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Recent studies using mouse models suggest that inter-
action between the gut microbiome and IL-17/IL-22–
producing cells plays a role in the development of metabolic
diseases. We investigated this relationship in humans
using data from the prediabetes study of the Integrated
Human Microbiome Project (iHMP). Specifically, we
addressed the hypothesis that early in the onset of
metabolic diseases there is a decline in serum levels
of IL-17/IL-22, with concomitant changes in the gut
microbiome. Clustering iHMP study participants on
the basis of longitudinal IL-17/IL-22 profiles identified
discrete groups. Individuals distinguished by low lev-
els of IL-17/IL-22 were linked to established markers
of metabolic disease, including insulin sensitivity. These
individuals also displayed gut microbiome dysbiosis, char-
acterized by decreased diversity, and IL-17/IL-22–related
declines in the phylum Firmicutes, class Clostridia, and
order Clostridiales. This ancillary analysis of the iHMP data
therefore supports a link between the gut microbiome,
IL-17/IL-22, and the onset of metabolic diseases. This
raises the possibility for novel, microbiome-related thera-
peutic targets that may effectively alleviate metabolic dis-
eases in humans as they do in animal models.

The human gut microbiome consists of trillions of micro-
organisms that are known to impact host physiology. Var-
iation in composition of the gut microbiome has been linked
to metabolic disorders such as hypertension (1,2), obesity
(3,4), and insulin resistance (5), as well as to type 2 diabetes
(T2D) (6–10).

While much remains to be learned about the functional
mechanisms underpinning this relationship, growing ev-
idence in mouse models points to an important role for the
microbially mediated immune system (11,12). Deficiencies
in TLR5 (13), RORgt (14), or IL-22 (15) are associated with
a variety of metabolic disorders. Additionally, high-fat diet–
induced obesity results in a reduction in IL-17–producing
cells in the small intestine lamina propria (SILP) (14), while
induction of Th17 cells (16), or treatment with gut-homing
Th17 cells (17), low-dose IL-17 (18), or IL-22 (13,15), can
ameliorate the obesity-associatedmetabolic phenotype. Col-
lectively, these results suggest a protective role for IL-17/IL-
22–producing cells during onset of diet-related metabolic
disorders in mice. While Th17 cells are a major source of IL-17
and IL-22 (16,19), other cell types also produce these cytokines
(20) and may be important in this process.

In humans, low IL-22 has been associated with impaired
fasting glucose and T2D (21). However, the relationship be-
tween IL-17/IL-22 production, the microbiome, and metabolic
diseases remains controversial (22–24) and comparatively
understudied. Large-scale integrated omics studies provide
an ideal opportunity to investigate this relationship. Here,
we present an ancillary study of the recently released
prediabetes arm of the Integrated Human Microbiome
Project (iHMP) (25), in which our goal was to investi-
gate the relationship between IL-17/IL-22 profiles, the
gut microbiome, and aspects of the metabolic syn-
drome. Specifically, we aimed to test hypotheses in
humans that have hitherto only been convincingly dem-
onstrated in mice.

1The Jackson Laboratory for Genomic Medicine, Farmington, CT
2Genetics and Genome Sciences, University of Connecticut Health Center, Farm-
ington, CT
3Department of Genetics, Stanford University School of Medicine, Stanford, CA
4Ohio State University Comprehensive Cancer Center, Columbus, OH
5Department of Medicine, University of Connecticut Health Center, Farmington, CT

Corresponding author: Jethro S. Johnson, jethro.johnson@jax.org

Received 17 June 2019 and accepted 29 April 2020

This article contains supplementary material online at https://doi.org/10.2337/
figshare.12213893.

X.Z. and J.S.J. equally contributed to the article.

© 2020 by the American Diabetes Association. Readers may use this article as
long as the work is properly cited, the use is educational and not for profit, and the
work is not altered. More information is available at https://www.diabetesjournals
.org/content/license.

Diabetes Volume 69, August 2020 1833

G
E
N
E
T
IC

S
/G

E
N
O
M
E
S
/P

R
O
T
E
O
M
IC

S
/M

E
T
A
B
O
L
O
M
IC

S

https://doi.org/10.2337/db19-0592
http://crossmark.crossref.org/dialog/?doi=10.2337/db19-0592&domain=pdf&date_stamp=2020-06-27
mailto:jethro.johnson@jax.org
https://doi.org/10.2337/figshare.12213893
https://doi.org/10.2337/figshare.12213893
https://www.diabetesjournals.org/content/license
https://www.diabetesjournals.org/content/license


RESEARCH DESIGN AND METHODS

This study is an ancillary analysis of data collected as part
of the iHMP. An overview of the iHMP is provided below,
along with a description of the collection of the specific
data sets included in this analysis. However, full details of
study design, recruitment, and sample collection can be
found in our iHMP flagship article (26).

iHMP Overview
The iHMP consists of 103 human participants identified as
at risk for developing T2D, who were followed over a 4-year
period (Supplementary Figs. 1 and 2). During this time,
detailed multiomic profiling was carried out at quarterly
intervals and more frequently during periods of stress or
upper respiratory infection. Participants were recruited
following Stanford University Institutional Review Board
Protocol no. 23062.

