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Dengue is the most common arboviral disease caused by one of four distinct but closely
related dengue viruses (DENV) and places significant economic and public health burdens
in the endemic areas. A dengue vaccine will be important in advancing disease control.
However, the effort has been challenged by the requirement to induce effective protection
against all four DENV serotypes and the potential adverse effect due to the phenomenon
that partial immunity to DENV may worsen the symptoms upon subsequent heterotypic
infection. Currently, the most advanced dengue vaccines are all tetravalent and based on
recombinant live attenuated viruses. CYD-TDV, developed by Sanofi Pasteur, has been
approved but is limited for use in individuals with prior dengue infection. Two other
tetravalent live attenuated vaccine candidates: TAK-003 by Takeda and TV003 by
National Institute of Allergy and Infectious Diseases, have completed phase 3 and
phase 2 clinical trials, respectively. This review focuses on the designs and evaluation
of TAK-003 and TV003 vaccine candidates in humans in comparison to the licensed CYD-
TDV vaccine. We highlight specific lessons from existing studies and challenges that must
be overcome in order to develop a dengue vaccine that confers effective and balanced
protection against all four DENV serotypes but with minimal adverse effects.

Keywords: live-attenuated vaccine, dengue vaccine, tetravalent vaccine, vaccine development, Dengvaxia®
INTRODUCTION

Dengue is a mosquito-borne viral disease caused by four antigenically distinct serotypes of dengue
viruses (DENV1-4). The annual global dengue incidence is about 100 million and is on the rise due
to the expansion of mosquito habitat (1). The annual global cost of dengue amounts to about US
$8.9 billion in 2016 and is responsible for almost 40000 disability-adjusted life years (2). The dengue
viral genome is a positive-sense RNA, which encodes three structural proteins, including the capsid
(C), the membrane (prM) and the envelope (E) proteins, and seven nonstructural proteins. The four
DENV serotypes share 65-70% nucleotide sequence identity (3). Most dengue infections are either
asymptomatic or mild. However, severe dengue in the form of dengue hemorrhagic fever or dengue
shock syndrome can occur. Both viral and host factors have been suggested to affect the
manifestation of dengue severity (4). For example, the nonstructural protein 1 (NS1) has been
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https://www.frontiersin.org/articles/10.3389/fimmu.2022.840104/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.840104/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.840104/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:joseph.houjue@gmail.com
mailto:jchen@mit.edu
https://doi.org/10.3389/fimmu.2022.840104
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.840104
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.840104&domain=pdf&date_stamp=2022-02-24


Hou et al. Dengue Vaccine Development
shown to act on the vascular endothelium and immune cells,
resulting in the release of vasoactive cytokines which cause
endothelial hyperpermeability and vascular leakage (5–7).

Following bites by an infected mosquito, DENV initially
infects Langerhans cells in the skin. The infection can spread
to other phagocytic cells once the infected Langerhans cells
migrate to the draining lymph nodes. DENV infection by one
serotype usually induces strong homotypic immunity, while
cross-reactive heterotypic immunity is usually partial and
short-lived (8, 9). This is because cross-reactive antibodies can
bind to but do not neutralize heterotypic DENVs due to either
low affinity or low titer or both. Instead, such antibody-virus
complexes can enhance infection by mediating virus entry into
phagocytic cells via Fc-gamma receptors in a phenomenon
known as antibody-dependent enhancement (ADE), leading to
increased risk of severe dengue disease (10). A detailed review on
the ADE may be found here (11). Currently, there is no specific
antiviral treatment for dengue infection. As such dengue vaccine
development is an urgent priority.

An ideal dengue vaccine should confer effective and balanced
protection against all four DENV serotypes to minimize ADE.
To induce protection against all four DNEV serotypes
simultaneously, most dengue vaccines have used tetravalent
formulation with the same immunogens, usually prM and E,
from each of the four DNEV serotypes. The tetravalent
formulation has increased the difficulty in inducing balanced
protection due to antigenic competition. Antigenic competition
is observed when there is diminution of the immune response to
one or more antigen when it is administered together with more
immunodominant antigens (12). Consequently, in a tetravalent
formulation, it is likely that the immune response will be skewed
towards the immunodominant antigen, resulting in biased
protective efficacy. Intrinsic differences between the
composition of the tetravalent formulation, such as virus
replication rate and immunogenicity, can also skew the
resulting immune response. Furthermore, ADE has emerged as
a significant challenge in dengue vaccine development. Due to
the phenomenon of ADE, incomplete protection against all four
dengue serotypes can predispose vaccinees to developing more
severe dengue if these individuals are subsequently infected by a
DENV serotype with suboptimal protection (further discussed
under “CYD-TDV Dengue Vaccine”). Indeed, this was observed
for CYD-TDV (Dengvaxia), a tetravalent live-attenuated vaccine
developed by Sanofi Pasteur (13). Consequently, the Advisory
Committee on Immunization Practice (ACIP) only recommends
Dengvaxia for children with previous laboratory-confirmed
dengue infection (14). In addition, due to the human and non-
human primate tropism of DENV, there is a lack of small animal
models for DENV-infection and vaccine evaluation. Although
mice reconstituted with human immune cells (humanized mice)
and mice deficient in type I interferon response have been shown
to support DENV infection, there are still limitations to the
spectrum of immune responses that can be induced in these
mouse models (15, 16).

Currently, there are five types of dengue vaccines under the
development, including live attenuated virus vaccines,
Frontiers in Immunology | www.frontiersin.org 2
inactivated virus vaccines, recombinant subunit vaccines, viral
vectored vaccines, and DNA vaccines (17). Among the five types
of dengue vaccines, the live attenuated virus vaccines are the
most advanced as they have been extensively evaluated in
humans. Therefore, we focus our review on the live attenuated
virus vaccines. The other types of dengue vaccines have been
reviewed by Yauch and Shresta (17).
LIVE ATTENUATED VACCINES

Live attenuated vaccines (LAV) use live, but less virulent,
pathogens in immunization. As such, they can induce the
entire array of antigens required for inducing long-term
immune protection (18). LAVs have been successfully
developed for other flaviviruses [i.e., yellow fever (YF) and
Japanese encephalitis virus (JEV)]. The YF-17D (19) and JEV
SA14-14-2 (20) vaccines provide over 90% long-lasting efficacy
with a single dose. As natural dengue infection induces life-long
homotypic protective immunity, it is expected that LAVs would
mimic natural infection and stimulate both cellular and humoral
immune responses to confer long-lasting protection. The three
most advanced dengue vaccines, CYD-TDV developed by Sanofi
Pasteur, TAK-003 developed by Takeda, and TV003/TV005
developed by National Institute of Allergy and Infectious
Diseases (NIAID), all use recombinant live attenuated viruses.
CYD-TDV DENGUE VACCINE

