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Abstract: Ovarian reserve is essential for fertility and
influences healthy aging in women. Advanced maternal
age correlateswith the progressive loss of both the quantity
and quality of oocytes. The molecular mechanisms and
various contributing factors underlying ovarian aging
have been uncovered. In this review, we highlight some
of critical factors that impact oocyte quantity and quality
during aging. Germ cell and follicle reserve at birth de-
termines reproductive lifespan and timing the menopause in
female mammals. Accelerated diminishing ovarian reserve
leads to premature ovarian aging or insufficiency. Poor
oocyte quality with increasing age could result from chro-
mosomal cohesion deterioration and misaligned chromo-
somes, telomere shortening, DNA damage and associated
genetic mutations, oxidative stress, mitochondrial dysfunc-
tion and epigenetic alteration. We also discuss the interven-
tion strategies to delay ovarian aging. Both the efficacy of
senotherapies by antioxidants against reproductive aging
andmitochondrial therapy are discussed. Functional oocytes
and ovarioids could be rejuvenated from pluripotent stem
cells or somatic cells. We propose directions for future
interventions. As couples increasingly begin delaying

parenthood in life worldwide, understanding the molecular
mechanisms during female reproductive aging and potential
intervention strategies couldbenefitwomen inmakingearlier
choices about their reproductive health.

Keywords: mitochondrial therapy; oocyte quality; oocyte
quantity; ovarian aging; ovarioids; senotherapy.

Introduction

Life expectancy of human beings has greatly increased
from 45 to 85 years over the past 150 years [1], but the age at
natural menopause (ANM) has remained around the age
of 50 years [2]. According to cohort studies, the decline
in female fertility begins around the late 20s to early
30s and accelerates after the age of 35 years, especially
among nulliparous women [3–6], thus, fecundity decreases
as age increases. Ovarian aging can be part of normal
biological aging, where genetic as well as environmental
factors influence its onset and determine the age of
menopause [7–10]. The genetic integrity of oocytes
decreasedwith advancing age [11] and almost half ofwomen
are infertile by the age of 40 years (Figure 1) [6, 12, 13]. More
women are choosing to delay childbearing to more
advanced age worldwide, resulting in more frequent use of
assisted reproductive technology (ART) [14, 15]. Also, there
is only an approximately 6.5% chance of achieving preg-
nancy with each mature oocyte thawed from the
preservation of oocytes or ovarian tissue, which decreases
with age [16, 17]. Therefore, prevention of age-associated
infertility becomes extremely important to the woman as
well as to the family and society.

In addition to reproductive functions, the ovarian also
plays an important role in maintaining female hormone
secretion. Fertility loss during female aging is associated
with increasing basal follicle stimulating hormone (FSH)
and decreasing anti-Mullerian hormone (AMH) concen-
trations, together with compromised oocyte quality,
presumably due to increased oxidative stress (OS) and
DNA damage, as well as reduced metabolic and meiotic
competences [22, 23]. Excessive serum FSH also acts
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directly on hippocampal and cortical neurons to accelerate
amyloid-β and tau deposition and impair cognition in fe-
male mice displaying features of Alzheimer’s disease [24].
Estrogen is produced in the ovaries by the follicles that
house the oocytes. Physiological functional endocrine en-
dows women their feminine characteristics and reproduc-
tive abilities, and is also key for maintaining healthy
lifespan including heart health, bone density and mood.
With a depleting ovarian reserve, both physiological fluc-
tuation of estrogen and progesterone production will
decline unpredictably and, eventually, halt [25]. Ovarian
aging and disrupted endocrine function increases risk of
reproductive aging-associated chronic diseases such as
heart disease, incontinence, and osteoporosis.

Multiple factors, including non-germ-line stem cells in
adulthood female mammals, chromosomal, genetic,
mitochondrial, reactive oxygen species (ROS) and envi-
ronmental factors, impact the quantity and quality of
oocytes in the ovarian reserve (Figure 2). Elucidating the
molecular mechanisms underlying the decline in ovarian
reserve and oocyte function would facilitate achieving
targeted intervention in postponing ovarian aging and
improving oocyte quality. Although achievements have
been gained in diagnostic and intervention field, once the
ovarian reserve has declined markedly, few treatments
other than ART are effective in treating infertility. Under-
standing of gonadal development and ovarian physiology
may allow reconstituting the ovarioids to provide an
alternative source of gametes for reproduction and
rebuilding physiological endocrine function. Thus, there
is requirement for developing better diagnostic tools
and improving treatments in the fields of reproductive
medicine. We here broadly review molecular mechanisms
of ovarian aging, recent developed intervention strategies
in the reproductive field, and prospective directions.

Main mechanisms of ovarian aging

Oocyte quantity and ovarian aging

Oocyte quantity

Women are born with a limited number of oocytes. During
the fifth week of human pregnancy, female fetal ovaries
contain 500 to 1300 primordial germ cells (PGCs) that un-
dergo mitosis to generate approximately 6–7 million germ
cells at the 20th gestation week [18]. Following the
completion ofmitosis, female germ cells undergo prophase
of meiosis I, beginning at the time of E12.5 to E13.5 in mice
and approximately E10 weeks to E11 weeks in human [19],
exhibiting typical stages including leptotene, zygotene,
pachytene and diplotene stage when the meiocytes arrest.
This phase may last for months for mouse oocytes or years
for human oocytes. The meiotic prophase resumes the
diakinesis phase when the puberty is reached. The meiotic
germ cells form cysts and generate primordial follicles that
each oocyte is surrounded by a single layer of granulosa
cells. Only 1–2 million viable follicles remain at birth, the
mechanism of primordial follicles loss remains to be fully
determined [20]. The number of primordial follicles is
down to approximately 400,000 at puberty, ofwhich about
350 oocytes ultimately are ovulated during reproductive
life [21]. Follicle depletion is associated with reduced
production of the hormones estrogen and inhibin by the
ovary, disrupting the hypothalamic-pituitary-gonadal
hormonal axis and eventually leading to menopause [26].
When reaching ANM at the mean age of about 51 years old,
fewer than 1000 primordial follicles are left, which no
longer sustain ovulation [27]. Mathematical models
show that ovarian reserve depletion during the fertile
years appears to accelerate with age, mainly because of

Figure 1: The dynamics of human follicular
development and reserve during fetal
development and in adult. Oocyte and
follicle reserve decline in the ovary during
aging. Follicular quantity reachesmaximum
at 16/20 weeks of fetal development [18,
19]. Approximately one million viable
follicles remain at birth, the mechanism of
primordial follicles loss remains to be fully
determined [20]. At the time of menarche,
women have 300,000 to 400,000 follicles,
which are recruited cyclically until
menopause (approximately 1000 follicles)
[21]. yr, year.
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increased oocyte atresia [18]. Therefore, ANM is determined
by the non-renewable functional ovarian reserve, which is
established during fetal development and continuously
depleted until ovarian senescence. ANM can vary signifi-
cantly between individuals depending on genetic and
environmental factors. Of the non-genetic risk factors,
cigarette smoking is the main factor proven to accelerate
the age of menopause by about three years [28], limiting
reproductive potential. Primary ovarian insufficiency (POI),
is determined by exhaustion of functional ovarian reserve
in the individuals suffered certain genetic disorders,
autoimmune diseases or after chemo- or radiotherapy for
cancer treatment, leading to infertility before the age of
40 years [29]. Moreover, maternal age reduces pregnancy
outcomes [30]. Therefore, follicle depletion serves as a timer
for themajor landmarks of female reproduction and ovarian
aging.