Blood and Insulin Sensitivity Measurements
Blood samples were collected from participants following
an overnight fast (26) and used for lipid and metabolic
panels, as well as fasting plasma glucose (FPG) and hemo-
globin A1c (HbA1c) tests. Measurements of FPG $126
mg/dL were classified as diabetes, while measurements
of FPG between 100 and 125 mg/dL were classified as
prediabetes. HbA1c was assumed to be an indicator of
3-month average glucose levels, with measurements
$6.5% (48mmol/mol) classified as diabetes and measure-
ments between 5.7% and 6.5% (39–48 mmol/mol) classi-
fied as prediabetes. In addition to standard tests, a subset
of study participants (n5 65) underwent a one-time mea-
surement of steady-state plasma glucose (SSPG) levels via
a modified insulin-suppression test (26). Briefly, individ-
uals were infused with glucose (240 mg/m2/min), octreo-
tide (0.27 mg/m2/min), and insulin (25 mU/m2/min) for
180 min after an overnight fast. Starting from 150 min,
blood was drawn at 10-min intervals. Four plasma samples
(from blood drawn at 150 min, 160 min, 170 min, and
180 min) were measured for glucose and insulin concen-
trations. SSPG was the mean of the four plasma glucose
concentrations. At these time points, insulin concentra-
tions were at a steady state and were similar in all subjects
(65 mU/mL); thus, the SSPG provides a direct measure of
the relative ability of insulin to dispose of a glucose load:
the higher the SSPG concentration, the more insulin
resistant the individual. Individuals with SSPG ,150
mg/dL were classified as insulin sensitive, while individ-
uals with SSPG $150 mg/dL were classified as insulin
resistant.

Microbiome Measurements
Stool samples were collected and DNAwas extracted accord-
ing to the Human Microbiome Project standard protocol
(no. 07-001. V12.0). Bacterial relative abundance was then
determined by sequencing the V1–V3 region of the bacterial
16S rRNA gene on theMiSeq platform (Illumina, San Diego,
CA).

Cytokine Measurements
Cytokine data were generated from blood samples using
a 63-plex Luminex antibody-conjugated bead capture assay
(Affymetrix, Santa Clara, California). Raw cytokine data
were normalized to median fluorescence intensity (MFI) to
eliminate batch effects. Further details of approaches used
to generate sequence and cytokine data can be found in our
companion article (26). According to the manufacturer’s
protocol, CHEX1–CHEX4 are different types of back-
ground control for Luminex MFI data. Based on pre-
liminary examination of these data, any samples with
substantial background noise (determined as .5 SD 6
mean value [mean 6 5 * SD]) for one or more CHEX
measurements were removed.

Diet Data
An assessment of the frequency of consumption of 25 food
items was carried out during some, but not all, sample
collection visits. Details of the food items monitored as
well as the results of this questionnaire can be found in
Supplementary Table 1. Full details of the questionnaire
design and sample collection can be found in our com-
panion article (27).

Statistical Analysis
A two-sided Student t test was used for significance testing
when data were normally distributed; otherwise, a two-
sided Wilcoxon signed rank test or Mann-Whitney U test
was used. A x2 test was used to determine whether the
proportion of insulin-resistant individuals was different
between high-activity (HA) and low-activity (LA) groups.
Linear discriminant analysis based on effect size (LEfSe)
(28) was performed to determine whether the microbial
taxon abundances differed between HA and LA groups. All
statistical tests were performed using R (version 3.5.0).
Exploration of diet data was performed by principal com-
ponents analysis using the prcomp command in R package
stats. Diet scores were log transformed prior to analysis.

Data Modeling
Of the 103 iHMP study participants, not all had a sufficient
number of repeated measurements for inclusion in this
longitudinal study. An overview of the number of partic-
ipants available for each analysis described below is pro-
vided in Supplementary Fig. 2. Key characteristics of the
individuals included in the principal analyses are provided
in Supplementary Table 2.

Mixture Model of Individuals Based on IL-17/IL-22
Participants with five or more longitudinal cytokine meas-
urements (n 5 68) were included in a general mixture
model (GMM), built using the R package mclust (29). The
longitudinal IL-17A, IL-17F, and IL-22 MFI data were sum-
marized as mean value and SD for each individual and then
scaled in R. For determination of the optimal number of
Gaussian distributed clusters, models with 1–9 clusters were
evaluated using the Bayesian information criterion, resulting
in three clusters selected for further analyses (Supplementary
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Fig. 3). Cluster 1 comprised 25 individuals (LA group), cluster
2 comprised 32 (indeterminate-activity [IA] group), and clus-
ter 3 comprised 11 (HA group), and the mixing probability
of each cluster was 0.3634941, 0.4749886, and 0.1615172,
respectively. Participants assigned to each cluster were asso-
ciated with a “confidence of assignment” probability (0%–
100%); those with ,99% confidence (eight individuals in
total) were removed from the subsequent analyses.

Linear Mixed Models
Linear mixed models were built using the R package lme4
(30). Models were built separately to test different hy-
potheses, as described below.

For testing of whether metabolic profiles were different
among three groups, the equation used was as follows:
target of interest5 group1 days1 sex1 BMI1 Adj.age1
(1/subject_ID). Fixed effects included group as the categor-
ical variable derived from the GMMmodel, sex was a binary
categorical variable, and BMI and adjusted age (Adj.age)
were continuous variables. The term days indicates a nu-
merical measurement of how many days after the overall
study start date the sample was collected. Adjusted age
described the average age of an individual during the study
period. Random effects included a random intercept for
each participant (1 / subject_ID).

For red blood cell distribution width (RDW), for ad-
justment of the previous known effect of mean corpuscular
hemoglobin (MCH) and mean corpuscular volume (MCV)
on the readout of RDW (31), the model was built as follows:
RDW 5 group 1 days 1 MCH 1 MCV 1 sex 1 BMI 1
Adj.age 1 (1 / subject_ID). For analysis related to micro-
biome alpha diversity and Firmicutes-to-Bacteroidetes ratio,
our goal was to understand the fixed effect, group, in this
mixed model, so the model is built as follows: microbiome
diversity (or Firmicutes-to-Bacteroidetes ratio) 5 group 1
sex 1 BMI 1 Adj.age 1 (1 / subject_ID).

