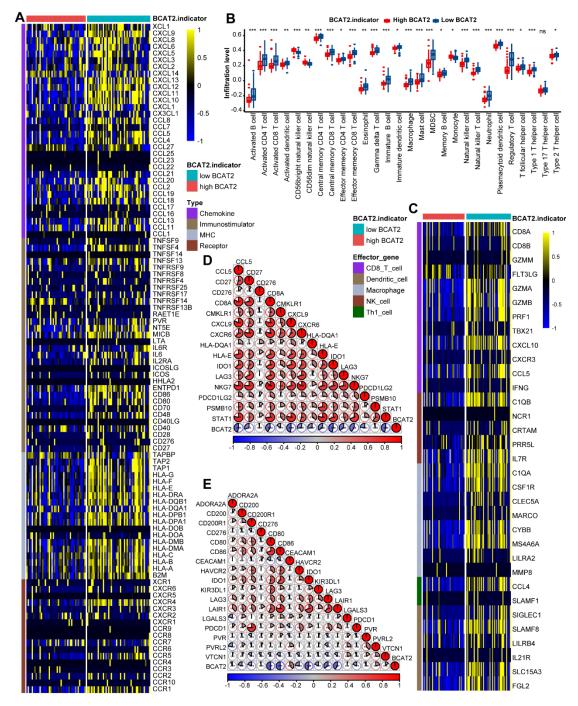
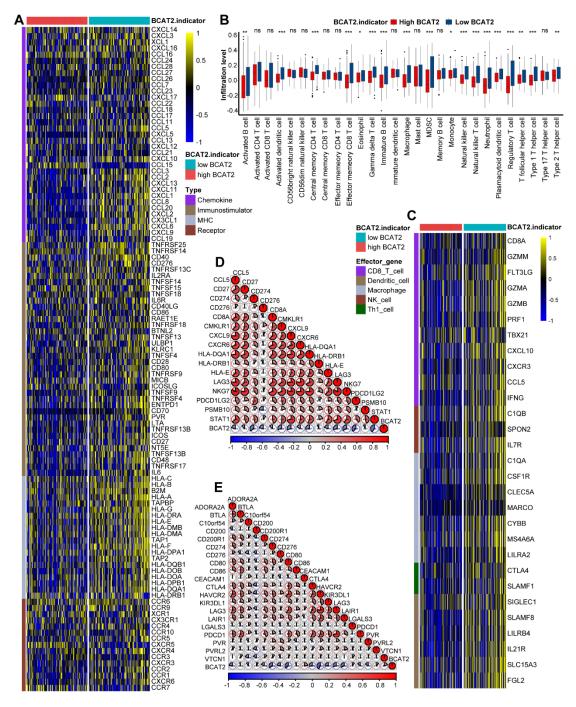
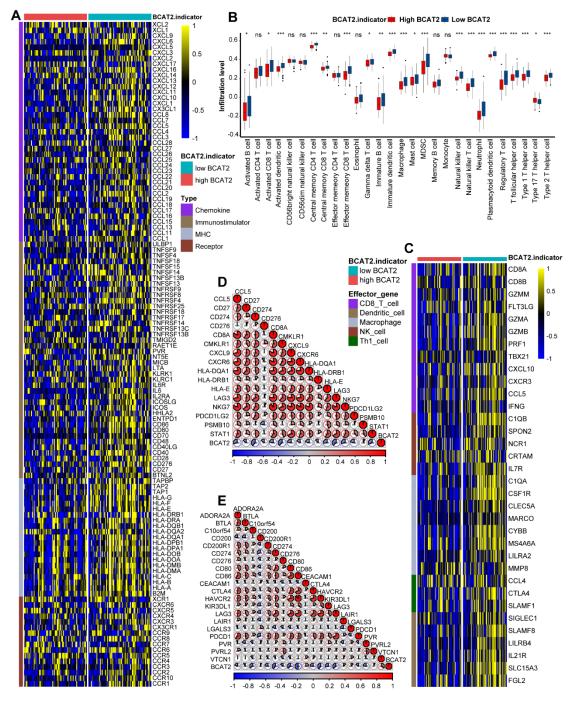
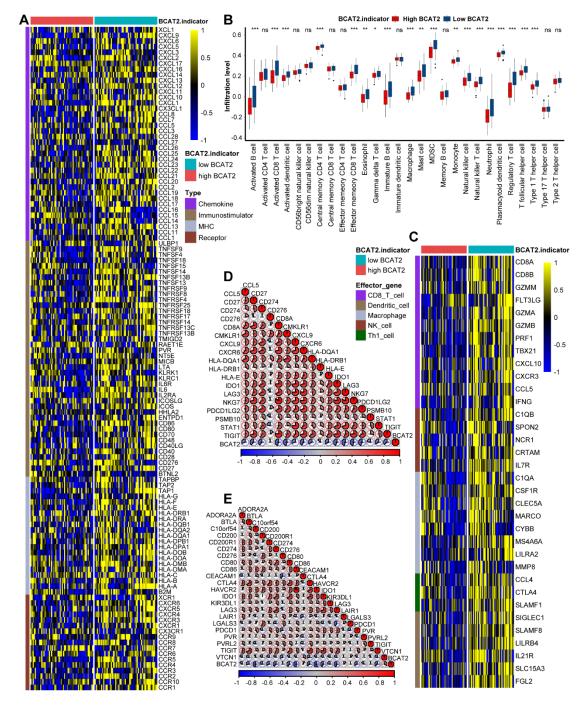

Supplementary Fig 1. Pan-cancer analysis of BCAT2 in tissues and cancer cell lines. (A) Expression patterns of BCAT2 in 33 types of cancer and adjacent normal tissues. (b) Expression pattern of BCAT2 in Xiangya BLCA cohort. (C) Expression patterns of BCAT2 in various cancer cell lines.