Dispute over germ-line stem cells in female mammals

Stem cells are featured with the capacity of self-renewal as
well as lineage differentiation. Germ-line stem cells share
common features of self-renewal and differentiation
specifically into meiotic cells or meiocytes that undergo

homologous pairing and recombination. Germ-line stem
cells are present and functional in many non-mammalian
organisms and male mammals. Traditionally, they have
been thought not to exist in female mammals. However,
this traditional view had been challenged according to the
expression of germ-cell markers by extra-follicular cells,
arguing that female mammals possess oogonial stem cells
(OSCs) that replenish their supply of oocytes in a physio-
logical context. It was reported that ovarian surface
epithelium of adult mice contained OSCs that sustained
postnatal follicular renewal [31]. Moreover, using anti-
Ddx4 antibody coupled to fluorescence activated cell
sorting, up to 1000 Ddx4-positive cells were isolated per
young adult mouse ovary [32]. The Vasa/Mvh/Ddx4 posi-
tive germ cells existed in the postnatal and adult ovaries
were claimed as germline stem cells [31, 33]. It remains to
be tested whether these Vasa/Mvh/Ddx4 positive germ
cells isolated from adult ovaries can undergo self-renewal
as well as are capable of differentiation into meiotic cells
featuredwith homologous pairing shownby synaptonemal
complex protein 1/synaptonemal complex protein 3 (SCP1/
SCP3) filaments and recombination (e.g. presence of spe-
cific MutL homolog 1 [MLH1] foci). Interestingly, by label-
ing the Oct4-expressing small germ cells and tracing their

Figure 2: Current understanding of molecular mechanisms underlying ovarian aging. A multitude of physiological factors and molecular
changes that can diminish the quantity and quality of ovarian reserve lead to ovarian aging. Most factors are explained further under
subheadings in the text. DSBs, double-strand breaks; ROS, reactive oxygen species.
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fates for up to 4months inmouse ovary, Guo et al. observed
that Oct4+Dazl−, but not Oct4+Dazl+ or Oct4+Ddx4+ cells,
contain a population of germ stem cells in extra-follicular
ovarian cells [34]. It remains to be investigated whether the
marked cells can undergomeiotic homologous pairing and
recombination and differentiate into oocytes. Thus far,
existence of typical meiotic cells at prophase I stage that
exhibit homologous pairing and recombination in the
adult ovaries under physiological conditions has not been
rigorously demonstrated.

Additionally, it was reported that bone marrow trans-
plantation restored oocyte production in wild-type mice
sterilized by chemotherapy, as well as in ataxia
telangiectasia-mutated gene-deficient mice, which were
otherwise incapable of making oocytes, and the bone
marrow was considered to be a potential source of germ
cells that could sustain oocyte production in adult-
hood [35]. However, Eggan et al. [36] established trans-
plantation and parabiotic mouse models to assess the
capacity of circulating bone marrow cells to generate
ovulated oocytes, both in the steady state and after induced
damage and showed that ovulated oocytes in adult mice
derive from non-circulating germ cells [36].

The straightforward way to detect whether OSCs exist
in vivo in the adult is to identify the extra-follicular
ovarian cells that express the germ-line stem cell markers,
which are expressed prior to differentiation into meio-
cytes in fetal ovaries. Interferon-induced transmembrane
protein 3 (IFITM3) is expressed in the PGCs [37]. Using the
anti-IFITM3 antibody, we isolated cells with germ-line char-
acteristics from E12.5 embryos, which contain mitotically
active germ cells, but not from adult mice ovaries [38]. More-
over, Ddx4, Dppa3 and POU class 5 homeobox 1 (POU5F1)
were detected by immunoblotting in ovarian cells isolated
using anti-IFITM3 from E12.5 female mouse embryos, which
contained mitotically active germ cells. However, only Dppa3
was detected in the IFITM3-positive cells that were isolated
from the adult ovaries [38]. These results are consistent with
the traditional view that no OSCs remain in the adult ovary.

The germ-line cells also can be marked in the unper-
turbed ovary and traced their fate. Lei and Spradling
generated CAG-CreER/Esr1TM;ROSA-EGFP mouse
model [39], and Zhang et al. generated Sohlh1-CreERT2;R26R
mouse model [40], the brief tamoxifen-based treatment
strategy was taken to mark a subset of follicles. The marked
primordial follicles were subsequently lost at the same rate
as the unmarked follicles. Instead of monitoring the loss of
marked follicles, Zhang et al. generated tamoxifen-induced
Forkhead box L2 (Foxl2)-CreERT2;mT/mG mouse model to
search for evidence that new follicles are occurred [40].
Foxl2 is expressed in granulosa cells but not in the pre-

granulosa cells of the ovarian epithelium [41]. The authors
triggered a switch from tdTomato to green fluorescent pro-
tein (GFP) expression in cells expressing Foxl2 during the
brief tamoxifen treatment. Thus, if new follicles were
assembled, their granulosa cells would be red. Yet, all
ovaries at 2 weeks and at 2, 6, and 12 months contain only
follicles with green fluorescent somatic cells. This implies
that adult mice do not generate new follicles. Furthermore,
Zhang et al. discovered that no adult oogenesis occurred
after ablation of all oocytes in Gdf9-Cre;iDTR ovaries [40].