Bayesian Mixed-Effects Model for Taxa and Cytokine
Interactions Conditional on Cluster Assignment
Participants with five or more coinciding measurements
for both cytokines and microbiome (n 5 53) were included
in a Bayesian negative binomial longitudinal mixed-effects
model to evaluate the relationship between individual
microbes and IL-17. To account for the zero-inflated nature
of microbiome abundance, we used a Bayesian framework
on a sparse matrix with a negative binomial distribution
(32). Cytokine-related group (HA vs. LA) and cytokine (either
IL-17A or IL-17F) were scored as the interaction term and
fixed effect, respectively, to test the combined effect of
cytokine-related group and cytokine onmicrobe abundance.
IL-22 was excluded from this analysis because a large pro-
portion of IL-22 measurements appeared to be lower than
the accurate detection threshold of the Luminex assay
(Supplementary Fig. 4). We included the cytokine-related
group–cytokine interaction term with the aim of testing the
hypothesis that significant microbe-cytokine associations
may be detected in HA, but not LA, subjects or vice versa.

Each microbe was modeled as the response variable
with a random intercept for each participant, and with
fixed effects for time, and an interaction term for the
cluster identity (defined by the GMM, described above)
and the cytokine of interest, thereby evaluating whether
the relationship between a microbe and cytokine pair
differed depending on the identity of the cluster. This
followed standard matrix notation:

Mi 5 Xib1Zibi 1 «i

where Mi is a vector of microbe relative abundances for
each participant i, Xi is the matrix of fixed effects, Zi is the
random effects vector of 1s denoting a random intercept,
bi is a scalar for each participant, and ei is a zero-centered
error term. The fixed-effects matrix Xi comprised the days
post–study start Di and an interaction term for cluster (Ci)
and cytokine (Yi).

Xi  5 

�
Di;1  Ci  5  3    Yi;1  Yi;1jðCi  5  3Þ
Di;nCi  5  3    Yi;n  Yi;njCi  5  3

�
 

Sampling was performed with four chains with 5,000
iterations per sample and a burn-in of 1,000 iterations.
Samples were drawn using the No-U-Turn Sampler imple-
mented in the brms package (33–35). Chain convergence
was confirmed by visual inspection of iteration plots and
posterior predictive distributions.

Data and Resource Availability
Microbial sequence and cytokine data included in this study
can be downloaded from the iHMP data depository website
(https://www.hmpdacc.org/ihmp/). Diet data are included
in Supplementary Table 1.

RESULTS

Overview of the iHMP Prediabetes Cohort
We used the recently released iHMP data set as the basis for
a detailed longitudinal analysis of the relationship between
the gut microbiome and serum levels of IL-17A, IL-17F,
and IL-22. The 103 individuals in the iHMP cohort were
well characterized with respect to glucose-related measures,
including fasting glucose, HbA1c, and insulin resistance
(SSPG). Notably, however, these measures showed little con-
cordance, suggesting they do not provide a consistent repre-
sentation of the progression to T2D, which has been shown to
be highly variable between individuals in this cohort (36).

Based on HbA1c measurements alone, 4 individuals in
the iHMP cohort had diabetes at their first time of mea-
surement (HbA1c $6.5% [48mmol/mol]), while 37 had
prediabetes (5.7% # HbA1c , 6.5% [39 # HbA1c ,48
mmol/mol]). Additionally, a further four individuals came
to have diabetes at one or more points during the course
of the study; however, their HbA1c measurements did not
stay within the diabetes range (26,36). For the majority of
study participants, HbA1c measurements did not increase
across the course of the study (Supplementary Fig. 1).
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Given the complexity of T2D diagnosis, we chose to
focus on SSPG, which was measured once for the majority
of participants and is a robust measure of insulin resis-
tance (37). This focus was in keeping with our central
hypothesis that microbiome-mediated changes in IL-17/
IL-22 may affect insulin sensitivity.

Individuals Show Discrete IL-17/IL-22 Profiles
Associated With Insulin Sensitivity
From the complete iHMP cohort, we selected 68 individ-
uals who had five or more longitudinal cytokine measure-
ments. Using Gaussian mixture modeling based on the
mean cytokine level and longitudinal variance in each
individual, we observed that 60 of these individuals could
be optimally separated into three groups (Supplementary
Figs. 2 and 3). Individuals at one extreme were charac-
terized by consistently low cytokine levels and variance,
while individuals at the other extreme were characterized
by high levels or variance of at least one cytokine (Fig. 1A
and Supplementary Fig. 3). Henceforth, we refer to these
three groups as LA (n5 20), IA (n5 30), and HA (n5 10)
to represent differences in their temporally integrated
levels of serum IL-17 and IL-22 activity (Fig. 1A). Impor-
tantly, identifying the three groups in this manner re-
quired estimating intraindividual variation (Supplementary
Fig. 5), which is not available from cross-sectional data,
highlighting the advantage of the longitudinal design. Fur-
ther investigation indicated that the longitudinal IL-17/IL-
22 profiles characterizing each group were not significantly

impacted by periods of stress or upper respiratory infection
reported during iHMP visits (see additional analyses in
Supplementary Materials and Supplementary Figs. 6–8).
Baseline characteristics for these 60 individuals, including
blood and insulin sensitivity measurements used in sub-
sequent analyses, are provided in Supplementary Table 2.