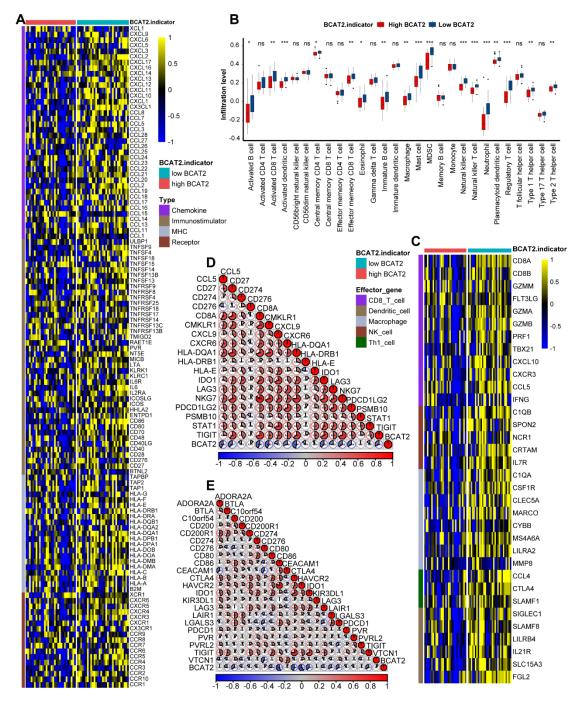

Supplementary Fig 2. Pan-cancer analysis of immunosuppressive role of BCAT2.

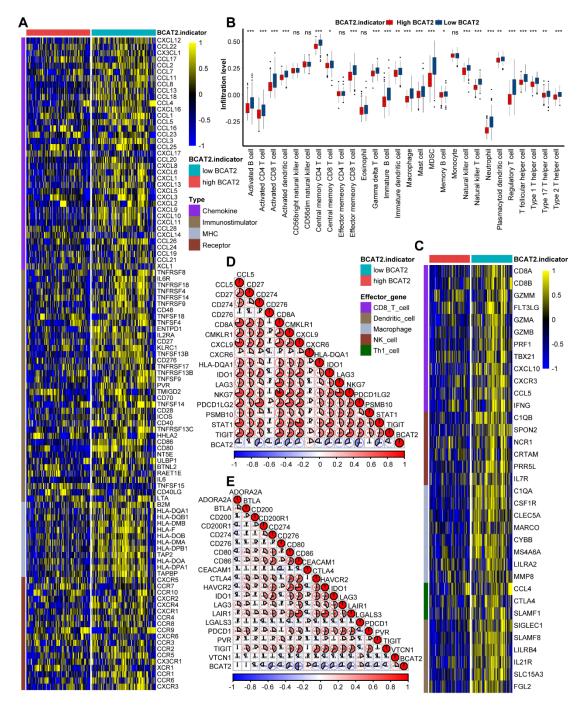
(A) Correlation analyses between BCAT2 and immunological related indicators in 33 types of cancer. Grid color represents positive or negative correlation. *P< 0.05. (B) Correlation analyses between BCAT2 and TIICs in 33 types of cancer. Grid color represents positive or negative correlation. *P< 0.05, **P< 0.01, ***P< 0.001. Correlation analyses between BCAT2 and effector genes of ICB (C) PD-1 (D) PD-L1 (E) CTLA-4 (F) LAG-3 in 33 types of cancer. Purple circle means correlation with significance and grey circle means correlation with no significance. Circle in the upper

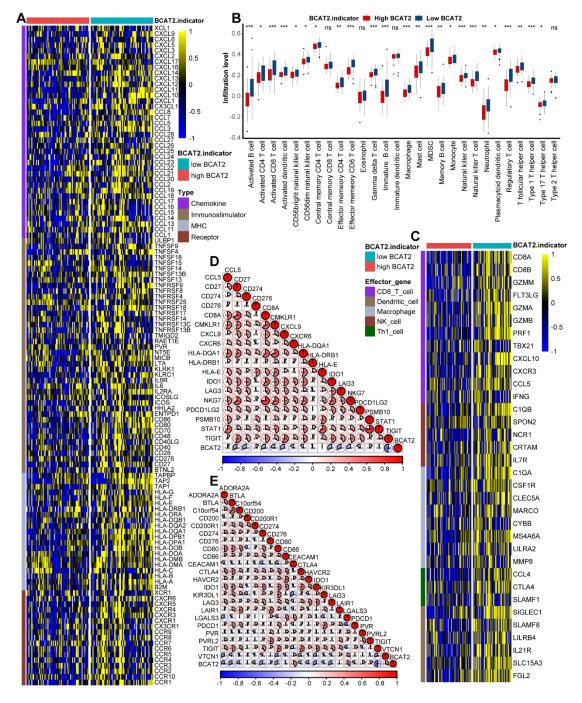

half of square represents positive relationship and circle in the bottom half square represents negative relationship. Red arrow points to BLCA.

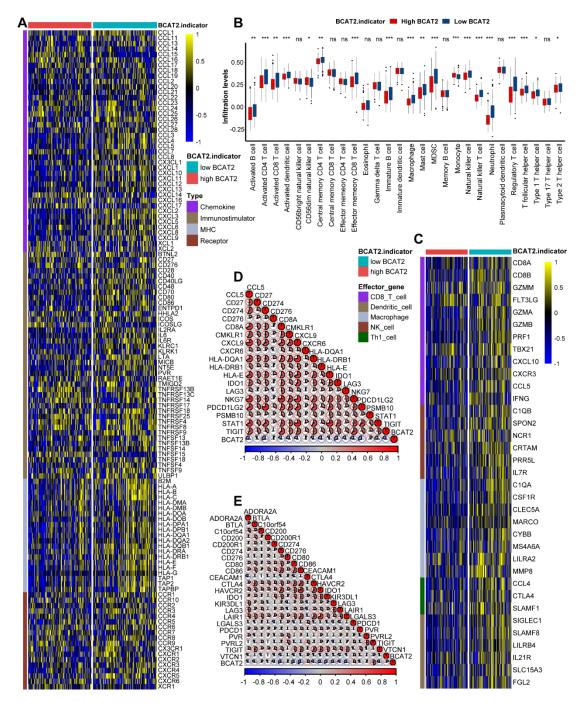

Supplementary Fig 3. Correlation between BCAT2 and TIS. (A) Correlation between BCAT2 and effector genes of TIS in BLCA. (B) Correlation between BCAT2 and TIS in pan-cancer analysis.