Another key criterion for identifying the presence of a
newborn egg or neo-oogenesis is whether the germ cell
undergo normal meiosis, where homologous chromosome
pairing and recombination occur [42]. During meiosis,
homologous chromosome pairing and recombination take
place in the prophase of meiosis I, and the appearance of
synaptonemal complexes provides the structural basis for
the recombination between chromosomes. SCP3 is the key
to the formation of synaptonemal complex, and the joint
detection of the distribution of proteins such as SCP1, SCP3
and MLH1 can be used as an important marker to measure
the normality of homologous chromosome synapsis and
homologous recombination. In primate monkeys, the
number of eggs decreases markedly with age. In monkey
ovaries of different ages (3–18 years old), no meiotic cells
were found to undergo SCP1/SCP3 homologous chromo-
some pairing and homologous recombination (MLH1
junctions), which indicated that no new eggs occurred in
adult ovaries [43]. Also, neo-oogenesis andmeiocytes were
not found in adult human ovaries [44]. Thus far, no studies
have reported neo-oogenesis and meiocytes in mice.

A more complete map of cell types in the human
ovarian cortex was characterized by single-cell RNA-seq
recently [45]. The important finding in the study was to
determine that DDX4-positive cells, isolated by an DDX4
antibody used in previous study [32, 46], from ovarian
cortex are perivascular cells but not oogonial stem cells.
This result was verified using a different analysis,
including immunostaining validation, which showed
DDX4 antibody localization at perivascular sites in human
ovarian tissue. This result provides strong evidence
opposing the controversial studies arguing for the exis-
tence of oogonial stem cells in mammalian adult
ovaries [47]. By careful comparison of the published results
and analysis of the data, Hainaut and Clarke conclude that
the weight of evidence strongly supports the traditional
interpretation that germ-line stem cells do not exist post-
natally in female mammals [48]. This concept is consistent
with the fact that the continuously depleted non-renewable
ovarian reserve with age is the key limiting factor in
ovarian aging.
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Oocyte quality and ovarian aging

Oocyte quality

In addition to the diminishing follicle reserve, oocyte
quality also is declined with increasing maternal age. At
birth, the finite ovarian reserve comprises non-growing
primordial follicles arrested in the dictyate stage and do
not complete their first meiotic division before puberty is
reached. Some oocytes and their surrounding cells remain
arrest stage for 40 years or more. ROS causes OS and
damage to cells, which, over time, contributes to structural
and functional damages that are distinctive for cellular
senescence and aging [49]. An increase in ROS levels in
ovaries has been suggested to play a key role in the
pathogenesis of age-related infertility in female
mammals [50, 51]. The gradual deterioration in oocyte
quality begins at least after the age of 31 years. This
coincides with a decrease in oocyte quantity and partly
explains the decline in fertility long before the onset of
menopause, along with the abnormal endocrine profile
found in reproductively older women [52–54]. On
cellular levels, the oocyte aging phenomenon are mainly
manifested by cohesin dysfunction [55], crossover matu-
ration inefficiency (CMI) [56], chromosome misalignments
and meiotic spindle disruption [57], telomere attrition [58],
DNA damage [59] and mitochondrial dysfunction [60]. CMI
is a major contributing factor to increase the incidence of
both chromosome mis-segregation, especially with
increased age. The loss of oocyte quality is believed to be
due to an increase in meiotic nondisjunction, resulting in
aneuploidies and unsuccessful pregnancy outcomes at
higher female ages [61, 62].

Main molecular mechanisms for the deterioration
of oocyte quality

(1) Chromosomal cohesion deterioration
Aneuploidy in eggs is a leading cause of infertility,
miscarriage and congenital syndromes. Aneuploidy and
maternal aging follow a U-shaped relationship [11]. More
than 20% of eggs are aneuploidy from young women
20–32 years of age, however, women in both very young
(< 20 years) and advanced age group (> 35 years) can be
greatly more at risk of generating aneuploid eggs than
women 20–32 years of age. Notably, aneuploidy occurs in
more than 50% of eggs from women aged 35 years and
above [11, 63]. Data from mice suggest that cohesion
levels on chromosomes could determine the U-shaped

curve [64–68]. Sister chromatids are bound together by
many ring-like protein structures called cohesion com-
plexes that are installed during DNA replication [66].
Cohesion complexes are essential for the correct segrega-
tion of chromosomes during the divisions of meiosis in
each ovulation cycle of adult female mammals. Impor-
tantly, evidence from mouse oocytes indicated that chro-
mosomes might initially be overloaded with cohesin to
ensure that adequate cohesin levels are maintained for
the entire reproductive life span. This overloading may
cause higher rates of chromosomemis-segregation during
the first cohorts of oocytes to be ovulated in young
women [11]. With increasing female age, chromosomes
cohesion in oocytes naturally deteriorates, leading to
premature chromosome separation [69–71]. Therefore, in
the 20s and early 30s, cohesin levels might be at an ideal
intermediate level, which is not too high to prevent
chromosomes from segregating at anaphase but also not
too low to maintain the integrity of the chromosomes. In
contrast, cohesin in old oocytes are susceptible to
removal by separase, a cysteine protease that cleaves
the cohesin subunit REC8 and then destroy the cohesin
ring. Importantly, separase is restricted from cleaving
most cohesin that holds sister chromatids together as
these links need to be maintained for sister chromatid
alignment and separation during the second meiotic divi-
sion. This function is provided by Shugoshin-like 2 (SGO2)
in complex with PP2A that locally dephosphorylate
REC8 [72, 73]. Notably, SGO2 expression decreases in
oocytes with advancing age [74, 75]. Depletion of SGO2 in
mouse oocytes causes loss of centromeric cohesion during
anaphase I [75]. Decreased cohesion results in a greater
probability of chromosome mis-segregation, premature
chromatid separation, and aneuploid [69, 70, 76].

(2) Telomere shortening
Telomeres are composed of repetitive nucleotide sequences
that form a “cap structure”which functions to maintain the
integrity of chromosomes. Telomere length is known to
directly correlated with both life expectancy and reproduc-
tive life span [77–79]. Comparison of telomere lengths in the
leukocytes of women revealed that the average telomere
length in the extended fertility group is significantly longer
than in the normal fertility group [80, 81]. Telomeres are
shorter in the leukocytes of postmenopausal women than
those of a similar age but still menstruating [82]. Moreover,
women with longer telomeres entered menopause up to
3 years later than in those with shorter telomeres [82]. These
results suggest that menopause may occur after telomere
shortening reaches a specific length. Moreover, patients
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with polycystic ovary syndromewith low telomerase activity
and short telomeres in granulosa cells, which support
oocyte maturation, show an earlier onset of infertility [83].