We next considered the possibility that discrete IL-17/
IL-22 cytokine profiles may reflect different stages of
metabolic disease progression. Previous studies in mice
demonstrated that HFD-induced onset of metabolic dis-
ease is associated with loss of CD41 IL-17–producing cells
in the SILP (14), while studies in humans have shown
a negative correlation between serum IL-22 levels and
physiological indicators of T2D (21). We therefore hy-
pothesized that individuals with an LA profile would show
amore severe metabolic phenotype than individuals with an
HA profile. Individuals with an IA profile were excluded
from this and subsequent analyses because we reasoned
that, while theymay reflect progression fromHA to LA, they
may also reflect a healthy state (i.e., pre-HA) prior to the
onset of the chronic inflammation that is a characteristic of
the metabolic syndrome (38).

Within the two-thirds (40 of 60) of study participants
for whom an SSPG measurement was available (Supple-
mentary Table 2), we observed that SSPG levels were
significantly lower in HA subjects compared with LA sub-
jects (two-sided Wilcoxon test, W 5 64.5, P 5 0.021 [Fig.
1B]). Accordingly, individuals in the LA group were more
frequently insulin resistant (Supplementary Fig. 9A); however,

Figure 1—Participants grouped according to IL-17/IL-22 cytokines. A: Gaussian mixture modeling of cytokine mean abundance and
variance separates study participants into three discrete groups (columns). Lines within each panel represent repeated measurements of
serum cytokine abundance for one individual over the study period. Rows represent serum cytokines (IL-17A, IL-17F, IL-22). CHEX4 is
a measurement of background fluorescence intensity and can be treated as a negative control. (Note: different scales on y-axis for each row.)
B: SSPG (mg/dL) measurement by group. P values for pairwise Wilcoxon test are labeled above the bar plot, and the P value for a one-way
ANOVA test is labeled under the bar plot. The analysis in A was based on 297, 371, and 112 repeated measurements for HA, IA, and LA
subjects, respectively.
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mean FPG levels, age, and BMI did not vary significantly
across groups (Supplementary Fig. 9A).

IL-17/IL-22 Inactivity Is Associated With a More Severe
Metabolic Phenotype
Longitudinal modeling of clinical data collected across the
study period also revealed multiple markers that showed
significant differences between LA compared with HA sub-
jects (Fig. 2 and Supplementary Fig. 10). Participants clas-
sified as HA showed higher plasma HDL and lower plasma
triglycerides. The RDW was higher in HA subjects, consis-
tent with previous findings of high RDW as being associated
with high HDL and low triglycerides (39). Additionally,
serum sodium and chloride levels were lower in the HA
group, and high insulin level has been associated with
increased sodium retention in T2D (40). Established markers
of T2D, including HbA1c and serum glucose, did not vary
significantly between groups (Fig. 2 and Supplementary
Figure 10). This was not unexpected, given the limited
concordance between glucose-related measurements and
that the fact that the majority of participants did not
develop T2D during the course of this study (36) (Sup-
plementary Fig. 1).

IL-17/IL-22 Activity Is Associated With Variation in the
Composition of the Gut Microbiome but Not Diet
The close association between IL-17/IL-22–producing cells
and gut microbiota prompted us to next ask whether

individuals distinguished by cytokine activity levels dif-
fered in the composition of their gut microbiome. As an
individual’s gut microbiome remained relatively stable
throughout the course of this study (26) (Supplementary
Fig. 5), we began by comparing mean microbiome abun-
dance for each participant between HA and LA groups.
We found LA subjects had a significantly lower alpha
diversity (two-sided Wilcoxon test, W 5 34.0, P 5 0.003
[Fig. 3A and Supplementary Fig. 11]) and a lower Firmicutes-
to-Bacteroidetes ratio (two-sided Wilcoxon test, W 5 54.0,
P 5 0.044 [Fig. 3B and Supplementary Fig. 12]) compared
with HA subjects. LefSE revealed differences between LA
and HA groups at multiple taxonomic levels. Most notably,
the classes Bacteroidia and Clostridia were more abun-
dant in the LA and HA groups, respectively (Fig. 3C),
indicating that members of these taxa were likely re-
sponsible for observed differences in the Firmicutes-to-
Bacteroidetes ratio.

As diet profoundly influences the composition of the
gut microbiome (41,42), and a high-fat diet results in a loss
of IL-17–producing cells in mice (14), we next considered
whether IL-17/IL-22 activity was associated with dietary
habits recorded as part of the iHMP. Diet composition
appeared stable and distinct between individuals (Supple-
mentary Fig. 13A), which was consistent with trends ob-
served in the microbiome (Supplementary Fig. 5A). However,

Figure 2—Linear mixed model estimates on fixed effects introduced by LA and HA group. Results for full linear mixed models are shown in
Supplementary Fig. 9. The comparisons of active vs. inactive groups are presented here. Dashed lines represent the LA group, while
regression estimates for the HA group are displayed as horizontal lines. The center of each horizontal line is the b-coefficient of regression,
while thick lines represent 50% credible intervals or 61 SD and thin lines represent 95% credible intervals or 62 SD. A1C, hemoglobin A1c.
This analysis is based on 88 and 229 repeated measurements for HA and LA subjects, respectively.
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there was no evidence that diet varied significantly between
LA and HA groups (Supplementary Fig. 13B).

Finally, we took advantage of intraindividual variation
in microbe and cytokine abundance (Supplementary Fig. 5)
by performing longitudinal modeling to look at pairwise
relationships between individual bacterial genera and cy-
tokine abundances within HA versus LA subjects. Previous
studies identified significant associations between cyto-
kines and gut microbes but only revealed interindividual
variation (43,44) due to their cross-sectional design. The
repeated and longitudinal measurements of the iHMP
study allowed us to test the possibility that intraindivid-
ual variation in cytokine/bacteria abundance may be used
to identify additional host-microbe associations of bi-
ological interest. To accommodate within-individual cor-
relation, we used a mixed-effects model with random
effects by individual.