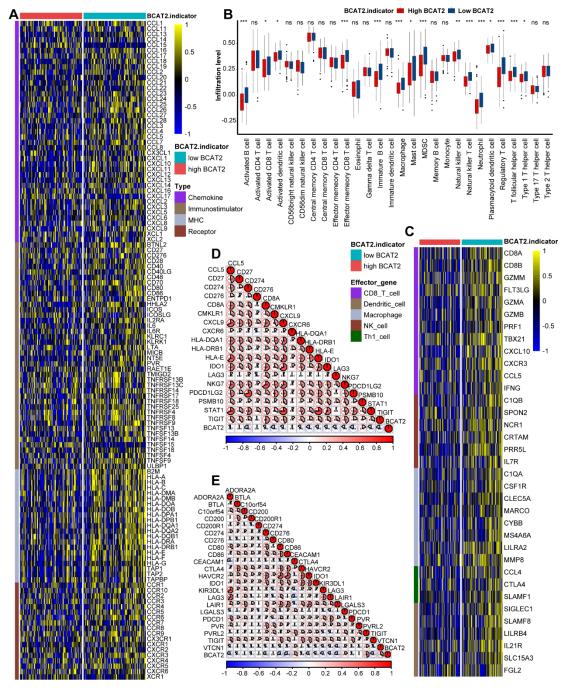

GSE31684


GSE32894

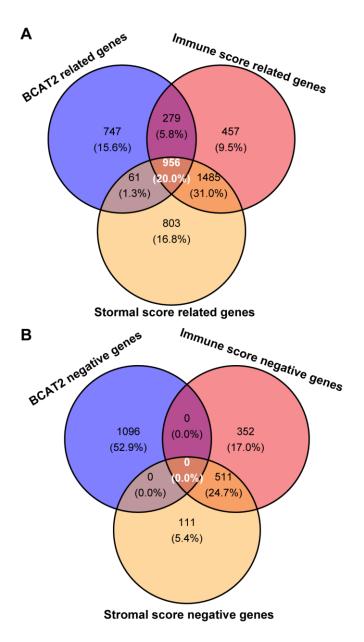

GSE48075

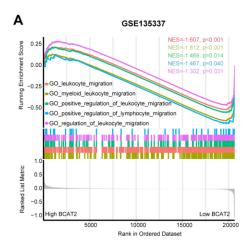

GSE48276

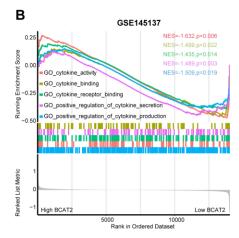

GSE69795


GSE83586

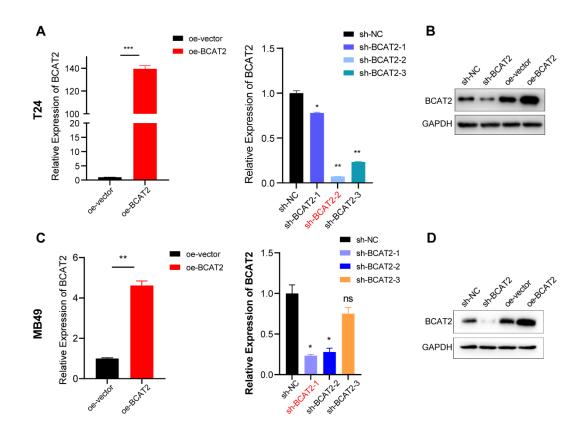
GSE86411


GSE87304

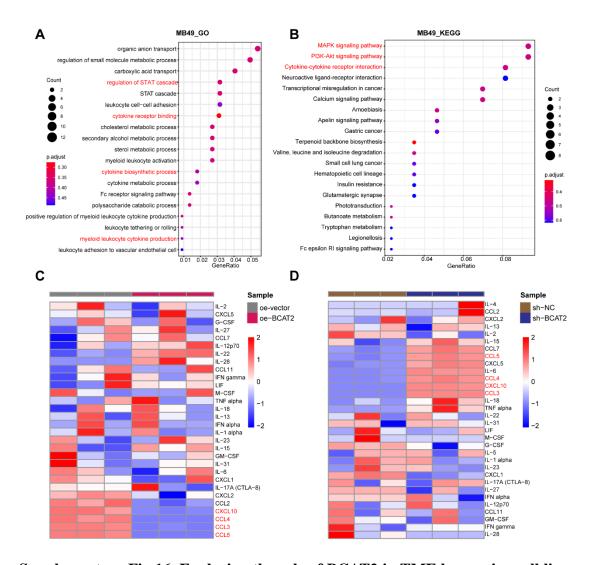

GSE128702

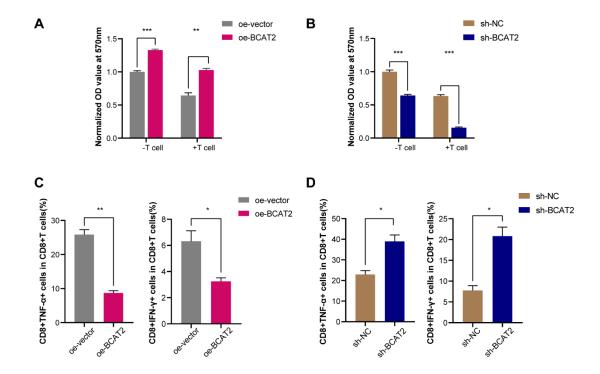

Supplementary Fig 4-12. Validation of immunosuppressive role of BCAT2 in nine BLCA cohorts (GSE31684, GSE32894, GSE48075, GSE48276, GSE69795, GSE83586, GSE86411, GSE87304 and GSE128702). (A) Expression patterns of chemokines, chemokine receptors, MHC effector genes and immunostimulators in high and low BCAT2 groups (B) Infiltration levels of TIICs in high and low BCAT2 groups (C) Effector genes of multiple subtypes of immune cell (CD8⁺ T cell, DC, Macrophage, NK and Th1) in high and low BCAT2 groups (D) Correlation between BCAT2 and TIS

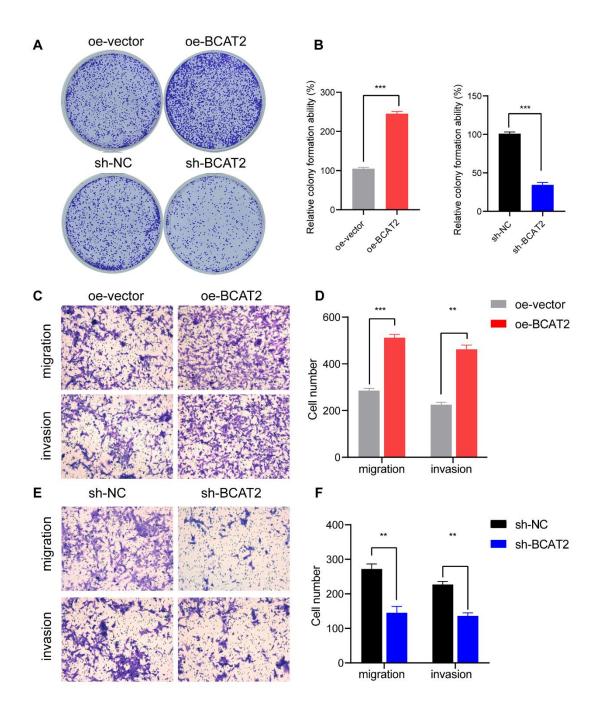
score (E) Correlation between BCAT2 and inhibitory immune checkpoints. Number in the circle means correlation coefficient. *P< 0.05, **P< 0.01, ***P< 0.001, ns: no significance.