Currently, Sanofi Pasteur’s tetravalent live attenuated CYD-TDV
vaccine is the only licensed dengue vaccine. CYD-TDV uses the
yellow fever 17D (YF17D) vaccine strain as the backbone and
substitutes the YF17D prM and E regions with those of the four
DENV serotypes (Figure 1A). The overall vaccine efficacy (VE)
was in the range of 56.5% to 60.8%. Specific protection against
DENV3 and DENV4 were over 70% while protection against
DENV1 and DENV2 were 40-50% (21, 22). VE is also affected by
the baseline serostatus. As seropositivity rates generally increase
with age in an endemic environment, age is often used as a
surrogate for DENV exposure (23–25). Though vaccine
immunity lasts up to four years (26), the risk of hospitalization
for vaccinees was increased 3 years after vaccination (27). Several
clinical trials on CYD-TDV in Asia and Latin America had also
observed that CYD-TDV was less effective against DENV2 (21,
28, 29). One possible reason for the overall low efficacy is the lack
of DENV non-structural (NS) proteins in the formulation.
Analysis of the conserved epitopes across the four DENV
serotypes revealed that majority of these epitopes are located in
the NS proteins (30). The lack of neutralizing antibodies (nAb)
and CD8 T cell immune responses against the NS proteins
potentially contributes to the reduced protection and durability
observed for CYD-TDV (31). However, the imbalanced
protection against DENV-2 is not immediately clear as the
same 17D backbone was used to express prM and E from each
February 2022 | Volume 13 | Article 840104
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DENV serotype, suggesting either lower expression or lower
immunogenicity of prM and E from DENV-2 (see below).

In 2016, CYD-TDV was rolled out in the Philippines and
Brazil as part of the national immunization campaign for dengue.
However, the immunization campaign was halted in 2017
following the death of 14 children (32). In a study evaluating
the long-term safety of CYD-TDV, it was noted that the risk ratio
(RR) for dengue-related hospitalization at year 3 follow up was
7.25 (1.15-313.80) for 2-5 years old, 0.63 (0.22–1.83) for 6-11
years old, and 0.25 (0.02–1.74) for 12-14 years old. When
participants were divided into those <9 years of age and those
>=9, the RR for hospitalization was 1.58 (0.61–4.83) and 0.57
(0.18–1.86), respectively (28). After re-analyzing data from
earlier clinical trials, it was concluded that CYD-TDV
vaccinated seronegative children between 9-16 years old have a
RR of 1.41-1.51 for dengue-related hospitalization and a RR of
1.41-6.25 for severe dengue (27). Such increase in risk of dengue-
related hospitalization and severe disease in seronegative
participants begin at about 18 months following the last dose
of vaccine (27). Further analyses of clinical trial data showed that
CYD-TDV vaccination provides the greatest post-vaccination
protection against DENV4 and least protection against DENV2.
CYD-TDV vaccination further enhances hospitalization risk in
seronegative recipients who experienced a later DENV2 infection
(33). Consequently, the ACIP recommends the CYD-TDV
vaccine to be used for dengue prevention only in children aged
9 to 16 years with prior laboratory-confirmed dengue infection
and living in dengue endemic areas (14).
Frontiers in Immunology | www.frontiersin.org 3
Various hypotheses have been suggested for the increased risk
of hospitalization and severe disease in seronegative recipients.
As mentioned above, a peculiarity of DENV infection is the
phenomenon of ADE due to enhanced entry of antibody-virus
complexes into phagocytic cells via Fc-gamma receptors. Three
types of antibodies – serotype-specific neutralizing antibodies
(nAb), cross-reactive antibodies and broad neutralizing
antibodies (bnAb), can be induced by either natural DENV
infection or through vaccination. Generally serotype-specific
nAb are favorable over cross-reactive antibodies, as they bind
serotype-specific epitopes and only neutralize the specific DENV
serotype (34). Serotype-type specific antibodies have also been
shown to be accurate correlates of protection in human dengue
infection (35). Cross-reactive antibodies on the other hand, bind
but do not neutralize DENV infection (36). Instead, they
contribute to the ADE phenomenon by facilitating viral
uptake. BnAb recognizes conserved epitopes on all four DENV
serotypes and can neutralize all four DENV serotypes. However,
these antibodies are rare. One well characterized bnAb targets
the E-dimer epitope, and not only neutralizes all four DENV
serotype, but also the Zika virus (37). It was shown that CYD-
TDV predominantly induced DENV4-specific nAb in
seronegative participants, while inducing bnAb and boosting
pre-existing DENV type-specific nAb in seropositive participants
(38). Consequently, in seronegative individuals, CYD-TDV may
induce a DENV4-specific homotypic immune response, thereby
mimicking a first infection. As short-lived cross-protective
immunity wanes, the more durable anti-DENV4 antibodies
A

B

C

FIGURE 1 | The schematic diagrams of tetravalent live-attenuated dengue vaccines. (A) CYD-TDV employs the YFV-17D vaccine strain (shown in gray) as a genetic
backbone for the expression of the prM and E genes of DENV1, DENV2, DENV3, and DENV4. (B) TAK-003 consists of an attenuated DENV2 strain and three
chimeric viruses expressing the prM and E genes of DENV1 (pink), 3 (green) and 4 (yellow) using the DENV2 (blue) genetic backbone. (C) TV003/TV005 is
composed of three full-length viruses containing all wild-type structural and non-structural genes, and one chimeric virus, in which the prM and E genes of DENV4
are substituted by those of DENV2. These viruses are attenuated by a common 30-nt deletion (D30) or 31-nt deletion (D31) in the 3′ UTR of the viral genome.
February 2022 | Volume 13 | Article 840104
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thus predispose vaccinees to ADE upon subsequent heterotypic
natural DENV infection.