We first observed the abundance of Alistipes was pos-
itively correlated with changes in serum IL-17F levels (Fig.
4). As models were designed to compare cytokine versus
microbe interactions in the context of cytokine activity
(encoded as HA vs. LA), this result indicates Alistipes was
significantly associated with IL-17F in LA subjects. In con-
trast, seven bacterial taxa were significant for the activity
group–cytokine interaction term (Fig. 4), indicating their
relative abundance was significantly associated with IL-17F
or IL-17A levels in HA subjects. Notably, six of these seven
significant relationships involved taxa belonging to the class
Clostridia, and in all eight associations, the cytokine abun-
dance was positively correlated with taxon relative abun-
dance. In conclusion, analyses of the taxonomic abundance of
the gut microbiome both between individuals (Fig. 3) and

within individuals (Fig. 4) provide evidence that members of
the class Clostridia are positively associated with increased
levels of IL-17 activity.

DISCUSSION

In this ancillary analysis of the iHMP, we present evidence
that individuals at risk for developing T2D display distinct,
longitudinal IL-17/IL-22 cytokine profiles, which can be
associated with altered severity in a number of established
markers for metabolic disorders. By subsequently provid-
ing evidence for a link between IL-17/IL-22 and the com-
position of the gut microbiome, we validate previous findings
in mouse models and thus provide further support for the
hypothesis that microbe–immune system interactions are
relevant to human metabolic homeostasis.

Sustained loss of IL-17/IL-22 activity in iHMP study
participants was associated with increased insulin resis-
tance, as well as variation in metabolic markers that in-
cluded lower HDL and increased triglycerides. A trend for
higher HbA1c in LA subjects was not statistically signifi-
cant. This is consistent with the previous observation that
SSPG and HbA1c measures provide different perspectives
on insulin resistance and glucose metabolism (36). It may
also reflect the fact that few individuals were classified as
having diabetes at any point during the course of this
4-year study. In spite of such inconsistencies between
measures, our observations are in line with evidence that
RORgt2/2 and IL-222/2 mouse models show reduced in-
sulin sensitivity on a chow diet. Furthermore, low-dose
administration of IL-17 (18) or IL-22 (15) suppresses the
metabolic phenotype induced by a high-fat diet. Taken
together, these murine studies suggest that circulating

Figure 3—Differences in the gut microbiome of IL-17/IL-22 LA and HA subjects. A: Shannon diversity estimates for the HA and LA. Mean
value of diversity for each participant across the study period is used to generate this plot. The P value from aWilcoxon test is labeled above
the plot. B: Firmicutes-to-Bacteroidetes ratio of HA and LA. Mean value of Firmicutes-to-Bacteroidetes ratio for each participant across the
study period is used to generate this plot. The P value from a Wilcoxon test is labeled above the plot. C: Cladogram representing the LEfSe
results for comparing taxa abundance between HA and LA groups. Circles on the cladogram represent the phylogenetic relationship of taxa
that are tested, with phylum at the center and operational taxonomic unit (OTU) on the edges. Each point represents a taxonomic unit. Red
color covering a dot/region indicates the taxa that are more abundant in the HA group, and blue color covering a dot/area indicates the taxa
are more abundant in the LA group.
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levels of IL-17/IL-22 can be protective. Our work suggests
that similar mechanisms may also apply to humans.

One explanation for the protective effects of IL-17/
IL-22 is that these cytokines are directly, or indirectly,
involved in regulating the composition of the gut micro-
biome, e.g., by regulating the production of antimicrobial
peptides that limit the abundance of potentially patho-
genic taxa (45–47). Another possibility is that IL-17/IL-22
may influence tight junction function, meaning their de-
ficiency could result in a leaky gut (47–51). This could in

turn contribute to translocation of gut bacteria to the
blood, which has been associated with T2D (52). Alterna-
tively, IL-22 may directly influence b-cell function (53), in
which case changes in the gut microbiome may be correl-
ative, rather than directly contributing to the phenotype
reported here.

While IL-17/IL-22 may influence the gut microbiome,
the composition of the gut microbiome may reciprocally
affect metabolic diseases via the ability of certain taxa to
directly, or indirectly, influence IL-17/IL-22 production. In

Figure 4—Bacterial genera whose abundance correlates with serum IL-17. Significant correlations between serum IL-17 and bacterial genus
abundance are shown for HA subjects (red panels) and LA subjects (blue panel). Distributions show estimated effect sizes from Bayesian
Markov chain Monte Carlo draws after parameter convergence. Panels show bacteria for which the estimated effect is significantly greater or
less than zero (95% credible interval does not include zero). This analysis was based on 264 and 100 repeated measurements for HA and LA
subjects, respectively.
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a cross-sectional study of the influence of the human gut
microbiome on cytokine production, Schirmer et al. (44)
previously demonstrated that IL-17 production from pe-
ripheral blood mononuclear cells exposed to Staphylococcus
aureus was positively correlated with the relative abun-
dance of Clostridium in the host gut microbiome. This is
consistent with our observations that 1) IL-17/IL-22 HA
subjects had greater mean relative abundance of Clostrid-
ium in gut microbiome across the course of this study and
that 2) in longitudinal analysis, three members of the class
Clostridia (Clostridium IV, Clostridium XI, Clostridium XIVa)
were positively correlated with IL-17F production and one
(Clostridium XIVb) with IL-17A production. Human isolates
from three of these Clostridium clusters (XIVa, XIVb, IV)
were previously found to induce Th17 cells (a major pro-
ducer of IL-17 and IL-22 [54,55] in mice [56]). Notably,
germ-free mice do not carry Th17 cells in the SILP (57), but
inoculation with certain bacteria, including segmented
filamentous bacteria, can induce Th17 cell development
(58,59). While segmented filamentous bacteria remain an
ambiguous clade, they may be related to the family Clos-
tridiales (60). In conclusion, while our study does not char-
acterize sources of IL-17/IL-22 production, the trends we
report are consistent with previous evidence thatmembers of
the class Clostridia can induce development of IL-17/IL-22–
producing cells. This in turn represents one plausible way in
which the gut microbiome could influence human cytokine
profiles and thereby influence metabolic diseases.