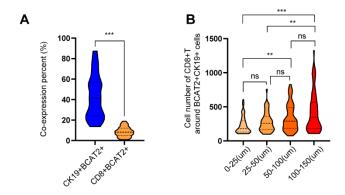


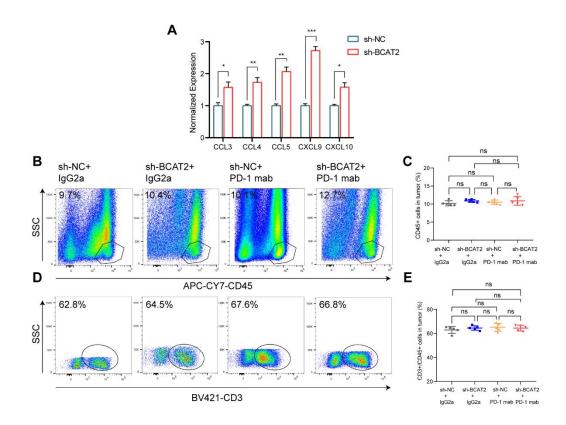
Supplementary Fig 13. Overlap of BCAT2, immune score and stromal score related genes. (A) Intersection of BCAT2, immune score and stromal score related genes. (B) Intersection of BCAT2, immune score and stromal score negative-related genes.



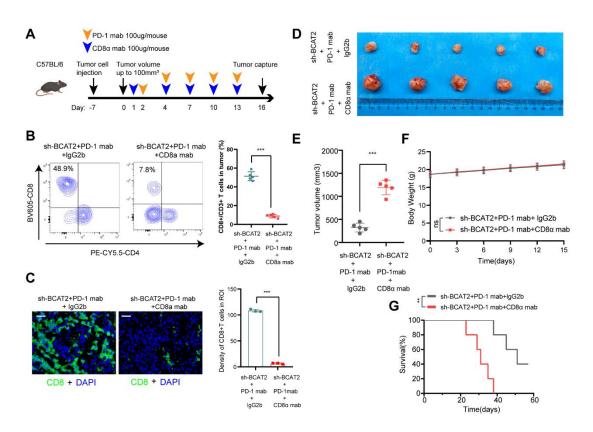

Supplementary Fig 14. GSEA analyses of differences on activity of TME related pathways between high and low BCAT2 groups by scRNA-seq. (A) GSEA analyses of GO terms indicate different activities of immune cell migration related pathways between high and low BCAT2 groups in GSE135337 scRNA cohort (B) GSEA analyses of GO terms indicate different activities of cytokine related pathways between high and low BCAT2 groups in GSE145137 scRNA cohort.


Supplementary Fig 15. Validation of BCAT2 OE and BCAT2 KD cell lines. (A) Validation of BCAT2 expression level in T24 cell line using qRT-PCR. *P<0.05, **P<0.01, ***P<0.001. (B) Validation of BCAT2 expression level in T24 cell line using Western blot. (C) Validation of BCAT2 expression level in MB49 cell line using qRT-PCR. *P<0.05, **P<0.01, ns: no significance. (D) Validation of BCAT2 expression level in MB49 cell line using Western blot.

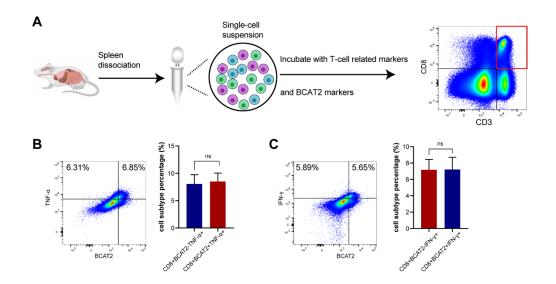

Supplementary Fig 16. Exploring the role of BCAT2 in TME by murine cell line. (A-B) GO and KEGG analyses of DEGs between murine BCAT2 OE and BCAT2 KD cell lines. (C-D) ProcartaPlex multiple immunoassays detected secretion levels of cytokines and chemokines in BCAT2 OE, BCAT2 KD and negative control cell lines.


Supplementary Fig 17. The variation of cytotoxicity of T cells and activity of CD8+T cells in different coculture system. (A) Normalized OD value at 570 nm of remained cancer cells (BCAT2-OE and negative control) with and without coculturing with T cells (n=3 per group). **P<0.01, ***P<0.001. (B) Normalized OD value at 570 nm of remained cancer cells (BCAT2-KD and negative control) with and without coculturing with T cells (n=3 per group). ***P<0.001. (C-D) Flow cytometry analysis of proportions of CD8+TNF- α + T cells and CD8+IFN- γ + T cells in different coculture systems (n=3 per group). *P<0.05, **P<0.01.

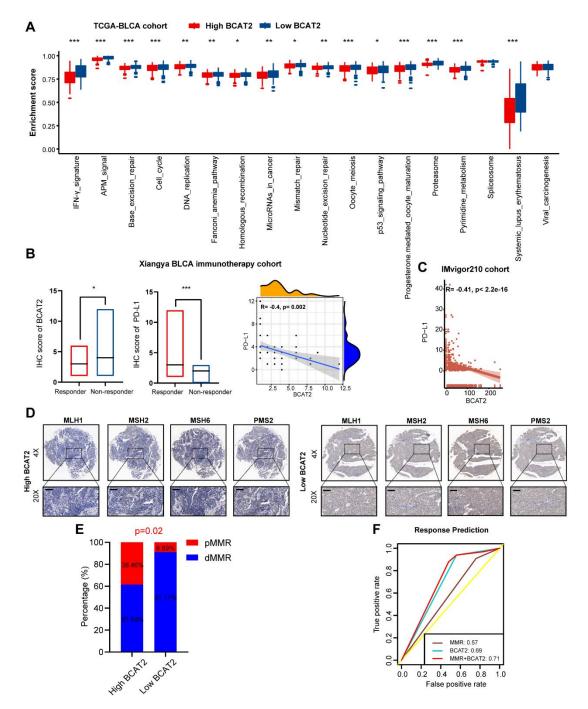
Supplementary Fig 18. The oncogenic role of BCAT2 in vitro. (A-B) Overexpression of BCAT2 significantly enhanced proliferation ability of T24 and knock down of BCAT2 significantly inhibited proliferation ability of T24. ***P< 0.001. (C-F) Overexpression of BCAT2 significantly stimulated migration and invasion abilities of T24 and knock down of BCAT2 significantly impaired migration and invasion abilities of T24. **P< 0.01, ***P< 0.001.



