pinoli, with fom criterion.

Partition number Optimal parameter values 𝑄
𝐶𝑉

𝑖
𝑄
𝐶𝑉

𝑖

1 {2, 7, 4, 8} 0.506 0.502
2 {2, 7, 4, 7} 0.490 0.486
3 {2, 7, 4, 8} 0.486 0.480
4 {2, 7, 4, 7} 0.484 0.477
5 {2, 7, 4, 7} 0.562 0.548
Mean 𝑄

𝐶𝑉
= 0.506 𝑄

𝐶𝑉
= 0.498

The control parameter 𝑡
𝑠
is strictly related to the length of

the cells edges (its purpose is to retrieve the linear parts of the
detected borders and thus eliminate the noise).

4.3. Comments. According to the numerical values, the
method of Gavet and Pinoli outperforms the methods from
Vincent and Masters, and Angulo and Matou (see the values
of𝑄𝐶𝑉,𝑄,𝑄

0.5
, or𝑄). Clearly, the superiority of this method

comes from the extraction of the linear parts of the cell
borders.

The 𝐾-fold cross-validation (see Tables 5, 6, 7, 8, 9, and
10) shows that the learning is not far from the optimal value,
in terms of 𝜖 or fom, as well as in terms of optimal parameter
values. This can be concluded from comparing the mean 𝜖 or
fom value from the test partitions (𝑄𝐶𝑉) to the best possible
value (𝑄𝐶𝑉): there is only a small difference between these
values.

Moreover, the optimal parameter values obtained for the
different training partition do not vary a lot and are really
similar to those proposed in Tables 2, 3, and 4.

5. Conclusion and Perspectives

In this paper, three segmentation methods suitable for bina-
rizing the optical specular microscopy gray-tone images of
human corneal endotheliums have been presented. These
methods involve different control parameters.This is always a
hard problem for the user because he has no time tomanually

tune up his computer softwares (and especially his image
segmentation softwares). Two dissimilarity criteria have been
employed (𝜖 dissimilarity criterion [8] and Pratt’s figure of
merit fom [12]) to tune up the segmentation algorithms
in regard to the expert manual segmentation. As a result,
this paper proposes the optimal control parameter values
to use for these images. It also proposes to avoid some
operations since their parameters do not really influence the
segmentation results. More generally, this paper highlights
the relevance of the 𝜖 dissimilarity criterion to a spatial
tolerance, suitable to handle the problem of the bias in
the reference segmentation. This 𝜖 dissimilarity criterion is
adapted to compare binary contour images as well as binary
sets, for 2D or even 3D images. In a near future, we expect to
report such a criterion to compare gray-tone images.
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