Establishing the causative relationship of IL-17/IL-22,
the gut microbiome, and metabolic diseases is beyond the
scope of these data and will benefit from a deeper un-
derstanding of the mechanisms that underpin this in-
teraction. The role of diet in shaping both the immune
environment and composition of the gut microbiome is
likely to be of particular interest, given that loss of IL-17–
producing cells has been linked to a high-fat diet (14). No
significant variation was observed between the diets of
subjects with IL-17/IL-22 activity versus inactivity in this
study, which may suggest that important differences in
the composition of themicrobiome are influenced by factors
other than diet. However, it may also be that the available
diet information was not sufficient to capture differences
relevant to this study.

Regardless of whether differences in the microbiome
are due to diet, or other environmental and host genetic
factors, the molecular mechanisms underpinning interac-
tion between members of the Clostridia and the host
immune system warrant further investigation. One pos-
sibility is that gut microbiome–derived aryl hydrocarbon
receptor signaling is critical for maintenance of Th17 cells
(61,62). Bacterial-produced aryl hydrocarbon receptor li-
gand is reduced after mice are switched to a high-fat diet
(63). Alternatively, Qin et al. (9) established a correlational
association between the loss of members of the Clostridia in
T2D patients and reduced short-chain fatty acid (SCFA)
production. A later study confirmed this observation and
demonstrated that supplementing SCFA-producing bacteria

strains to T2D patients can improve their clinical outcomes
(64), possibly via the ability of SCFA to influence Th17
production (65).

A close link between IL-17/IL-22 and members of the
Clostridia supports previous assertions that manipulating
the relationship between cytokines and the gut micro-
biome presents novel therapeutic opportunities. In humans,
transferring the gut microbiome from lean donors to
patients with metabolic syndrome has been shown to
increase the insulin sensitivity of the recipients. Notably,
among 16 bacteria strains that increased in gut microbiome
of recipients postprocedure, 12 strains belonged to the class
Clostridia (66). In mice, metabolic disorders accompanied by
a lack of Th17 cells and IL-22 could be rescued, either by
induction or adaptive transfer of Th17 cells (16,17), low-
dose IL-17 (18), and IL-22 (15) or by supplementing the gut
microbiome with symbiotics that increase Th17 cell abun-
dance (14). Our demonstration of a close relationship
between IL-17/IL-22 and members of the Clostridia therefore
provides valuable insight into the biological processes that
underpin the efficacy of these approaches.

In conclusion, our analysis of the newly released iHMP
data set suggests novel avenues of research and raises the
possibility of therapeutic targets related to IL-17/IL-22
that may effectively alleviate metabolic diseases in humans
as they do in animal models.

Acknowledgments. The authors thank Monika Avina and The Human
Immune Monitoring Center for performing cytokine assays.
Funding. This work was supported by the National Institutes of Health Common
Fund Human Microbiome Project (HMP) (1U54DE02378901).
Duality of Interest. M.S. is a cofounder of Personalis, Q bio, SensOmics,
January, Filtricine, and Akna and an advisor for GenapSys. No other potential
conflicts of interest relevant to this article were reported.
Author Contributions. G.M.W. and M.S. designed the study. W.Z., Y.Z.,
E.S., G.M.W., and M.S. oversaw data collection, curation, and storage. X.Z., J.S.J.,
and D.S. analyzed data. X.Z., J.S.J., D.S., and G.M.W. wrote manuscript. J.S.J. is the
guarantor of this work and, as such, had full access to all the data in the study and
takes responsibility for the integrity of the data and the accuracy of the data analysis.

References
1. Al Khodor S, Reichert B, Shatat IF. The microbiome and blood pressure: can
microbes regulate our blood pressure? Front Pediatr 2017;5:138
2. Yan Q, Gu Y, Li X, et al. Alterations of the gut microbiome in hypertension.
Front Cell Infect Microbiol 2017;7:381
3. Jiao N, Baker SS, Nugent CA, et al. Gut microbiome may contribute to insulin
resistance and systemic inflammation in obese rodents: a meta-analysis. Physiol
Genomics 2018;50:244–254
4. Parekh PJ, Balart LA, Johnson DA. The influence of the gut microbiome on
obesity, metabolic syndrome, and gastrointestinal disease. Clin Transl Gastro-
enterol 2015;6:e91
5. Caricilli AM, Saad MJ. The role of gut microbiota on insulin resistance.
Nutrients 2013;5:829–851
6. Forslund K, Hildebrand F, Nielsen T, et al.; MetaHIT consortium. Disen-
tangling type 2 diabetes and metformin treatment signatures in the human gut
microbiota. Nature 2015;528:262–266
7. Karlsson FH, Tremaroli V, Nookaew I, et al. Gut metagenome in European
women with normal, impaired and diabetic glucose control. Nature 2013;498:99–
103