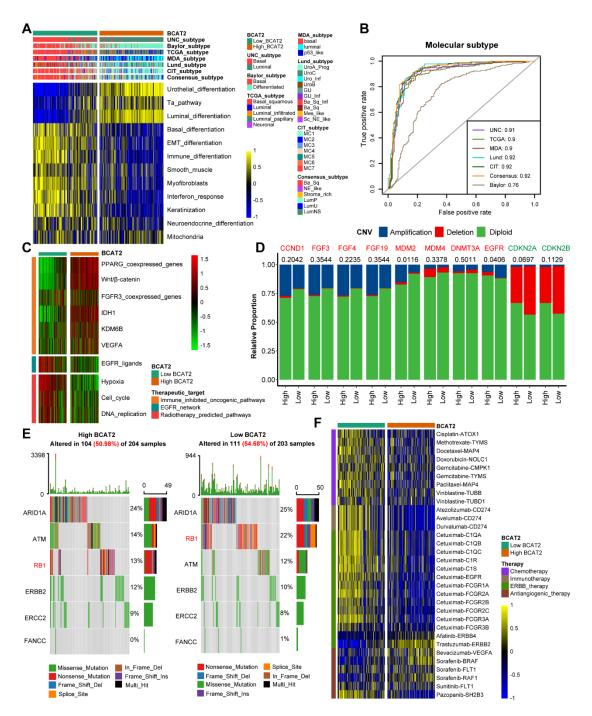
Supplementary Fig 19. Exploring exclusive spatial relationship between BCAT2⁺ **tumor cells and CD8**⁺**T cells on human tissue level.** (A) Co-expression proportions of BCAT2⁺CK19⁺ cells and BCAT2⁺CD8⁺ cells in TMA of Xiangya BLCA cohort (n=56). ***P<0.001. (B) Multi-dimensional distance gradient analyses of CD8⁺T cells around BCAT2⁺ tumor cells in TMA of Xiangya BLCA cohort (n=56). **P<0.01, ***P<0.001, ns: no significance.



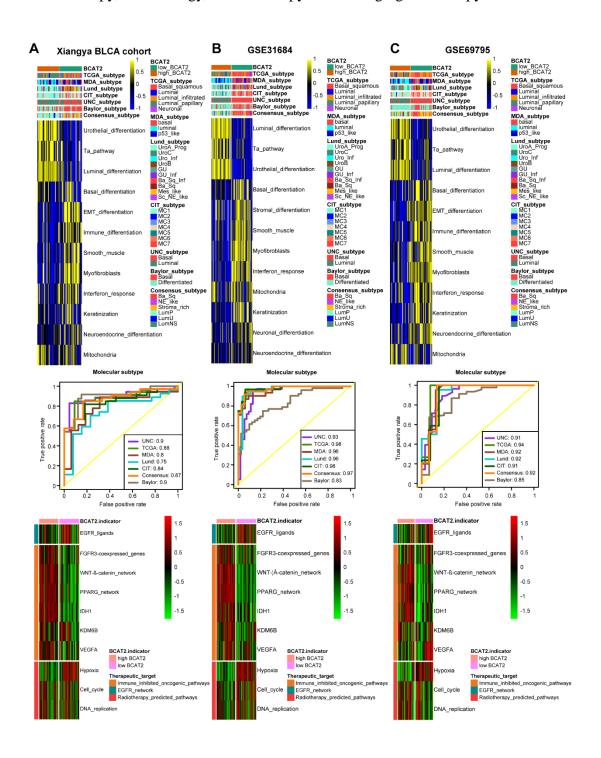
Supplementary Fig 20. The role of BCAT2 on CD8⁺T cell related chemokines, leukocytes and T cells in vivo. (A) Exploring the role of BCAT2 on CD8⁺T cell related chemokines in vivo by qRT-PCR (n=3 per group). *p<0.05, **p<0.01, ***p<0.001. (B-


C) Flow cytometry analysis of proportion of leukocytes (CD45⁺) (n=5 per group) and (D-E) T cells (CD45⁺CD3⁺) in different therapy regimens (n=5 per group). ns: no significance.

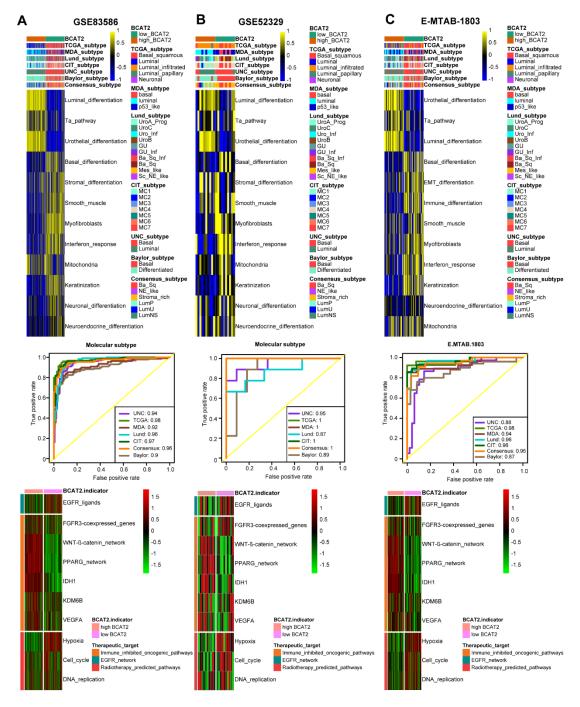
Supplementary Fig 21. CD8⁺T cells act an indispensable part in synergistic effect of cotreatment. (A) Flow diagram of treatment plan. (B) Validation of successful depletion of CD8⁺T cells (n=5 per group) by flow cytometry analysis. ***P<0.001. (C) Validation of successful depletion of CD8⁺T cells by IF (n=3 per group). Scale bar: 20um. ***P<0.001. (D) Subcutaneous tumor model of different therapy regimens. (E) Tumor volume (F) body weight and (G) survival time of tumor-bearing mice (n=5 per group) in different therapy regimens. **P<0.01, ***P<0.001, ns: no significance.