Nonetheless, with the availability of high-resolution dengue
transmission maps, even vaccinating only DENV-exposed
recipients can potentially reduce global annual dengue
incidence by 20-30% (39). However, to improve the adoption
and safety of the CYD-TDV vaccine, dengue serostatus
diagnostic tests are required (40). Measurement of serum anti-
DENV IgG by enzyme-linked immunosorbent assays (ELISAs) is
commonly used in laboratories to establish past DENV exposure.
However, ELISA are time-consuming and require complex
reagents and instruments, as well as staff training (41).
Moreover, as a screening test, the specificity of ELISA was
observed to be 93.4%, lower than the ideal specificity threshold
of 98%. This means that there will be 6.6% of individuals who are
falsely seropositive and be at risk of severe dengue if vaccinated
(42). Alternatively, rapid dengue diagnostic tests require less
handling, are inexpensive, and can be used in the field for quick
dengue screening. Nonetheless, these tests remain to be validated
in large studies, and may lack sufficient sensitivity and
specificity (43).
TAK-003 DENGUE VACCINE CANDIDATE

Takeda’s dengue vaccine (TAK-003) candidate is based on the
molecularly characterized live attenuated DENV-2 PDK-53
strain (TDV-2). Three other recombinant chimeric viruses
were then engineered using the TDV-2 backbone but with
substitution of the DENV-2 prM and E genes with those from
DENV-1 16007 (TDV-1), DENV-3 16562 (TDV-3), and
DENV-4 1036 (TDV-4) (44). Together, TDV1-4, are
formulated as the tetravalent live attenuated dengue vaccine
TAK-003 (Figure 1B).

DENV-2 PDK-53 was derived from the wild-type DENV-2
16681 virus strain through serial passage in primary dog kidney
cells (45). The attenuated DENV2 PDK-53 virus exhibits distinct
features that differ from its parental strain, such as temperature
sensitivity, less effective replication, attenuated neurovirulence,
and greater genetic diversity, which affected the fitness of
DENV2 PDK-53 (46). These features are mainly attributed to
5’-NCR-57 C-to-T, NS1-53 Gly-to-Asp, and NS3-250 Glu-to-Val
mutations (45). As these mutations lie outside of the structural
genes, DENV-2 PDK-53 was used for developing chimeric
dengue vaccines that express the structural genes of
heterologous dengue viruses while retaining the attenuating
phenotypic features.

DENV-2 PDK-53 had been studied as a monovalent or as a
single component of the multivalent dengue live-attenuated
vaccine candidates in the United States and Thailand. These
studies showed that DENV-2 PDK-53 was safe, well-tolerated,
highly immunogenic, and generated long-term protection
against DENV2 (47–49). The risk of reversal mutations of a
live attenuated vaccine is always of concern. Studies suggest that
simultaneous back-mutation of two attenuating mutations at 5’-
NCR-57 and NS1-53 is sufficient to cause reversion of DENV-2
PDK-53 back to the virulent 16681 wild-type (45). Fortunately,
Frontiers in Immunology | www.frontiersin.org 4
these back-mutations have yet to be observed in the master
vaccine seeds of the four serotypes (50).

Preclinical testing revealed that serotype-specific nAb titer
elicited by the tetravalent live attenuated vaccine formulation
was lower in comparison to the nAb titers elicited through
individual monovalent immunization. Of the four DENV
components of TAK-003, the chimeric TDV-3 and TDV-4
were less immunogenic and reactogenic than TDV-1 and
TDV-2 (44), suggesting viral interference amongst the
serotypes. To overcome this issue, several vaccine formulations
with differing ratios of the four DENV components were
evaluated. Vaccine formulations comprising of an equivalent
amount (103 or 105 plaque-forming units, PFU) of each of the
four TDV viruses failed to generate adequate nAb against
DENV4 after prime and boost immunization in the AG129
mice (51) and cynomolgus monkeys (52). However, the nAb
titers against DENV3 and DENV4 were substantially improved
in formulations comprising of 103 of TDV-1 and TDV-2 and 105

PFU of TDV-3 and TDV-4. This suggests that the intrinsic
differences in the immunogenicity or replication of each DENV
serotype in the tetravalent formulations may lead to inter-
serotype interference (53). Nonetheless, regardless of
formulation composition, the absence of post-challenge
viremia in all but one monkey implied that the nAb elicited by
the prime-boost vaccination regimes were capable of neutralizing
or reducing DENV replication efficiency (52). No adverse clinical
events were observed in all the immunized Cynomolgus
Macaques (52). Collectively, these preclinical data suggests that
formulations comprising of TDV1-4 induce protection against
all four DENV serotypes in non-human primates, despite lower
antibody responses against DENV4.

Phase 1 Clinical Trials
Based on preclinical studies and the discrepancies observed in
nAb titers against the various DENV serotypes, it appeared that
the component ratio of the tetravalent vaccine was critical for the
vaccine (51, 52). Two formulations, a low-dose formulation and
a high-dose formulation, were assessed in placebo-controlled
phase 1 clinical trials (ClinicalTrials.gov NCT01224639,
NCT01110551). The low-dose formulation contained 8 × 103,
5 × 103, 1 × 104, and 2 × 105 PFU of TDV1, TDV2, TDV3, and
TDV4, respectively, in a ratio of 3.6%: 2.3%: 4.5%: 91.0%, while
the high-dose formulation contained 2 × 104, 5 × 104, 1 × 105,
and 3 × 105 PFU of TDV1, TDV2, TDV3 and TDV 4,
respectively, in a ratio of 4.3%: 10.6%: 21.3%: 63.8% per dose
(Table 1). Two doses, 90 days apart, were given by subcutaneous
or intradermal injections to flavivirus-naïve healthy adults.
Regardless of the dose formulation, no clinically meaningful
differences in adverse events were observed between vaccine and
placebo groups. Majority of adverse events reported included
injection site pain and erythema. Overall, no serious adverse
events were recorded (54, 55).

Compared to the low-dose formulation, the intradermal high-
dose formulation resulted in more than 77.8% seroconversion to
DENV1-4 after two doses. Geometric mean titers (GMT) of nAb
against DENV1 and DENV2 were also significantly increased in
the high-dose formulation. However, in the intradermal high-
February 2022 | Volume 13 | Article 840104
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dose formulation group, although seroconversion to DENV4 was
elicited after the second dose, GMT of nAb against DENV4 was
the lowest among the serotypes. Nonetheless, regardless of
formulation, administration of TDV vaccine-induced
detectable neutralizing antibody responses to each of the four
serotypes. Overall, GMT to DENV2 was the highest, followed by
DENV3, DENV1 and DENV4. Despite the high dose of TDV4
incorporated into the vaccine formulation, DENV4 had the
lowest nAb GMT. Regardless of vaccination routes and
formulations, the second dose did not substantially increase
antibody titers against DENV2, but slightly increased nAb to
DENV1, DENV3, and DENV4. This implies that one dose of the
vaccine generated sufficient nAb to inhibit or block the
replication of DENV2 (54, 55).