A significant cause of telomere attrition in oocytes is
the accumulation of ROS [84]. Telomere length is pivotal
for accurate chromosomal alignment as well as adequate
function of the spindle assembly checkpoint during
meiosis, both of which prevent aneuploidy in embryos [79].
Shorter telomere is associated with higher rates of aneu-
ploidy among infertile women undergoing in vitro fertil-
ization [58, 85, 86]. Short telomeres impede germ cell
specification by upregulating mitogen-activated protein
kinase (MAPK) and transforming growth factor beta
(TGF-β) signaling [87]. Therefore, oocytes and early
embryos with telomere attrition may be an indicator of
improper chromosome segregation, leading to aneuploidy,
moreover, telomere shortening has been suggested to be
involved in embryonic fragmentation and developmental
arrest [79, 88].

Loss of telomerase activity also leads to telomere
shortening in ovaries. Telomerase activity presents in
adult granulosa cells, but almost unmeasurable inmature
oocytes [89, 90]. In mouse models, telomerase compo-
nents (TERT and Terc) and telomere-associated proteins
(TRF1, TRF2, and POT1a) have been shown to gradually
decrease in the ovary from young to aged group as well as
in the follicles from primordial to antral stages and their
oocytes and granulosa cells, contributing to telomere
shortening [90]. In women at 37 years old or less, a lack of
telomerase activity or aberrant telomere homeostasis in
human granulosa is associated with occult ovarian
insufficiency [91]. Shortened telomere length and dimin-
ished telomerase activity were shown to be associated
with biochemical POI [81, 92, 93]. Additionally, a woman
with dyskeratosis congenita, a telomeropathy associated
with a reduced ovarian reserve, responded poorly to
hormonal treatment before in vitro fertilization and her
oocytes contained critically short telomeres [94]. There-
fore, telomere length and telomerase activity have a great
impact on ovarian aging, and a mathematic model of
telomere shortening in leukocytes could potentially be
used to evaluate the reproductive aging status or ovarian
aging.

(3) DNA damage response associated genetic mutations
The ANM varies between individuals. Genetic factors play
an important role in ANM. Ovarian oocyte reserve is
required to generate eggs and to response to gonadotropic
hormones. POI is determined by exhaustion of follicles in

the ovaries, which leads to infertility prior to the age of 40s.
It is characterized by a strong familial and heterogeneous.
Over the last years, several cohort studies have elucidated a
likely oligogenic inheritance of POI [95–99], 107 genes
related to POI etiologywere identified. Of the 107 genes, the
most genes linked to syndromic POI are mainly implicated
in meiosis/DNA repair and metabolism function. Addi-
tionally, the majority of genes associated with non-
syndromic POI are also mainly implicated in meiosis/DNA
repair pathways [59, 100]. A recent genome-wide associa-
tion study of approximately 200,000 women of European
ancestry identified 290 genetic determinants of ovarian
aging [10], highlighting a much broader involvement of
DNA damage response (DDR) and of metabolic signaling
networks such as the phosphatidylinositol 3-kinase
pathway in the regulation of ovarian aging. Intact DNA
repair mechanisms are essential to maintain metabolic
balance and delay aging phenotypes [101, 102]. Cellular
mechanisms that repair DNA damage become less effective
during aging. In oocytes, deceased efficacy of DNA repair
mechanisms could result in poor quality, apoptosis, and
ultimatelymenopause, infertility andmiscarriage [10, 103].
Activation of the DDR during meiosis can result in the
elimination of oocytes with unrepaired meiotic DNA
double-strand breaks (DSBs) above a threshold level via
the TRP53 and TAp63 pathways in mice [104, 105]. DNA
damage or the failure to mount DNA damage response
promotes cell death, resulting in depleted oocyte reserve
that induces POF.

Breast cancer-associated 1 (BRCA1) and BRCA2, with
functions in homologous recombination repair, are asso-
ciated with depleted oocyte reserve [106]. Both BRCA1 and
BRCA2 are involved in the repair of ataxia telangiectasia
mutated (ATM) and RAD3-related (ATR) protein kinase-
mediated DNA DSBs in oocyte [107, 108]. The expression of
ATM in ovaries and oocytes is dramatically reduced after
mid-thirties, which is in line with the lower fecundity at the
women from aged 35 years and above. BRCA1 expression
declines around a decade earlier [107]. In Brca1-deficient
mice, reproductive capacity is impaired, primordial follicle
counts are lower, and DSBs are increased in remaining
follicles with age relative to wild-type mice [107]. AMH is
one of the best predictors known to evaluate ovarian
reserve [109]. Womenwith BRCAmutations, particularly of
the BRCA1 gene, have lower serum AMH levels, consistent
with diminished ovarian reserve [107, 110–115]. Also,
women with BRCA mutations appear to experience meno-
pause at earlier age [116–118]. Furthermore, women car-
rying loss-of-function variants in BRCA1 and BRCA2
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reported ANM 2.63 years earlier and 1.54 years earlier [10].
In general, women with BRCA mutations have lower
ovarian reserve and experience earlier menopause.

Another component essential to the repair of DSBs is
the cell cycle checkpoint kinase 2 (CHK2) [10, 119]. Women
carrying loss-of-function variants inCHK2manifestedANM
3.49 years later [10]. CHK2 is a downstream effector of the
ATM kinase that responds primarily to DSBs, and can also
be activated by the ATR kinase that responds primarily
to single stranded DNA [86, 120]. CHK2 has important
functions in checkpoint signaling during the progression of
the cell cycle in mitosis and meiosis [10, 104, 105, 119, 121].
CHK2 is essential for culling mouse oocytes bearing unre-
paired meiotic or induced DNA DSBs. Both meiotically
programmed and induced DSBs detected by CHK2 trigger
the CHK2-dependent activation of TRP53 and TRP63
pathway to eliminate the defective oocytes [119].

(4) ROS and OS
ROS are the by-products of mitochondrial oxidative phos-
phorylation and include superoxide, hydroxyl, and
hydrogen peroxide. ROS react with the surrounding
DNA, proteins and lipids, leading to mutations and macro-
molecular damage. Under physiological conditions, the
production and neutralization of ROS are balanced. Early
oocytes have an apparent lack of ROS and balance essential
mitochondrial activity by suppressing complex I [122].

Excessive ROS generation overwhelms the cellular
anti-oxidant defenses, resulting in OS, mitochondrial and
nuclear DNAdamage, andpremature aging of ovaries [123].
In mice, long-term OS caused by ROS has been associated
with decreased follicle and oocyte qualitywithout affecting
oocyte quantity [124]. Ovaries of ozone-exposed mice show
high levels of ROS as well as the decreased fertility [124].
Mice fed with the antioxidant N-acetyl-L-cysteine (NAC)
have better quality oocytes and longer reproductive life-
span [125]. Moreover, NAC treatment also maintains oocyte
telomere length and telomerase activity [125].