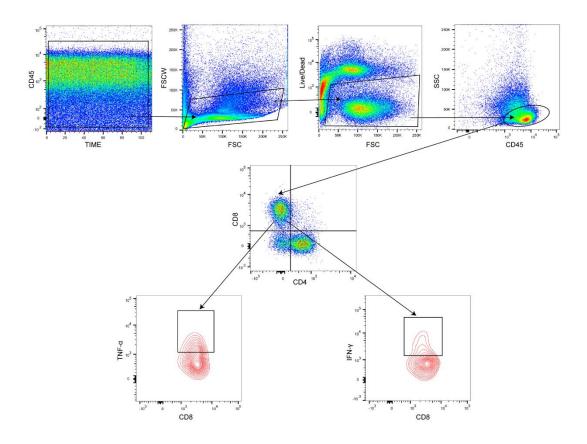
Supplementary Fig 22. The interaction between expression level of BCAT2 on CD8+T cell and activity of CD8+T cell. (A) Flow diagram of interaction exploration. (B) Proportions of CD8+TNF- α^+ T cells and (C) CD8+IFN- γ^+ T cells between BCAT2+CD8+ and BCAT2-CD8+ groups (n=3 per group). ns: no significance.

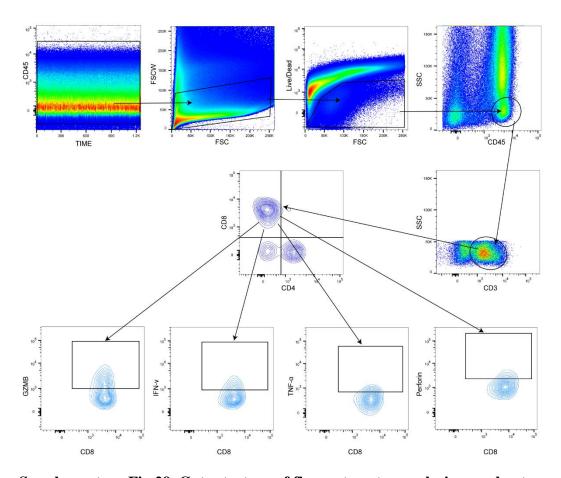

Supplementary Fig 23. The potential of BCAT2 in predicting efficacy of immunotherapy. (A) Enrichment scores of immunotherapy-related pathways between high and low BCAT2 groups in TCGA-BLCA cohort. *P<0.05, **P<0.01, ***P<0.001. (B) IHC score and correlation of BCAT2 and PD-L1 in Xiangya BLCA immunotherapy cohort. *P<0.05, ***P< 0.001. (C) Correlation between BCAT2 and PD-L1 in IMvigor210 cohort. (D) IHC image (scale bar: 50um) of marker genes of MMR and (E) difference of MMR's status (pMMR and dMMR) between high and low BCAT2 groups in Xiangya BLCA immunotherapy cohort. (F) Prediction accuracy of MMR, BCAT2

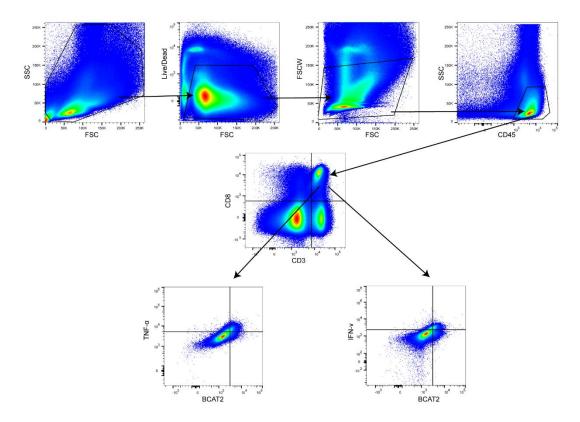

and combination index (MMR+BCAT2) in Xiangya BLCA immunotherapy cohort.



Supplementary Fig 24. The value of BCAT2 in forecasting molecular subtype and guiding precision therapy. (A) The effect of different expression level of BCAT2 on molecular classification systems and activities of basal and luminal related pathways. (B) Prediction accuracy of BCAT2 on molecular subtypes. (C) Activities of EGFR target therapy and radiotherapy related pathways in high and low BCAT2 groups (D) CNV rates of HPD associated biomarkers in different expression of BCAT2. Positive


effector genes of HPD were marked in red and negative effector genes of HPD were marked in green. (E) Mutation rates of NAC related genes in high and low BCAT2 groups. (F) The effect of different expression level of BCAT2 on effector genes of chemotherapy, immunology, ERBB therapy and antiangiogenic therapy.




Supplementary Fig 25-27. Validation of prediction accuracy of BCAT2 on molecular classification and treatment sensitivity in nine BLCA cohorts (Xiangya BLCA cohort, GSE31684, GSE69795, GSE48075, IMvigor210, GSE128702, GSE83586, GSE52329 and E-MTAB-1803). (A) The effect of different expression level of BCAT2 on molecular classification systems and activities of basal and luminal related pathways. (B) Prediction accuracy of BCAT2 on molecular subtypes. (C) Activities of EGFR target therapy and radiotherapy related pathways in high and low BCAT2 groups.

 $Supplementary\ Fig\ 28.\ Gate\ strategy\ of\ flow\ cytometry\ analysis\ on\ coculture\ assay.$

Supplementary Fig 29. Gate strategy of flow cytometry analysis on subcutaneous tumorigenesis model

Supplementary Fig 30. Gate strategy of flow cytometry analysis on the interaction between expression level of BCAT2 on CD8⁺T cell and activity of CD8⁺T cell.

Supplementary Table 1. The clinicopathological data of Xiangya BLCA cohort.