Phase 2 Clinical Trials
The phase 1 trials were implemented in DENV-naïve
participants. However, it is important to evaluate the safety
and efficacy of dengue vaccines in populations who had been
exposed to dengue (DENV-exposed). Therefore, apart from
DENV-naïve participants, the high-dose TDV formulation was
also evaluated in participants who were seropositive for at least
one DENV serotype at baseline (DENV-exposed) in phase 2
clinical trials (ClinicalTrials.gov NCT01511250). Similar to
phase 1 trial results, no serious adverse events related to the
vaccination were recorded, and the majority of adverse events
were injection site pain and erythema (56). In DENV-exposed
participants, there was also no increase in adverse events nor
vaccine virus replication. As such, it appears that the preexisting
antibodies did not increase reactogenicity or the magnitude of
virus replication following vaccination (56).

Consistent with the results from the phase 1 studies, the nAb
titers to DENV1 and DENV2 were higher than to DENV3 and
DENV4 after the first vaccine dose. Moreover, among DENV-
naïve participants, more than 94% of participants were
seropositive for DENV1, DENV2, or DENV3 on day 28 after
the first dose. The second dose increased GMT titers and rates of
seropositivity to DENV4 (from 58.6% after the first dose to
87.7% after the second dose). Among the DENV-exposed
participants, the rates of seropositivity to any serotype was
91.3% - 99.1%. The second dose slightly increased the rate of
seropositivity to DENV1-4 to 96.5% - 100% but had no effect on
Frontiers in Immunology | www.frontiersin.org 5
nAb GMT (56). These results suggest that the TDV is
immunogenic regardless of previous dengue exposure.

To improve immune responses TDV-1, TDV-3 and TDV-4, a
separate phase 2 clinical trial (ClinicalTrials.gov NCT02425098),
where the dose of TDV-2 was reduced by one log unit (5 × 103

PFU), was conducted (57) (Table 1). The new formulation
elicited a relatively more balanced immune responses with 4-
fold lower anti-DENV2 nAb titer compared to previous
formulations at day 30, particularly in DENV-naïve subjects.
Nonetheless, anti-DENV4 nAb was still suboptimal (57).

Besides optimizing the serotype ratio, the immunization
regime and intervals between vaccinations were investigated in
a large-scale phase 2 randomized, double-blind, placebo-
controlled clinical trial (ClinicalTrials.gov NCT02302066) (58).
This trial aimed to determine the safety and immunogenicity of
three different vaccination schedules – a two primary dose
regime given at 0 and 3 months, a single primary dose regime
given at 0 months, a one dose primary regime given at 0 and a
booster dose given at 12 months. The vaccine tested comprised of
2.5 × 104 PFU of TDV-1, 6.3 × 103 PFU of TDV-2, 3.2 × 104 PFU
of TDV-3, and 4.0 × 105 PFU of TDV-4 (Table 1). This
formulation had a lower TDV-3 dose compared to the
previously tested high-dose formulation, consequently, the
ratio of TDV1, TDV2 and TDV4 in the formulation
was increased.

Regardless of dosing schedules, the vaccine formulation
elicited nAb against all dengue serotypes in vaccinated subjects,
with the highest response against DENV2, and lowest response
against DENV4 (Table 2) (58–60). All serotype-specific nAb
were higher compared to baseline based on results published at 6
months (60), 18 months (59) and at 48 months (58), although
baseline serostatus impacted nAb titers and seropositivity rates.
In DENV-naïve participants, the two primary dose schedules,
but not the single primary dose schedule, induced slightly higher
long-term persisting nAb titers against DENV1, DENV3, and
DENV4, as well as increased tetravalent seropositivity (58–60).
Although nAb titers were temporarily increased after the 1-year
booster dose, especially in DENV-naïve participants, antibody
concentrations and seropositivity rates were similar to the two
primary dose schedules by month 48 (58). These results suggest
that two-dose schedules, either two primary doses or one
primary and one booster, are superior to the one dose schedule
TABLE 1 | The TAK-003 vaccine compositions of each serotype in the clinical trials.

Phases Phase1 Phase2 Phase3

Trials NCT01224639,
NCT01110551

NCT01224639,
NCT01110551

NCT01511250 NCT02425098 NCT02302066 NCT02747927

TDV1, PFU (% per
dose)

8 × 103 (3.59%) 2 × 104 (4.26%) 2 × 104 (4.26%) 2 × 104 (4.71%) 2.5 × 104 (5.40%) 4 × 103 (2.30%)

TDV2, PFU (% per
dose)

5 × 103 (2.24%) 5 × 104 (10.64%) 5 × 104

(10.64%)
5 × 103 (1.18%) 6.3 × 103 (1.36%) 1 × 104 (5.75%)

TDV3, PFU (% per
dose)

1 × 104 (4.48%) 1 × 105 (21.28%) 1 × 105

(21.28%)
1 × 105

(25.53%)
3.2 × 104 (6.91%) 4 × 104 (22.99%)

TDV4, PFU (% per
dose)

2 × 105 (89.69%) 3 × 105 (63.83%) 3 × 105

(63.83%)
3 × 105

(70.59%)
4.0 × 105

(86.34%)
1.2 × 105

(68.97%)
Total PFU of 4
serotypes

2.23 × 105 4.7 × 105 4.7 × 105 4.25 × 105 4.63 × 105 1.74 × 105
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in inducing seropositivity rates in participants who are
seronegative at the baseline.

Phase 3 Clinical Trials
The efficacy of TAK-003 was evaluated in a phase3 double-blind,
randomized, placebo-controlled trial (ClinicalTrials.gov
NCT02747927) (61, 62). This trial involved healthy children
and adolescents between the ages of 4 to 16 years in eight
dengue-endemic countries. Two doses of vaccine or placebo
were administered 3 months apart. Each dose of TAK-003
contained 4 × 103 (3.6 log10), 1 × 104 (4.0 log10), 4 × 104 (4.6
log10), and 1.2 × 105 (5.1 log10) PFU of TDV-1, TDV-2, TDV-3,
and TDV-4, respectively (Table 1).