Humans and non-human primates have similar age-
related ovarian alterations. Wang et al. [126] used single-
cell RNA-seq analysis and found the down-regulation of
antioxidant genes, including GPX1, GSR, GPX4 and PON1,
in aged early-stage monkey oocytes, and increased
apoptosis plus decreased reductase activity-related genes,
including IDH1, PRDX4 and NDUFB10, in aged monkey
granulosa cells, suggesting oxidative damage as an
essential factor in ovarian aging. Furthermore, human
granulosa cells isolated from the follicular fluid also
exhibited aging-associated down-regulation of IDH1,

PRDX4 andNDUFB10 [126], indicating that these genes can
be biomarkers and targets for diagnosis and treatment of
human age-related ovarian diseases, such as POI, and
decreased ovarian reserve. In a study of physiologic aging
in C57BL/6 wild type mice, ovarian peroxiredoxin 3 and
thioredoxin 2 mRNA expression decreased significantly
with age [127]. In human, high levels of OSwithin the ovary,
follicularfluid, granulosa, and cumulus cells correlatewith
follicular atresia and poor oocyte quality, as well as
decreased oocyte fertilization, embryo development and
fertility [128]. Collectively, oxidative damage caused by
ROS impacts reproductive potential by decreasing the
quality of ovarian follicles and oocytes [129].

Increasing evidences supports the notion that lifestyle
modification to minimize OS preconception can improve
female fertility. Caloric restriction (CR) is known to delay
the aging caused functional decline in tissue throughout
the body [130–132]. CR has also been found to extend
reproductive lifespan in female mice [133, 134]. Obesity is
being considered as a state of OS and is known to reduce
the live birth [135, 136]. Maternal obesity induces the
defective telomeres in oocytes and embryos [137]. Of note,
Children of mothers who had the metabolic syndrome
(or obesity) in pregnancy had significant shorter telomeres
than of normal [138, 139]. Additionally, several environ-
mental factors such as cigarette smoke [140, 141],
alcohol [142], bisphenol A [143, 144], exposure to chemicals
and radiation have been linked OS with ovarian aging.
However, a healthy balanced diet and regular exercise can
reduce excess OS and correlates positively with clinical
pregnancy rate in in vitro fertilization (IVF) [145–148].

(5) Mitochondrial dysfunction
Mitochondria in mammalian oocytes are spherical with a
few cristae surrounding the electron-dense ma-
trix [149, 150].Mitochondria function requires coordination
of both mitochondrial and nuclear genomes. Normally,
mitochondria in the oocyte are generated during oogen-
esis, and then production ceases at the stage of the mature
oocyte [151]. Mitochondria play a central role in follicular
atresia and could be themain target of the ooplasmic factors
determining oocyte quality adversely affected by aging. The
aging effects on oocyte mitochondria have been seen
through morphological and functional abnormalities.
Mitochondrial swelling and vacuolization are associated
with reduced adenosine-triphosphate (ATP) and mitochon-
drial DNA (mtDNA) content in aged mouse and hamster
oocytes [152, 153]. Mitochondria are highly dynamic organ-
elles responding to cellular stress through changes in
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overall mass, interconnectedness, and sub-cellular locali-
zation [154, 155]. The multiple mechanisms through which
mitochondria drive ovarian aging include mitochondrial
dysfunction, impairedmitochondrial dynamics (biogenesis,
fusion and fission, mitophagy, apoptosis, mitocytosis [156],
and spatial dynamics), accumulation of mtDNA mutations,
altered membrane potential, and defective electron trans-
port chain function. mtDNA mutations exacerbate female
reproductive aging by impairing nicotinamide adenine
dinucleotide (NADH/NAD+) redox [157], and increasing
ovarian NAD+ levels improve mitochondrial functions and
reverse ovarian aging [158]. Mitochondrial biogenesis is
required for cell growth to produce increased metabolites
and energy and defects in biogenesis are frequently lethal to
cells and organisms. Mitochondrial biogenesis might be
initiated by the small, round-shaped vesicles in the nuclei,
followed by their translocation into the cytoplasm and
protein import to achieve their complete construction and
biological functions [159–161]. Mitochondrial biogenesis
depends upon the activity of a hierarchy of nuclear factors,
including peroxisome proliferator activator receptor alpha
(PPARα), PPARγ, nuclear respiratory factor-1 and -2, estro-
gen related receptor. All of these transcription factors are
critical dependent for their activity on PPARγ coactivator 1
alpha (PGC-1α). Nutrient supply and energy balance in the
cell modulates PGC-1α activity at both the transcriptional
and post-translational level [162]. Deceased mitochondrial
biogenesis, as indicated by lower mtDNA content, is
routinely observed during POI, diminished ovarian reserve
(DOR), and physiological ovarian aging. Compared with
those of normal ovarian reserve, PGC-1α expression is lower
in cumulus cells and accompanied by decreased mtDNA
content in cumulus cells and oocytes in women with
DOR [163].

Re-modeling of the mitochondrial network in cells is
mechanically regulated by key dynamin-related fusion and
fission gene products. Mitochondrial fusion is promoted by
homotypic/heterotypic interaction of the Mitofusin 1 (Mfn1)
and Mitofusion 2 (Mfn2) at the outer mitochondrial
membrane (OMM) of adjacent mitochondria and by Opa-1 at
the inner mitochondria membrane [154, 164]. Mitochondrial
fission is promoted by the GTPase activity of the dynamin-
related protein (DRP1) that is recruited to the OMM where it
forms ring-like oligomers that pinch off mitochondria into
small fragmentedmitochondria in response to stresses [164].
Fusion and fission defects have significant implications in
ovarian aging. Oocyte-specific deletion ofMfn1 inmice leads
to female sterility associated with the defective folliculo-
genesis and impaired oocyte quality [165, 166]. Targeted
deletion of Mfn2 in oocytes results in mitochondrial

dysfunction and female subfertility associatedwith impaired
oocyte maturation and follicle development [167]. Oocyte-
specific depletion of Drp1 leads to decreased oocyte quality
due to maturation defects [168, 169]. Also, fission-deficient
oocytes due to the oocyte-specific depletion ofDrp1 exhibit a
high frequency of failure in peri- and post-implantation
development [170].

Mitochondrial mass in cells is also regulated by the
changes in mitophagy and mitocytosis, and these pro-
cesses are tightly regulated in response to cellular stress.
Phosphoglycerate translocase 5 (PGAM5), located in the
mitochondrial membrane, is associated with mitophagy,
necroptosis and apoptosis. PGAM5 activates DRP1 through
dephosphorylation and induces mitochondrial fracture
and necrosis [171]. Moreover, highly expressed PGAM5 is
directly related to a significant reduction in cellular ATP
production [172].