ID	Age	Gender	Overall survival	Pathological grade	Pathological stage
			(uay)		
XYBC-1	58	Female	377	High	T4N0M0
XYBC-2	50	male	1518	High	T2N1M0
XYBC-3	63	male	946	High	T1N0M0
XYBC-4	53	male	1258	High	T1N0M0
XYBC-5	46	male	1213	High	T3bN1M0
XYBC-6	72	Female	1192	Low	T1N0M0
XYBC-7	69	Female	1047	High	T3N0M0
XYBC-8	60	male	970	High	T1N0M0
XYBC-9	57	male	443	High	T3N0M0

XYBC-10	70	male	975	Low	T1N0M0
XYBC-11	54	male	877	High	T1N0M0
XYBC-12	61	male	911	High	T1N0M0
XYBC-13	67	male	914	High	T2N0M0
XYBC-14	62	male	662	High	T3N0M0
XYBC-15	55	male	905	High	T1N0M0
XYBC-16	66	male	423	High	T2aN0M0
XYBC-17	66	male	851	High	T1N0M0
XYBC-18	45	male	876	High	T4N0M0
XYBC-19	71	male	857	High	T2N0M0
XYBC-20	74	male	807	High	T3bN1M0
XYBC-21	63	male	797	High	T4N0M0
XYBC-22	62	Female	766	High	T2N0M0
XYBC-23	55	male	781	Low	T1N0M0
XYBC-24	59	male	881	High	T4N0M0
XYBC-25	70	male	797	High	T4N1M0
XYBC-26	54	male	736	High	T1N0M0
XYBC-27	69	male	736	High	T2N0M0
XYBC-28	73	male	859	High	T2bN0M0
XYBC-29	75	male	659	High	T1N0M0
XYBC-30	77	male	671	High	T3N1M0
XYBC-31	50	Female	689	High	T3N0M0
XYBC-32	66	male	645	Low	T1N0M0
XYBC-33	77	Female	653	High	T3N0M0
XYBC-34	60	male	646	High	T1N0M0
XYBC-35	70	male	622	High	T2N0M0
XYBC-36	60	male	147	High	T3N0M0
XYBC-37	80	male	972	High	T3N0M0
XYBC-38	66	male	606	High	T2bN0M0
		·		·	

XYBC-39 77 male 592 Low T1N0M0 XYBC-40 83 male 565 Low T1N0M0 XYBC-41 73 male 592 Low T1N0M0 XYBC-42 70 male 549 High T2N0M0 XYBC-43 33 male 556 Low T1N0M0 XYBC-44 45 male 526 High T4N0M0 XYBC-45 56 male 523 High T4N0M1 XYBC-45 56 male 534 High T2N0M1 XYBC-46 64 male 534 High T3aN1M1 XYBC-47 65 Female 239 High T2bN0M0 XYBC-48 78 male 299 High T2bN0M0 XYBC-49 67 Female 725 Low T1N0M0 XYBC-50 71 male 159 High T1N0M0 XYBC-52 65 male 240 High T1N0M0						
XYBC-41 73 male 592 Low T1N0M0 XYBC-42 70 male 549 High T2N0M0 XYBC-43 33 male 556 Low T1N0M0 XYBC-44 45 male 526 High T4N0M0 XYBC-45 56 male 523 High T4N0M1 XYBC-46 64 male 534 High T2N0M1 XYBC-47 65 Female 239 High T3aN1M1 XYBC-48 78 male 299 High T2bN0M0 XYBC-49 67 Female 725 Low T1N0M0 XYBC-50 71 male 159 High T4N0M1 XYBC-51 62 male 235 Low T1N0M0 XYBC-52 65 male 240 High T1N0M0	XYBC-39	77	male	592	Low	T1N0M0
XYBC-42 70 male 549 High T2N0M0 XYBC-43 33 male 556 Low T1N0M0 XYBC-44 45 male 526 High T4N0M0 XYBC-45 56 male 523 High T4N0M1 XYBC-46 64 male 534 High T2N0M1 XYBC-47 65 Female 239 High T3aN1M1 XYBC-48 78 male 299 High T2bN0M0 XYBC-49 67 Female 725 Low T1N0M0 XYBC-50 71 male 159 High T4N0M1 XYBC-51 62 male 235 Low T1N0M0 XYBC-52 65 male 240 High T1N0M0	XYBC-40	83	male	565	Low	T1N0M0
XYBC-43 33 male 556 Low T1N0M0 XYBC-44 45 male 526 High T4N0M0 XYBC-45 56 male 523 High T4N0M1 XYBC-46 64 male 534 High T2N0M1 XYBC-47 65 Female 239 High T3aN1M1 XYBC-48 78 male 299 High T2bN0M0 XYBC-49 67 Female 725 Low T1N0M0 XYBC-50 71 male 159 High T4N0M1 XYBC-51 62 male 235 Low T1N0M0 XYBC-52 65 male 240 High T1N0M0	XYBC-41	73	male	592	Low	T1N0M0
XYBC-44 45 male 526 High T4N0M0 XYBC-45 56 male 523 High T4N0M1 XYBC-46 64 male 534 High T2N0M1 XYBC-47 65 Female 239 High T3aN1M1 XYBC-48 78 male 299 High T2bN0M0 XYBC-49 67 Female 725 Low T1N0M0 XYBC-50 71 male 159 High T4N0M1 XYBC-51 62 male 235 Low T1N0M0 XYBC-52 65 male 240 High T1N0M0	XYBC-42	70	male	549	High	T2N0M0
XYBC-45 56 male 523 High T4N0M1 XYBC-46 64 male 534 High T2N0M1 XYBC-47 65 Female 239 High T3aN1M1 XYBC-48 78 male 299 High T2bN0M0 XYBC-49 67 Female 725 Low T1N0M0 XYBC-50 71 male 159 High T4N0M1 XYBC-51 62 male 235 Low T1N0M0 XYBC-52 65 male 240 High T1N0M0	XYBC-43	33	male	556	Low	T1N0M0
XYBC-46 64 male 534 High T2N0M1 XYBC-47 65 Female 239 High T3aN1M1 XYBC-48 78 male 299 High T2bN0M0 XYBC-49 67 Female 725 Low T1N0M0 XYBC-50 71 male 159 High T4N0M1 XYBC-51 62 male 235 Low T1N0M0 XYBC-52 65 male 240 High T1N0M0	XYBC-44	45	male	526	High	T4N0M0
XYBC-47 65 Female 239 High T3aN1M1 XYBC-48 78 male 299 High T2bN0M0 XYBC-49 67 Female 725 Low T1N0M0 XYBC-50 71 male 159 High T4N0M1 XYBC-51 62 male 235 Low T1N0M0 XYBC-52 65 male 240 High T1N0M0	XYBC-45	56	male	523	High	T4N0M1
XYBC-48 78 male 299 High T2bN0M0 XYBC-49 67 Female 725 Low T1N0M0 XYBC-50 71 male 159 High T4N0M1 XYBC-51 62 male 235 Low T1N0M0 XYBC-52 65 male 240 High T1N0M0	XYBC-46	64	male	534	High	T2N0M1
XYBC-49 67 Female 725 Low T1N0M0 XYBC-50 71 male 159 High T4N0M1 XYBC-51 62 male 235 Low T1N0M0 XYBC-52 65 male 240 High T1N0M0	XYBC-47	65	Female	239	High	T3aN1M1
XYBC-50 71 male 159 High T4N0M1 XYBC-51 62 male 235 Low T1N0M0 XYBC-52 65 male 240 High T1N0M0	XYBC-48	78	male	299	High	T2bN0M0
XYBC-51 62 male 235 Low T1N0M0 XYBC-52 65 male 240 High T1N0M0	XYBC-49	67	Female	725	Low	T1N0M0
XYBC-52 65 male 240 High T1N0M0	XYBC-50	71	male	159	High	T4N0M1
	XYBC-51	62	male	235	Low	T1N0M0
VVRC 53 51 male 230 High T1N0M0	XYBC-52	65	male	240	High	T1N0M0
ATBC-35 31 male 250 mgm 111volvio	XYBC-53	51	male	230	High	T1N0M0
XYBC-54 71 male 204 Low T0N0M0	XYBC-54	71	male	204	Low	T0N0M0
XYBC-55 66 Female 242 High T4N0M1	XYBC-55	66	Female	242	High	T4N0M1
XYBC-56 64 Female 226 Low T2N0M0	XYBC-56	64	Female	226	Low	T2N0M0