At the end of 12 months follow-up post-second
vaccination, the overall VE in the per-protocol population
was 80.9% (95% CI, 75.2 to 85.3), with 95.4% efficacy against
dengue-related hospitalization (95% CI, 88.4 to 98.2) (62). The
efficacy varied among the serotypes, with reported efficacies of
73.7%, 97.7%, 62.6% against DENV1, DENV2, and DENV3
respectively (62). The results for efficacy against DENV-4 were
inconclusive due to the low number of DENV-4 cases (61, 62).
VE was similar across age ranges (72.8% to 83.3%). In
participants who were seronegative at baseline, VE was
74.9%, and in those who were seropositive at baseline, VE
was 82.2%. Against DENV1 and DENV2, VE was 79.8% and
96.5% respectively, among DENV-exposed participants; and
was 67.2% and 100% respectively, among DENV-naïve
participants. Due to the limited number of confirmed
dengue cases caused by DENV3 and DENV4, the results for
Frontiers in Immunology | www.frontiersin.org 6
DENV3 and DENV4 are inconclusive. Though inconclusive,
no efficacy was suggested against DENV3 (62).

At the end of 18 months follow-up post-second vaccination, a
cumulative VE of 80.2% (95% CI 73.3 to 85.3) was reported (61).
Analysis of secondary assessment timeframe (i.e., between 12-18
months) showed that overall VE was 73.3% (95% CI 66·5 to
78·8). VE was 76.1% (95% CI 68.5 to 81.9) in DENV-exposed
individuals, and 66.2% (49.1 to 77.5) in DENV-naïve individuals.
Against dengue-related hospitalization and dengue hemorrhagic
fever, VE was 90.4% (82.6 to 94.7) and 85.9% (31.9 to 97.1),
respectively. Efficacy also varied among the DENV serotypes:
69.8% (95% CI 54.8 to 79.9 for DENV1, 95.1% (89.9 to 97.6) for
DENV2, 48.9% (27.2 to 64.1) for DENV3, and 51.0% (–69.4 to
85.8) for DENV4. Notably, no VE was shown in seronegative in
DENV-naïve individuals against DENV3. Moreover, though
statistically inconclusive, TAK-003 led to more hospitalization
in DENV-naïve individuals because of DENV3 compared to
placebo (61). Data released at the end of 24 months follow-up
after vaccination showed that cumulative overall VE was 72.7%
(95% CI 67.1 to 77.3). In DENV-exposed individuals VE was
74.8% (95% CI, 68.6%-79.8%), and 67% (95% CI, 53.6%-76.5%)
in DENV-naïve participants. Cumulative serotype-specific
efficacy against DENV1, DENV2, and DENV3 were 69.0%,
90.8%, and 51.4% respectively. Efficacy against DENV4 was
inconclusive. However, analysis of VE in the second year
showed that VE had declined to 56.2% (95% CI, 42.3%-66.8%).
This drop in VE was partially attributed to a change in annual
serotype dominance variation (63). Lack of VE against DENV3
in DENV-naïve individuals persisted into the second year (63).
TABLE 2 | The longitudinal neutralizing antibody responses to four serotype dengue viruses with different dose schedules in a phase 2 trial (NCT02302066).

Dose
schedules

Two-dose primary One primary One primary dose plus 1-year
boost

placebo

Outcomes Geometric
mean titers
(95% CI)

Seroconversion
rates (%, 95%

CI)

Geometric
mean titers
(95% CI)

Seroconversion
rates (%, 95%

CI)

Geometric
mean titers
(95% CI)

Seroconversion
rates (%, 95%

CI)

Geometric
mean titers
(95% CI)

Seroconversion
rates (%, 95%

CI)

6-
month

DENV1
GMT

449 (293 to
688)

100.0 (95.7 to
100.0)

464 (330 to
653)

97.1 (93.3 to
99.0)

539 (391 to
742)

99.4 (96.8 to
100.0)

56 (29 to 106) 49.4 (38.1 to
60.7)

DENV2
GMT

1462(1072 to
1993)

98.8 (93.5 to
100.0)

1683 (1334 to
2124)

99.4 (96.8 to
100.0)

1335 (1067 to
1670)

99.4 (96.8 to
100.0)

77 (40 to 150) 49.4 (38.1 to
60.7)

DENV3
GMT

150 (97 to
233)

98.8 (93.5 to
100.0)

166 (118 to
235)

92.9 (88.0 to
96.3)

174 (126 to
241)

93.1 (88.3 to
96.4)

37 (22 to 65) 48.1 (36.9 to
59.5)

DENV4
GMT

109 (73 to
163)

92.8 (84.9 to
97.3)

110 (81 to
149)

90.6 (85.2 to
94.5)

92 (69 to 124) 85.1 (78.9 to
90.0)

22 (14 to 35) 44.4 (33.4 to
55.9)

18-
month

DENV1
GMT

476 (286 to
791)

95.1 (87.8 to
98.6)

461 (329 to
647)

97.0 (93.2 to
99.0)

1056 (804 to
1388)

98.8 (95.9 to
99.9)

92 (49 to 173) 62.5 (51.0 to
73.1)

DENV2
GMT

1212 (842 to
1744)

98.8 (93.3 to
100.0)

1242 (947 to
1628)

97.6 (94.0 to
99.3)

1457 (1182 to
1796)

100.0 (97.9 to
100.0)

177 (93 to
337)

68.8 (57.4 to
78.7)

DENV3
GMT

286 (171 to
478)

95.1 (87.8 to
98.6)

298 (205 to
433)

92.3 (87.1 to
95.8)

548 (411 to
730)

98.3 (95.0 to
99.6)

78 (44 to 137) 63.8 (52.2 to
74.2)

DENV4
GMT

98 (65 to 150) 87.7 (78.5 to
93.9)

102 (75 to
139)

86.9 (80.8 to
91.6)

172 (133 to
222)

97.1 (93.3 to
99.0)

33 (21 to 52) 57.5 (45.9 to
68.5)

48-
month

DENV1
GMT

378 (226 to
632)

96.9 (89.3 to
99.6)

421 (285 to
622)

94.7 (89.5 to
97.9)

719 (538 to
960)

100.0 (97.3 to
100.0)

100 (50 to
201)

68.3 (55.3 to
79.4)

DENV2
GMT

1052 (732 to
1511)

100.0 (94.5 to
100.0)

1319 (970 to
1794)

98.5 (94.7 to
99.8)

1200 (927 to
1553)

100.0 (97.3 to
100.0)