1840 Clostridia, IL-17/IL-22, and Insulin Sensitivity Diabetes Volume 69, August 2020



8. Larsen N, Vogensen FK, van den Berg FW, et al. Gut microbiota in human
adults with type 2 diabetes differs from non-diabetic adults. PLoS One 2010;5:
e9085
9. Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut
microbiota in type 2 diabetes. Nature 2012;490:55–60
10. Wu H, Esteve E, Tremaroli V, et al. Metformin alters the gut microbiome of
individuals with treatment-naive type 2 diabetes, contributing to the therapeutic
effects of the drug. Nat Med 2017;23:850–858
11. Grossmann V, Schmitt VH, Zeller T, et al. Profile of the immune and in-
flammatory response in individuals with prediabetes and type 2 diabetes. Diabetes
Care 2015;38:1356–1364
12. Shu CJ, Benoist C, Mathis D. The immune system’s involvement in obesity-
driven type 2 diabetes. Semin Immunol 2012;24:436–442
13. Vijay-Kumar M, Aitken JD, Carvalho FA, et al. Metabolic syndrome and
altered gut microbiota in mice lacking Toll-like receptor 5. Science 2010;328:228–
231
14. Garidou L, Pomié C, Klopp P, et al. The gut microbiota regulates intestinal
CD4 T cells expressing RORgt and controls metabolic disease. Cell Metab 2015;
22:100–112
15. Wang X, Ota N, Manzanillo P, et al. Interleukin-22 alleviates metabolic
disorders and restores mucosal immunity in diabetes. Nature 2014;514:237–241
16. Martins LMS, Perez MM, Pereira CA, et al. Interleukin-23 promotes intestinal
T helper type17 immunity and ameliorates obesity-associated metabolic syndrome
in a murine high-fat diet model. Immunology 2018;154:624–636
17. Hong CP, Park A, Yang BG, et al. Gut-specific delivery of T-helper 17 cells
reduces obesity and insulin resistance in mice. Gastroenterology 2017;152:1998–
2010
18. Mohamed R, Jayakumar C, Chen F, et al. Low-dose IL-17 therapy prevents
and reverses diabetic nephropathy, metabolic syndrome, and associated organ
fibrosis. J Am Soc Nephrol 2016;27:745–765
19. Cua DJ, Tato CM. Innate IL-17-producing cells: the sentinels of the immune
system. Nat Rev Immunol 2010;10:479–489
20. Valeri M, Raffatellu M. Cytokines IL-17 and IL-22 in the host response to
infection. Pathog Dis 2016;74:74:ftw111
21. Shen J, Fang Y, Zhu H, Ge W. Plasma interleukin-22 levels are associated
with prediabetes and type 2 diabetes in the Han Chinese population. J Diabetes
Investig 2018;9:33–38
22. Abdel-Moneim A, Bakery HH, Allam G. The potential pathogenic role of IL-17/
Th17 cells in both type 1 and type 2 diabetes mellitus. Biomed Pharmacother
2018;101:287–292
23. Galvan DL, Danesh FR. Paradoxical role of IL-17 in progression of diabetic
nephropathy. J Am Soc Nephrol 2016;27:657–658
24. Yousefidaredor H, Zare-Bidaki M, Hakimi H, Assar S, Bagheri V, Arababadi
MK. IL-17A plays an important role in induction of type 2 diabetes and its
complications. Asian Pac J Trop Dis 2014;4:412–415
25. Integrative HMP (iHMP) Research Network Consortium. The Integrative
Human Microbiome Project: dynamic analysis of microbiome-host omics profiles
during periods of human health and disease. Cell Host Microbe 2014;16:276–289
26. Zhou W, Sailani MR, Contrepois K, et al. Longitudinal multi-omics of host-
microbe dynamics in prediabetes. Nature 2019;569:663–671
27. Ahadi S, Zhou W, Schüssler-Fiorenza Rose SM, et al. Personal aging markers
and ageotypes revealed by deep longitudinal profiling. Nat Med 2020;26:83–90
28. Segata N, Izard J, Waldron L, et al. Metagenomic biomarker discovery and
explanation. Genome Biol 2011;12:R60
29. Scrucca L, Fop M, Murphy TB, Raftery AE. Mclust 5: clustering, classification
and density estimation using Gaussian finite mixture models. R J 2016;8:289–317
30. Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models
using lme4. 23 June 2014 [preprint]. arXiv:14065823
31. Pilling LC, Atkins JL, Kuchel GA, Ferrucci L, Melzer D. Red cell distribution
width and common disease onsets in 240,477 healthy volunteers followed for up
to 9 years. PLoS One 2018;13:e0203504