Supplementary Table 2. The clinicopathological data of Xiangya BLCA immunotherapy cohort.

ID	Damana	A	Gender	Surgical	
ID	Response	Age	Gender	Treatment	
XYBIC-1	CR	49	male	TURBT	
XYBIC-2	CR	71	male	Radical cystectomy	
XYBIC-3	CR	49	male	TURBT	
XYBIC-4	CR	66	male	Radical cystectomy	
XYBIC-5	CR	71	male	TURBT	
XYBIC-6	CR	46	male	TURBT	

XYBIC-7	CR	56	male	TURBT
XYBIC-8	CR	57	male	TURBT
XYBIC-9	CR	63	male	Radical cystectomy
XYBIC-10	CR	69	male	TURBT
XYBIC-11	CR	56	male	Radical cystectomy
XYBIC-12	CR	73	male	Radical cystectomy
XYBIC-13	CR	62	male	Radical cystectomy
XYBIC-14	CR	63	male	Radical cystectomy
XYBIC-15	CR	47	female	TURBT
XYBIC-16	CR	50	male	TURBT
XYBIC-17	CR	59	male	Radical cystectomy
XYBIC-18	PR	63	male	Radical cystectomy
XYBIC-19	PR	69	male	Radical cystectomy
XYBIC-20	PR	57	male	Radical cystectomy
XYBIC-21	PR	71	male	Radical cystectomy
XYBIC-22	PR	73	male	Radical cystectomy
XYBIC-23	PR	52	male	Radical cystectomy
XYBIC-24	PR	57	female	Radical cystectomy
XYBIC-25	PR	57	female	Radical cystectomy
XYBIC-26	PR	63	male	Radical cystectomy
XYBIC-27	PR	58	male	Radical cystectomy
XYBIC-28	PR	68	male	Radical cystectomy
XYBIC-29	PR	66	male	Radical cystectomy
XYBIC-30	PR	54	male	Radical cystectomy
XYBIC-31	PR	68	female	Radical cystectomy
XYBIC-32	PR	72	female	Radical cystectomy
XYBIC-33	PR	79	male	Radical cystectomy
XYBIC-34	SD	67	male	Radical cystectomy
XYBIC-35	SD	72	male	Radical cystectomy

XYBIC-36	SD	81	male	Radical cystectomy
XYBIC-37	SD	71	male	Radical cystectomy
XYBIC-38	SD	56	male	Radical cystectomy
XYBIC-39	SD	67	female	Radical cystectomy
XYBIC-40	SD	74	female	Radical cystectomy
XYBIC-41	SD	32	male	Radical cystectomy
XYBIC-42	SD	73	male	Radical cystectomy
XYBIC-43	SD	62	male	Radical cystectomy
XYBIC-44	SD	60	male	Radical cystectomy
XYBIC-45	SD	80	male	Radical cystectomy
XYBIC-46	SD	63	male	Radical cystectomy
XYBIC-47	SD	58	male	Radical cystectomy
XYBIC-48	SD	49	male	Radical cystectomy
XYBIC-49	SD	61	female	Radical cystectomy
XYBIC-50	SD	74	male	Radical cystectomy
XYBIC-51	PD	69	male	Radical cystectomy
XYBIC-52	PD	57	male	Radical cystectomy
XYBIC-53	PD	46	male	Radical cystectomy
XYBIC-54	PD	57	female	Radical cystectomy
XYBIC-55	PD	63	female	Radical cystectomy
XYBIC-56	PD	68	male	Radical cystectomy
XYBIC-57	PD	68	male	Radical cystectomy
XYBIC-58	PD	71	male	Radical cystectomy

Supplementary Table 3. Target sequences of shRNA

Target sequences of shRNA for human species	
sh-BCAT2-1	gtGCACCGAATCCTGTACAAA
sh-BCAT2-2	acTACAAGTTAGGTGGGAATT
sh-BCAT2-3	tgAAGTGCAATACGAAATAAA

Target sequences of shRNA for murine species	
sh-BCAT2-1	ccACATACCTACCATGGAGAA
sh-BCAT2-2	caAGGTCACTATGAAGGAATT
sh-BCAT2-3	ccCTTCCAGAACCTCACGCTA

Supplementary Table 4. Primer sequences of qRT-PCR

Species: human

	Forward	Reverse
CCL3	CATGGCTCTCTGCAACCAGTTCTC	CTGGCTGCTCGTCTCAAAGTAGTC
CCL4	TCTGCGTGACTGTCCTGTCTCTC	TCTACCACAAAGTTGCGAGGAAGC
CCL5	CAGCAGTCGTCCACAGGTCAAG	TTTCTTCTGGGTTGGCACACAC
CXCL9	AAGACCTTAAACAATTTGCCCC	TGCTGAATCTGGGTTTAGACAT
CXCL10	CTCTCTAGAACTGTACGCTG	ATTCAGACATCTCTTCTCACCC

Species: mouse

	Forward	Reverse
CCL3	CCCAGCCAGGTGTCATTT	AGTTCCAGGTCAGTGATGTATTC
CCL4	CCACTTCCTGCTGTTTCTCTTA	GCAAAGACTGCTGGTCTCATA
CCL5	GCCCACGTCAAGGAGTATTT	CCCACTTCTTCTCTGGGTTG
CXCL9	AGGCACGATCCACTACAAATC	GCAGGTTTGATCTCCGTTCT
CXCL10	GCTGCAACTGCATCCATATC	CGTGGCAATGATCTCAACAC