208 (99 to
437)

68.3 (55.3 to
79.4)

DENV3
GMT

183 (113 to
298)

95.4 (87.1 to
99.0)

201 (135 to
298)

90.2 (83.9 to
94.7)

288 (211 to
392)

97.8 (93.7 to
99.5)

71 (37 to 139) 63.5 (50.4 to
75.3)

DENV4
GMT

152 (97 to
239)

90.8 (81.0 to
96.5)

164 (114 to
236)

91.0 (84.8 to
95.3)

219 (165 to
290)

99.3 (96.0 to
100.0)

46 (26 to 82) 60.3 (47.2 to
72.4)
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More recently, 36 months follow-up data was released (64).
TAK-003 demonstrated cumulative overall VE of 62.0% (95% CI:
56.6% to 66.7%) against virologically confirmed dengue.
Amongst DENV-exposed individuals, VE was 65.0% (95% CI:
58.9% to 70.1%) and among DENV-naïve individuals, VE was
54.3% VE (95% CI: 41.9% to 64.1%). These results suggest that
there was a gradual waning of VE from 12 months to 36 months
post-immunization. Similar to earlier results, no VE was
observed against DENV3 in DENV-naïve individuals. TAK-
003 also led to a higher hospitalization rate in DENV-naïve
individuals (0.2%) because of DENV3 compared to placebo
(<0.1%). Such a phenomenon should be followed up in future
studies as it could be an early signal of ADE in seronegative
recipients when exposed to DENV3 (65).
COMPARISON OF CYD-TDV AND TAK-003
VACCINE EFFICACIES TO DENV
SEROTYPES

Both CYD-TDV and TAK-003 vaccines are tetravalent live-
attenuated viruses. In CYD-TDV, the prM and E proteins
from each DENV serotype are expressed from the YF17D
backbone and formulated into the same tetravalent vaccine.
However, protection efficacy was significantly different against
different DENV serotypes: highest against DENV3 and DENV4
and lowest against DENV2. Similarly, in TAK-003, the prM and
E proteins from each DENV serotype are expressed from the
DENV2 backbone and formulated into the same tetravalent
vaccine. However, protection efficacy was highest against
DENV2 and lowest against DENV4. Multiple factors likely
contribute to the observed differences in protection efficacy
with the two vaccines. The results appear to suggest different
immunogenicities of the serotype-specific DENV components
(prM and E) in the two vaccine formulations. This could be due
to intrinsic differences in immunogenicities of prM and E from
different DENV serotypes and/or differences in infectivity and
replication of the four chimeric viruses. Antigenic interference or
competition among the four chimeric viruses in the tetravalent
vaccines, especially when the same amount of each chimeric
virus was used, could also affect the balanced generation of nAb
against all four serotypes. Despite Takeda’s attempt in adjusting
formulation component ratios to elicit a more balanced response,
the improvement observed was limited. For example, despite the
changes in vaccine composition throughout phase 2 and phase 3
trials, the geometric mean titer of nAb was still imbalanced, with
anti-DENV4 the lowest and anti-DENV2 the highest. Notably,
Frontiers in Immunology | www.frontiersin.org 7
protection efficacy against DENV2 is lowest for CYD-TDV but
highest for TAK-003. This result would suggest that prM and E
from DENV2 are not intrinsically less immunogenic. However,
another difference between the two vaccines is that TAK-003
contains not only prM and E from DENV2 but also capsid
protein and all seven nonstructural proteins from DENV2, in
contrast, CYD-TDV contains only prM and E. Immune
responses to capsid and nonstructural proteins in TAK-003
likely contributed to the high protection efficacy against
DENV2 (see discussion on CD8+ T cell responses below).
TV003/TV005 DENGUE VACCINE
CANDIDATE

In contrast to utilizing a single common backbone vector in CYD-
TDV and TAK-003 formulations, the NIAID investigators took a
different approach in developing tetravalent live attenuated dengue
vaccines. They created a series of attenuated DENV by introducing
nucleotide deletions in the 3’ untranslated region (UTR) and
additional mutations in nonstructural proteins (66). Six
monovalent DENV vaccine candidates were evaluated in mouse
and non-human primates and finally four of them that covering all
four serotypes were selected for inclusion into a tetravalent vaccine
formulation (67). These monovalent DENV vaccine candidates are
as follows: rDEN1D30 (68), rDEN2/4D30 (69, 70), rDEN3-3′D4D30
(71), rDEN3D30/31 (71), rDEN4D30 (72), and rDEN4D30-200,201
(73, 74). rDEN1D30 and rDEN4D30 were generated through the
introduction of a 30-nucleotide deletion (D30) into the 3ʹUTR of
DENV1 and DENV4 genomes, respectively. In addition to the D30
deletion, rDEN3D30/31 includes an additional 31 nucleotide
deletion located 55 nucleotides upstream of the D30 mutation.
rDEN2/4D30 was a chimeric virus created by substituting the prM
and E gene segments of rDEN4D30 with those derived from
DENV2. Similarly, rDEN3-3′D4D30 was a chimeric virus created
by replacing the entire 3′UTR of DENV3 with the 3′ UTR of
rDEN4D30. rDEN4D30-200,201 is based on its rDEN4D30 parent
and contained alanine substitutions at amino acid position 200 and
201 of the NS5 proteins. Prior studies also showed that these
attenuated viruses were incapable of being transmitted by
mosquitoes (75).

Phase 1 Clinical Trials
Four different tetravalent admixtures (TV001-004) of the six
monovalent LAV were evaluated in flavivirus-naïve adults in a
r andomized , doub l e -b l i nd pha s e 1 c l i n i c a l t r i a l
(ClinicalTrials.gov NCT01072786) (Table 3) (67). Regardless
TABLE 3 | The NIAID vaccine candidate composition of each serotype.