(6) Epigenetic influences on ovarian aging
Mature oocyte DNA has higher methylation levels, but with
age, the levels ofDNAmethyltransferases (DNMTs) decrease
in oocytes and DNA demethylases (TETs) increased, hence
overall DNA methylation levels decreased [173]. Combined
analysis of single oocyte transcriptomes and DNA methyl-
omes in young and oldmice showed that changes in cellular
transcription of aged oocytes result from differential gene-
methylation [174]. Tet1-deficiency in mouse model down-
regulates the premature ovarian failure (POF) related gene
Fmr1, reduces the number of follicles, causes POF, and thus
reduces reproductive performance [175]. Tet2 deletion in-
creases DNA damage and impairs pathways such as the
spindle checkpoint and the actin cytoskeleton, thereby
reducingoocyte quality and reproductiveperformance [176].

During the maturation of oocytes, histone modifica-
tions show dynamic changes, and in the germinal vesicle
(GV) phase, H4K12 and H4K16 are acetylated. Deacetyla-
tion by deacetylase occurs during MI and MII of
oocytes [177]. With increasing age, the acetylation levels of
H4K12 and H4K16 in aged GV oocytes decrease, but the
deacetylation of H4K12 is impaired in MII oocytes. Exces-
sive histone acetylation in MII oocytes can lead to
increased aneuploidy and death of post-fertilization
embryos [178–180]. Histone methylation modifications
however are relatively stable during oocyte matura-
tion [181]. Yet, the level of histone H3K4 trimethylation
(H3K4me3) is high in fully grown oocytes derived from
young mammalian females but decreased during aging
due to the decreased expression of epigenetic factors
responsible for H3K4me3 accumulation [182]. Oocyte-
specific knockout of the gene encoding CxxC-finger
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protein 1 (CXXC1), a DNA-binding subunit of SETD1
methyltransferase, causes ooplasm changes associated
with accelerated aging and impaired maternal mRNA
translation and degradation [182]. Therefore, a network of
CXXC1-maintained H3K4me3, in association with mRNA
decay competence, sets a timer for oocyte deterioration and
plays a role in oocyte aging in both mouse and human
oocytes.

(7) The ovarian microenvironment affects ovarian aging
Ovarian tissue consists of two parts: the cortex and the
medulla. The medulla is composed of connective tissue,
fibrous tissue, and blood vessels. The ovarian microenvi-
ronment is composed of different types of cells within
the ovary, and communication between oocytes and
ovarian microenvironment is mediated by direct contact
with surrounding cells, the extracellular matrix, and
signaling molecules, including hormones, growth factors,
and metabolites [183]. Therefore, the ovarian microenvi-
ronment can affect the quality of oocytes, and even accel-
erates the oocyte aging and leads to diseases such as
infertility. Bidirectional communication between the
oocyte and its associated somatic cells plays a key role in
fertility and embryogenesis. Cumulus cells provide essen-
tial nutrients for oocyte maturation through different
paracrine signaling pathways. In addition, cumulus cells
are also involved in the regulation of oocyte aging [151].
For example, cumulus cells accelerate oocyte senescence
by activating the Fas/FasL pathway [184, 185]. Ceramides
can also be transferred from cumulus cells to oocytes
through gap junctions, increasing age-related oocyte
apoptosis [186, 187]. Altered homeostasis between syn-
thesis and degradation of extracellular matrix (ECM)
components affects tissue structure and function, and
excessive accumulation of ECM contributes to tissue
fibrosis. In addition to organs such as heart, lung, and
kidney, fibrosis is also present in ovarian tissue, and
fibrosis within the mouse ovarian stroma increases with
reproductive age, so fibrosis is an early marker of ovarian
stroma aging [188]. Ovarian fibrosis is reversible, and
antifibrosis drugs (pirfenidone and BGP-15) is reported to
eliminate fibrotic collagen and restore ovulation in
reproductively old and obese mice, in association with
dampenedM2macrophage polarization and up-regulated
MMP13 protease [189]. On the other hand, the temporary
suppression of angiogenesis by axitinib administration
pauses ovarian development and keeps the ovarian
reserve in the long term, leading to postponed ovarian
senescence and an extension of the female reproductive
life span [190].

miRNAs are small non-coding RNAs that bind to target
messenger RNA (mRNA) to inhibit their expression.miRNAs,
either freely present or enclosed in vesicles (exosomes) in
human follicular fluid [191], are also involved in the regu-
lation of oocyte senescence. For example, miR-16-5p,
miR214-3p, andmiR-449a are down-regulated andmiR-125b,
miR-155-5p, and miR-372 up-regulated in the follicular fluid
of older women, affecting vesicular release, oocyte matura-
tion, and response to stress response [192]. Circular RNAs
(circRNAs) are a unique class of endogenous RNAs that
can be used as potential diagnostic and prognostic bio-
markers for many diseases. Abnormal expression of
circRNAs is found in aging ovaries, which are related to
the metabolic processes, regulatory secretory pathways,
redox processes, and steroid hormone biosynthesis
associated with ovarian aging [193]. Specifically, the
expression of circRNA_103827 and circRNA_104816 is
increased in aged human granulosa cells, and the high
expression is closely associated with decreased ovarian
reserve and poor reproductive outcomes in women [194].
Therefore, the ovarian microenvironment modulates the
process of ovarian aging.

Ovarian aging intervention strategy

To date, there are no clinically feasible techniques to either
maintain or reverse ovarian dysfunction associated with
advanced age [195]. However, important advances have
been made in the field of senotherapy during the last few
years, although themajority of the studies are performed in
mouse models, these pre-clinical tests may show potential
in improving female fertility.

Efficacy of antioxidants on reproductive
aging

Even though there are no clinically practical less invasive
therapeutic measures to reverse ovarian dysfunction
associatedwith advanced age, several drugs are performed
in organismal models. Important advances have been
made in the field of senotherapy to extend the reproductive
lifespan in female mammals [195, 196]. Oxidative damage
is a crucial factor in ovarian functional decline with age,
therefore, antioxidants, such as resveratrol, nicotinamide
mononucleotide (NMN), NAC, melatonin and coenzyme
Q10 (CoQ10), may prevent oxidative damage and delay
ovarian aging.