32. Anders S, Huber W. Differential expression analysis for sequence count data.
Genome Biol 2010;11:R106
33. Bürkner P-C. Advanced Bayesian multilevel modeling with the R package
brms. 31 May 2017 [preprint]. arXiv:170511123
34. Bürkner P-C. brms: an R package for Bayesian multilevel models using Stan.
J Stat Softw 2017;80:1–28
35. Hoffman MD, Gelman A. The No-U-turn sampler: adaptively setting path
lengths in Hamiltonian Monte Carlo. J Mach Learn Res 2014;15:1593–1623
36. Schüssler-Fiorenza Rose SM, Contrepois K, Moneghetti KJ, et al. A longi-
tudinal big data approach for precision health. Nat Med 2019;25:792–804
37. Pei D, Jones CNO, Bhargava R, Chen YDI, Reaven GM. Evaluation of oc-
treotide to assess insulin-mediated glucose disposal by the insulin suppression
test. Diabetologia 1994;37:843–845
38. Sell H, Habich C, Eckel J. Adaptive immunity in obesity and insulin resistance.
Nat Rev Endocrinol 2012;8:709–716
39. Pilling LC, Atkins JL, Duff MO, et al. Red blood cell distribution width: genetic
evidence for aging pathways in 116,666 volunteers. PLoS One 2017;12:e0185083
40. Brands MW, Manhiani MM. Sodium-retaining effect of insulin in diabetes. Am
J Physiol Regul Integr Comp Physiol 2012;303:R1101–R1109
41. Carmody RN, Gerber GK, Luevano JM Jr, et al. Diet dominates host genotype
in shaping the murine gut microbiota. Cell Host Microbe 2015;17:72–84
42. David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters
the human gut microbiome. Nature 2014;505:559–563
43. Li Y, Oosting M, Deelen P, et al. Inter-individual variability and genetic
influences on cytokine responses to bacteria and fungi. Nat Med 2016;22:952–
960
44. Schirmer M, Smeekens SP, Vlamakis H, et al. Linking the human gut mi-
crobiome to inflammatory cytokine production capacity. Cell 2016;167:1125–
1136.e8
45. Abusleme L, Moutsopoulos NM. IL-17: overview and role in oral immunity
and microbiome. Oral Dis 2017;23:854–865
46. Dixon BR, Radin JN, Piazuelo MB, Contreras DC, Algood HM. IL-17a and IL-22
induce expression of antimicrobials in gastrointestinal epithelial cells and may
contribute to epithelial cell defense against Helicobacter pylori. PLoS One 2016;11:
e0148514
47. Zenewicz LA, Yin X, Wang G, et al. IL-22 deficiency alters colonic microbiota
to be transmissible and colitogenic. J Immunol 2013;190:5306–5312
48. Dudakov JA, Hanash AM, van den Brink MR. Interleukin-22: immunobiology
and pathology. Annu Rev Immunol 2015;33:747–785
49. Lee JS, Tato CM, Joyce-Shaikh B, et al. Interleukin-23-independent IL-17
production regulates intestinal epithelial permeability. Immunity 2015;43:727–
738
50. Maxwell JR, Zhang Y, Brown WA, et al. Differential roles for interleukin-
23 and interleukin-17 in intestinal immunoregulation. Immunity 2015;43:
739–750
51. O’Connor W Jr, Kamanaka M, Booth CJ, et al. A protective function for
interleukin 17A in T cell-mediated intestinal inflammation. Nat Immunol 2009;10:
603–609
52. Sato J, Kanazawa A, Ikeda F, et al. Gut dysbiosis and detection of “live gut
bacteria” in blood of Japanese patients with type 2 diabetes. Diabetes Care 2014;
37:2343–2350
53. Hasnain SZ, Borg DJ, Harcourt BE, et al. Glycemic control in diabetes is
restored by therapeutic manipulation of cytokines that regulate beta cell stress. Nat
Med 2014;20:1417–1426
54. Liang SC, Tan XY, Luxenberg DP, et al. Interleukin (IL)-22 and IL-17 are
coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial
peptides. J Exp Med 2006;203:2271–2279
55. Miossec P, Kolls JK. Targeting IL-17 and TH17 cells in chronic inflammation.
Nat Rev Drug Discov 2012;11:763–776
56. Atarashi K, Tanoue T, Ando M, et al. Th17 cell induction by adhesion of
microbes to intestinal epithelial cells. Cell 2015;163:367–380

diabetes.diabetesjournals.org Zhou and Associates 1841



57. Ivanov II, Frutos RdeL, Manel N, et al. Specific microbiota direct the dif-
ferentiation of IL-17-producing T-helper cells in the mucosa of the small intestine.
Cell Host Microbe 2008;4:337–349
58. Ivanov II, Atarashi K, Manel N, et al. Induction of intestinal Th17 cells by
segmented filamentous bacteria. Cell 2009;139:485–498
59. Tan TG, Sefik E, Geva-Zatorsky N, et al. Identifying species of symbiont
bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice.
Proc Natl Acad Sci USA 2016;113:E8141–E8150
60. Yin Y, Wang Y, Zhu L, et al. Comparative analysis of the distribution of
segmented filamentous bacteria in humans, mice and chickens. ISME J 2013;7:
615–621
61. Chewning JH, Weaver CT. Development and survival of Th17 cells within the
intestines: the influence of microbiome- and diet-derived signals. J Immunol 2014;
193:4769–4777

62. Xue J, Nguyen DT, Habtezion A. Aryl hydrocarbon receptor regulates pan-
creatic IL-22 production and protects mice from acute pancreatitis. Gastroen-
terology 2012;143:1670–1680
63. Natividad JM, Agus A, Planchais J, et al. Impaired aryl hydrocarbon receptor
ligand production by the gut microbiota is a key factor in metabolic syndrome. Cell
Metab 2018;28:737–749.e4
64. Zhao L, Zhang F, Ding X, et al. Gut bacteria selectively promoted by dietary
fibers alleviate type 2 diabetes. Science 2018;359:1151–1156
65. Asarat M, Apostolopoulos V, Vasiljevic T, Donkor O. Short-chain fatty acids
regulate cytokines and Th17/Treg cells in human peripheral blood mononuclear
cells in vitro. Immunol Invest 2016;45:205–222
66. Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from
lean donors increases insulin sensitivity in individuals with metabolic syndrome.
Gastroenterology 2012;143:913–916.e7

1842 Clostridia, IL-17/IL-22, and Insulin Sensitivity Diabetes Volume 69, August 2020