Admixture Administered dose of each component (log10 PFU) DENV1 DENV2 DENV3 DENV4

TV001 3, 3, 3, 3 rDEN1D30 rDEN2/4D30 rDEN3-3′D4D30 rDEN4D30
TV002 3, 3, 3, 3 rDEN1D30 rDEN2/4D30 rDEN3-3′D4D30 rDEN4D30-200,201
TV003 3, 3, 3, 3 rDEN1D30 rDEN2/4D30 rDEN3D30/31 rDEN4D30
TV004 3, 3, 3, 3 rDEN1D30 rDEN2/4D30 rDEN3D30/31 rDEN4D30-200,201
TV005 3, 4, 3, 3 rDEN1D30 rDEN2/4D30 rDEN3D30/31 rDEN4D30
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of the admixture tested, no difference was observed in the
incidence of adverse events between participants who received
vaccines or placebos. Majority of the adverse events involved
mild rash (76). Admixture TV003 consisting of rDEN1D30,
rDEN2/4D30, rDEN3D30/31, and rDEN4D30, appeared to
induce the most balanced antibody responses across the four
DENV serotypes (Figure 1C). 97% of vaccinees developed
trivalent nAb responses after receiving a single dose of TV003.
In participants who were flavivirus-experienced prior to
vaccination, TV003 induced slightly higher DENV3 viremia,
higher neutralizing antibody titers to DENV2, -3, and -4, and a
higher tetravalent response frequency (77). It was demonstrated
in a human DENV2 challenge model that TV003 elicited
complete protection against dengue (76).

A booster dose of TV003 administered either at 6 months
(C l in i ca lTr i a l s . gov NCT01072786) or 12 months
(ClinicalTrials.gov NCT01782300) after the primary dose was also
evaluated in flavivirus-naïve participants to determine if a booster
dose can improve nAb titers (78, 79). No major adverse events
related to vaccination were observed for both trials. For the 12
months booster trial, the only statistically significant adverse event
reported by 63% of vaccinees was a mild vaccine-associated rash
which lasted on average 7.7 days (79). Although a booster TV003
dose administered at 6 months increased seroconversion rates to
DENV2 from 76% to 94%, a second TV003 dose was not found to
significantly increase mean peak nAb titers to any serotype (78).
Similarly, a booster TV003 dose administered at 12 months did not
significantly boost nAb titers to any serotype (79). Additionally, the
first vaccine dose induced sterilizing immunity capable of
neutralizing the booster vaccine dose. As such, a booster dose of
TV003 was unnecessary and provided only minimal benefits.

To increase the immune response towards DENV2, DENV2
dose was increased by 10-fold in TV005 (Table 3). TV005 was
then evaluated in two clinical trials (ClinicalTrials.gov
NCT01072786 and NCT01436422) (78). In both trials, no
TV005-related serious adverse events were noted, and the
occurrence of adverse events were not significantly different
between TV003 and TV005. TV005 significantly improves
seroconversion frequencies and overall antibody titers to
DENV2 while maintaining the immunogenicity of the other
serotypes. A single dose of TV005 was shown to elicit a
tetravalent response in 90% of vaccinees, compared to 76% for
TV003, by the third month after vaccination.

Phase 2 Clinical Trial
The Butantan Institute licensed TV003 from NIAID and
manufactured Butantan-DV, which is analogous to, but not the
same as, TV003. Subsequently, Butantan-DV was evaluated in a
phase 2 clinical trial (ClinicalTrials.gov NCT01696422) (80). The
trial recruited both DENV-naïve and DENV-exposed participants.
A dosing regimen involving a single dose of Butantan-DV followed
by a booster dose given at six months apart was investigated. Similar
to prior results, self-limiting rash was the most common adverse
event that occurred in the vaccinated group (88%-92%) compared
to placebo group. No significant differences in the frequency of
unsolicited adverse reactions were observed between DENV-naïve
and DENV-exposed participants. No significant differences in
Frontiers in Immunology | www.frontiersin.org 8
viremia post-vaccination between DENV-naive and DENV-
exposed participants were observed. 91 days after the first dose,
the overall seroconversion rates to DENV1, DENV2, DENV3 and
DENV4 were 94%, 82%, 82% and 88% respectively.
Seroconversions rates were significantly higher for DENV2 (92%
vs 78%) and DENV4 (89% vs 77%) in DENV-naïve participants
compared to DENV-exposed participants. No significant differences
in seroconversion frequency were observed between DENV-naïve
and DENV-exposed participants for DENV1 (87% vs 81%) and
DENV3 (76% vs 82%). However, GMT of nAb were significantly
higher in DENV-exposed participants for DENV1, DENV2 and
DENV3, but not DENV4. Following the booster dose, nAb GMT
and seroconversion rates were not significantly improved. This
corroborates with earlier observations that a single TV003 dose was
sufficient to elicit protective immunity against dengue (78).

TV005 is currently undergoing phase 2 clinical trial in Taiwan
(ClinicalTrials.gov NCT04133987), while a phase 3 clinical trial for
Butantan-DVhad been registered at ClinicalTrials.gov (NCT02406729).
CELLULAR IMMUNE RESPONSES
POST-VACCINATIONS

Generating an effective cellular immune memory is a hallmark of
LAV and the importance of cellular immune memory has been
validated in various vaccine studies (81–83). The cellular
immune responses after natural dengue infections mainly
involved recognition of NS1, NS2A and NS3 (84–86), which
were absent in the CYD-TDV vaccine. Instead, the CYD-TDV
vaccine elicited mostly YF-17D NS3 specific CD8+ T cell
responses and DENV serotype-specific CD4+ T cell responses
(87). By using DENV2 PDK-53 as a backbone vector, the TAK-
003 vaccine promoted significant CD8+ T cell activation and
moderate CD4+ T cell activation. The elicited cellular immune
responses persisted for at least 120 days after vaccination and its
specificity span the DENV proteome with preference for NS1,
NS3, and NS5 peptides (88). Since nonstructural proteins in
TAK-003 are all from DENV2, the total cellular responses to
DENV2 NS proteins far exceeded the responses elicited from the
other three DENV serotypes (88). Collectively, these studies
suggest that when YFV or DENV2 was used as the sole
vaccine backbone, cellular immune responses were restricted to
backbone-dominated T cell responses.

By incorporating the NS proteins from three DENV serotypes
(DENV1, DENV3 and DENV4), the TV003 vaccine induced
broad and cross-reactive T cell responses. Each component of the
TV003 tetravalent vaccine elicited detectable CD8+ T cell
responses comparable to natural dengue infection. ELISPOT
assays performed on PBMCs from monovalent vaccinated
participants showed that structural proteins and NS proteins
were responsible for 10-40% and 60-90% of the total IFN-g
responses, respectively (89). Strikingly, in the PBMCs of
participants vaccinated with the tetravalent TV003 vaccine, NS
proteins accounted for 99.8% of IFN-g responses elicited, and
highly conserved epitopes in NS3 and NS5 were responsible for
93% of the responses (89). Data from the TV003 phase 2 clinical
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trial also showed that 91 days after the first TV003 dose, 94% of
participants had antigen-specific CD8+ T cell IFN-g response.
These CD8+ T cell responses were not significantly different
between DENV-naïve and DENV-exposed participants (80).