598 Zhu et al.: Progress on ovarian aging research



Resveratrol (3,5,4′-trihydroxystilbene) is a poly-
phenolic compound found in the skin of red grapes
with antioxidant, anti-inflammatory, cardioprotective and
anti-neoplastic properties [197]. Resveratrol improves
mitochondrial function and protects against metabolic
disease by activating longevity-related protein Sirtuin 1
(SIRT1) and PGC-1a in different type of cells [198–200].
Several studies have established that resveratrol regulates
animal reproduction. Resveratrol enhances maturation
and quality of aged oocytes [201], and is an effective
cryo-protectant with antioxidant and anti-apoptotic
effects [202]. Excitingly, long-term-oral administration of
resveratrol protects against the reduction of fertility with
reproductive aging in mice by improving healthy follicle
number, telomere length and telomerase activity, as well as
oocyte quantity and quality [203]. Methylglyoxal affects the
mouse oocyte quality by resulting in excessive ROS produc-
tion, aberrantmitochondrial distribution and high level lipid
peroxidation. Resveratrol protects the oocytes from
methylglyoxal-induced cytotoxicity and this is mainly
through the correction of the abnormity of cellular ROS
metabolism [204]. Moreover, resveratrol significantly in-
creases the weights of POF mice and their ovaries as well as
the number of follicles, while decreasing the atresia rate of
follicles [205]. Therefore, resveratrol has the potential in
intervening the diminished ovarian reserve and function
through its suppression of OS. But resveratrol also has
adverse effects on implantation and endometrial deciduali-
zation [206]. Effects of resveratrol are time and dosage
dependent. While low dose of resveratrol promotes oocyte
quality and ovarian function, the high dose leads to embryo
apoptosis [203]. Given that doses ≥ 1.0 g may produce side
effects, includingheadache, dizziness, nausea,diarrhea, and
liver dysfunction [207, 208], the optimal frequency, dosage
for resveratrol treatment needs to be further explored.

NMN is an intermediate of the metabolic cofactor
nicotinamide adenine dinucleotide (NAD+/NADH), and
decreased with advanced age. NAD+ is a very important
metabolic redox cofactor and enzyme substrate that
mediates a variety of biological processes including cell
death, aging, gene expression, neuro-inflammation and
DNA repair [209]. As revealed by many recent studies,
deficiency of NAD+ can be compensated by the NMN
supplementation that successfully prevent age-associated
conditions from metabolic and neurodegenerative disease
to cancer [210]. In aged mice ovaries, NMN supplementa-
tion improves the oocyte quality as evidenced by meiotic
competency, increases ovulation and fertilisation capa-
bility through restoring NAD+ levels [211]. Furthermore,
NMN reinstates mitochondrial functions of aged oocytes to
mitigate accumulation of both DNA damage and ROS.

Moreover, long-term treatment of NMN improves age-
related diminished ovary reserve through enhancing the
mitophagy level of granulosa cells in mice [212]. To date, a
number of NMN commercial products have been produced
by various pharmaceutical, biotechnology and health food
companies. The quantity of NMN in available products vary
from 50 to 500 mg/capsule, whereas some consumers take
two 150 mg capsules per day [213, 214]. Given NMN treat-
ment (400mg/kg) obstructed the exercise-induced benefits
of a mouse model of diet-induced obesity such as reduced
hepatic triglyceride accumulation, glucose stimulated
insulin secretion from islets and glucose tolerance [215],
the recommended safe dose levels for long term adminis-
tration requires rigorous scientific preclinical, clinical and
toxicological testing.

Melatonin (5-methoxy-N-acetyltryptamine) is an
endogenous hormone that is primarily released by the
pineal gland to modulate many important physiological
reactions [216]. Additionally, melatonin can be synthe-
sized in the follicular granulosa cells and oocytes. Mela-
tonin and its metabolites efficiently decrease OS levels by
directly scavenging ROS as well as enhancing antioxidant
activity and modulation of mitochondrial and inflamma-
tory activities [217–219]. Melatonin administration
induced high melatonin concentration in the follicular
fluid microenvironment improves oocyte quantity and
quality in reproductive old females [220, 221]. Insufficient
amounts of melatonin in follicular fluid are highly corre-
lated with advanced maternal age-related meiotic de-
fects [222, 223]. Melatonin can increase telomere length,
upregulate the glutathione peroxidase expression and
SIRT pathways, and decrease inflammation [224, 225].
Moreover, melatonin improves the quality of maternally
aged oocytes by maintaining intercellular communica-
tion and antioxidant metabolite supply [221].

Additionally, other small compounds could be used
for delaying ovarian aging and improving fertility. For
example, α-Ketoglutarate can delay ovarian aging and
telomere shortening inmice by inhibitingmetabolism and
mammalian target of rapamycin (mTOR) pathway [226].
Some natural antioxidants such as quercetin and curcu-
min can also protect the ovaries [129]. More compounds
are proving beneficial in improving oocyte and ovarian
functions.

Mitochondrial therapy

Aged oocytes have significantly reduced amounts of
mitochondria, leading to lower fertilization rates and
poor embryonic development. Therefore, search for better
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sources of mitochondria improvement by means of mito-
chondrial nutrient therapy or mitochondrial-transfer
therapy to combat the stress caused by aging are among
the most challenging approaches.

CoQ10 is an essential component for transporting elec-
trons in the mitochondrial respiratory chain to produce
cellular energy [227, 228]. Ubiquinol, the reduced form of
CoQ10, acts as an antioxidant in cellular metabolism via
inhibition of lipid peroxidation, protein, and DNA
oxidation [229–231]. CoQ10 promotes repair of dysfunctional
oocyte mitochondria and reduces the ovarian expression of
8-hydroxydeoxyguanosine [232]. CoQ10 synthesis decreases
in the oocyte with age, coincidingwith the decline in oocyte
quality and general fertility [233]. CoQ10 supplementation in
an aged animal model delayed depletion of ovarian reserve,
restored oocyte mitochondrial gene expression, and
improved mitochondrial activity. But CoQ10 supplementa-
tion had no impact on ovarian reserve or oocyte quality of
young females in which mitochondrial function is intact,
implying the effect of CoQ10 to specifically target
age-associated mitochondrial dysfunction [233]. A
randomized double-blind study conducted on a small group
of IVF-ICSI (in vitro fertilization-intracytoplasmic sperm in-
jection)women (35–43 years of age) found the rate of oocyte
aneuploidy to be 46.5% with CoQ10 treatment (600 mg)
vs. 62.8% in the control group. Clinical pregnancy rate
was 33% for the CoQ10 group and 26.7% for the control
group, neither of these results was statistically significant
owing to the small scale of the study [234]. Another
randomized controlled trial on low-prognosis young
women with decreased ovarian reserve demonstrated
pretreatment with CoQ10 to be effective in improving the
ovarian response to stimulation and embryo quality dur-
ing IVF-ICSI cycles [235]. These results are encouraging
for the treatment of age-associated infertility using
CoQ10, although further work is needed to determine the
overall effect on pregnancy complications and live birth
rates as well as the optimal timing and dosage of CoQ10
supplementation.