In contrast to the CD8+ responses induced by NS3 and NS5
proteins, CD4+ T cells induced by TV005 vaccination
dominantly recognized capsid, NS2A and NS5 proteins,
thereby suggesting differences in immunodominance pattern in
the NS proteins. Such immunodominance observed after TV005
vaccination was similar to those observed in natural
infection (90).
LESSONS AND CHALLENGES OF
DENGUE VACCINE DEVELOPMENT

One of the most important lessons in dengue vaccine
development, is the occurrence of breakthrough dengue
infection following DENV vaccination. Given the dual roles
that antibodies play in controlling DENV infection, it is
important that vaccines stimulate a balanced nAb response
against all four DENV serotypes to achieve optimal protection
with no or minimal ADE. This is especially important in
seronegative vaccinees, where partially protective DENV
vaccines can mimic a first dengue infection. As short-term
vaccine-induced heterotypic protection decline, the vaccinee is
left with suboptimal homotypic (i.e., from an immunodominant
serotype) protection, which can predispose them to severe
dengue when a breakthrough infection occurs. Thus, during
vaccine development, baseline serostatus of vaccinees,
serotype-specific differences in efficacy, and durability of
protection should always be considered (91).

Second, it is critical to consider the targets of nAb when
designing dengue vaccines. For example, studies have shown
that highly specific and neutralizing antibodies primarily
target the EDIII domain of the E protein, while weak cross-
reactive antibodies target prM (92, 93). As such detailed
characterization of the epitopes of vaccine-induced antibodies
is important. Antibody depletion studies in TV003 vaccinees
showed that 62%, 76%, 86% and 100% of vaccinees developed
type-specific (TS) nAb to DENV1, DENV2, DENV3 and
DENV4, respectively. 48% of vaccinees had TS nAb to all
four DENV serotype, while another 29% of vaccinees had TS
nAb to 3 out of 4 DENV serotypes. These TS nAb generally
map to epitopes on domains on the E protein (94). In contrast,
5%, 83%, 12% and 27% of TAK-003 vaccinees developed TS
nAb to DENV1, DENV2, DENV3 and DENV4, respectively.
Most of the anti-DENV2 TS nAb bind to DENV2 EDIII
epitopes (95). To avoid the generation of anti-prM, a
tetravalent subunit virus-like particle vaccine, DSV4, which
expresses EDIII of all four DENVs but not prM, had been
engineered. In mouse models, DSV4 was shown to elicit mainly
type-specific antibodies and protected mice from lethal DENV
challenge without promoting ADE (96).

Third, given the importance of generating broad nAb (bnAb),
alternative approaches to vaccine design can be considered.
Frontiers in Immunology | www.frontiersin.org 9
Different strategies had been developed to identify such bnAb.
Hu et al. employed a competitive sorting strategy utilizing yeast
surface display of a naïve single chain antibody library isolated
from human donors and identified a bnAb targeting domain III
of the E protein (97). Another strategy involved characterizing B
cells isolated from DENV-vaccinated macaques. Six bnAbs
targeting various epitopes on the E protein were identified
(98). A third strategy involving characterizing plasmablasts
from DENV-infected patients led to the identification of two
bnAb targeting domain I of the E protein (99). However, it
remains to be seen if bnAb identified in these in vitro screens can
translate to in vivo neutralizing activity. Indeed, Durham et al.
noted that the two bnAbs they identified contributed minimally
to the overall neutralizing activity of the patients’ serum (99).
Another challenge is how an immunogen that triggers these
bnAbs can be reverse engineered to become a vaccine candidate.

Fourth, given the importance of neutralizing antibodies in
conferring protection against DENV infection, a reliable test to
measure such immune responses is critical. The plaque reduction
neutralization test (PRNT) is commonly used to determine
DENV neutralizing antibodies and immunogenicity of vaccine
candidates. Although the WHO has released its guidelines on the
performance of the PRNT assay (100), the PRNT is still highly
variable depending on assay reagents and conditions (101). For
example, it was reported that inter-laboratory differences
account for about 50% of variations in PRNT titers (102).
Also, the correlation between neutralizing antibodies and
DENV-infection protection is not absolute (103–107). As such,
there is a pressing need to identify and develop assays to better
identify surrogates of DENV protection.

Fifth, clinically relevant immune mechanisms change over
time following natural infection or vaccination. For example,
high nAb titers might be important in conferring immunity
immediately post-vaccination, but a good CD4 response might
be required for longer term maintenance of B cell memory (108).
Consequently, the inclusion of T cell epitopes in the vaccines
may increase vaccine efficacy. Most of the CD8 and CD4 T cell
epitopes are found in the non-structural proteins (i.e. NS2A/B
NS3, and NS5), and the presence of these T cell epitopes in
TV003 have been suggested to partially contribute to its observed
efficacy with a single dose (109). Alternatively, strategies such as
sequential monovalent heterologous immunizations have also
been shown to promote T cell responses post-vaccination in mice
(110, 111).

Sixth, given the similarities in the structure of the E protein
among flaviviruses, such as yellow fever virus (YFV), Zika virus
and Japanese encephalitis virus (JEV), there is a possibility that
prior flavivirus infection may generate cross-reactive DENV
antibodies, resulting in ADE. For example, it was suggested
that pre-existing anti-JEV antibodies can increase YFV viremia
after YFV vaccination (112). Pre-existing DENV antibodies were
also noted to either protect against Zika infection or potentiate
Zika infection through ADE, depending on antibody
concentration (113). In mouse models, CYD-TDV enhances
Zika virus infection through ADE (96). Thus, it is important to
evaluate the risk of ADE from vaccination in flavivirus-exposed
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population. Furthermore, considering the increased risk of
dengue-related hospitalization and severe dengue manifest
between 18 months and 3 years after the last dose of vaccine, a
longer post-vaccination surveillance is required to assess the
overall safety of dengue vaccines.

In summary, development of a dengue vaccine that confers
effective protection against all four DENV serotypes with no or
minimal of ADE remains a challenge. The different designs of
tetravalent live attenuated dengue vaccines and their extensive
evaluations in humans so far have shed light on the vaccine
design considerations. With infusion of new technologies, such
as mRNA-based vaccines, an effective dengue vaccine should be
within the reach in the near future.
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