Due to the relevance of aging in infertility, mito-
chondrial enrichment has been proposed as a potential
therapy option in infertile patients to improve oocyte
quality. Various techniques have been attempted to use
heterologous or autologous sources of mitochondria to
rejuvenate and improve oocyte health by introducing
new sources of energy [236, 237]. In the heterologous
approach,mitochondrial enrichment can be performed by
relocating a healthy cytoplasm into the patient’s oocyte
(partial cytoplasm transfer) or replacing the compromised
cytoplasm with a competent one by means of nuclear
transfer technology (total cytoplasm transfer). In 1982,

Ooplasmic transfer (OT) in mice laid the foundations of
oocyte rejuvenation treatments [238]. OT involves trans-
ferring a cytoplasm portion from a donor’s oocyte to the
patient’s oocyte to introduce potentially beneficial com-
ponents that might restore oocyte viability [239]. In 1997,
Cohen and colleagues announced the first human preg-
nancy after OT [240]. Following this achievement, this
method has been successfully used in low-prognosis pa-
tients [239, 241, 242]. But this approach entails many
ethical and safety concerns that mainly arise from the
uncertain degree of mitochondrial heteroplasmy deriving
from it. Mitochondrial heteroplasmy in the offspring and
its unknown consequences have led to alternative stra-
tegies being proposed to improve oocyte quality.

Germinal vesicle, spindle, pronuclear, polar body and
blastomere transfer constitute different ways of relocating
the genetic material from a patient’s compromised oocyte
or zygote to a healthy cytoplasm. GV transfer consists of
relocating the GV from the compromised oocyte to an
enucleated healthy oocyte at the same developmental
stage by electrofusion, subsequentlymatured in vitro to the
MII stage [243]. The GV transfer in humans was performed
by Zhang’s group and Takeuchi respectively [244, 245], but
no live birth and healthy offspring have been described in
humans yet, compared to what has been found in animal
studies [246, 247].

Using germinal vesicle nuclear transfer, Liu and col-
leagues found that both nuclear and cytoplasmic factors
contributed to the meiotic defects of the old oocytes of
Senescence-accelerated mice and that the nuclear
compartment played the predominant role in the etiology
of aging-related meiotic defects [248]. To data, the main
limitations of GV transfer include: high mitochondrial
aggregation around the GV and the maturation process
needed from the GV to the MII stage [244, 249]. Nuclear
genetic materials assemble in a spindle structure at the
metaphase of the second meiosis [236]. Given spindle
structure removal is a common procedure employed in
cloning [250], spindle transfer is less invasive than GV
transfer, as condensed chromosomes can be easily aspi-
rated with a smaller enucleation pipette and a minimal
amount of cytoplasm due to its location at the periphery
of the oocyte [243]. Tachibana and colleagues demon-
strated that monkey reconstructed oocytes following
spindle transfer were capable of supporting normal
fertilization, embryo development and produced healthy
offspring [251]. However, they failed to translate these
successful results to humans [252]. In 2017, the first hu-
man live birth derived from oocyte spindle transfer to
prevent Leigh syndrome. It was reported that transfer of
the embryo resulted in a pregnancy with delivery of a boy
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with neonatal mtDNA mutation load of 2.36%–9.23% in
his tested tissues [253].

Yet, the heterologous approach entails many ethical
and safety concerns that mainly arise from the uncertain
degree of mitochondrial heteroplasmy deriving from it.
Therefore, the autologous approach is proposed a suitable
potential tool to improve oocyte quality by overcoming the
heteroplasmy issue. Mitochondrial autologous sources
include immature oocytes [254], granulosa cells [255],
germline stem cells [256], and adipose-derived stem
cells [257]. However, the autologous germline mitochon-
drial energy transfer (AUGMENT) has not yielded as many
beneficial outcomes as initially expected [256]. The triple-
blind, single-center, randomized, controlled experimental
pilot study was conducted by Labarta and colleagues at
IVI-RMAValencia (Spain) fromOctober 2015 to June 2017. A
total of 57 poor-prognosis patients with previous IVF
failures and well-documented poor embryo quality were
included in this study, and an ovarian cortex biopsy was
performed to isolate egg precursor cells to obtain their
mitochondria. Sibling MIIs were randomly allocated to
AUGMENT (experimental) or intracytoplasmic sperm
injection (Control). In AUGMENT, mitochondrial suspen-
sion was injected along with the sperm. Eventually,
AUGMENT did not seem to improve prognosis in this
population [256]. Together, it seems that these autologous
techniques do not improve clinical outcomes in human
infertile patients presently. Search for better sources of
mitochondria and organelle improvement by means
of gene editing/engineering or culture media additives to
combat the stress caused by aging are among the most
challenging approaches.

Fertility preservation by ovarioids
rejuvenated from pluripotent stem cells

Given the limited ovarian reserve at birth and no self-renewal
germ cells in the adulthood, any intervention by anti-aging
compounds or mimics of antioxidation cannot extend the
reproductive lifespan for longer term. Reconstitution of
ovarian functions emerge as a prosper strategy for extending
reproductive lifespan in future. In early studies, trans-
plantation of young ovaries restored cardio-protective
influence and increased life span in post-reproductive-aged
mice [258, 259]. Reconstruction of ovarian and reproductive
endocrine functions is a new strategy for fertility preserva-
tion, which is of great significance for fertility protection and
reducing reproductive aging-related chronic diseases. PGCs,
which give rise to both oocytes and the spermatozoa, are
specified at around E7.25 in the mouse. Spermatogonia

and oogonia differentiate from PGCs and initiate meiosis af-
ter E12.5–13.5 via signaling from the somatic genital
ridge [260, 261]. PGCs-like cells (PGCLCs) have been
successfully induced from pluripotent stem cells
(PSCs) [262, 263]. PGCs and PGCLCs complete meiosis
in vitro and generate functional gametes that produce live
offspring [264, 265]. Importantly, functional oocytes can
be developed in the recipients following transplantation
of PGCs aggregated with E12.5 fetal somatic pre-granulosa
cells into kidney capsule, ovarian bursa or intra-ovarian
injection [266–269]. Transplantation of PGCs aggregated
with gonadal somatic cells effectively restores folliculo-
genesis and endocrine function (Figure 3A). However, the
majority of PGCs enter meiosis and undergo folliculo-
genesis soon after transplantation, and proliferative PGCs
and meiocytes disappear about six weeks following
transplantation [270]. Encouragingly, mTOR inhibition by
INK128 improves and extends the reconstituted ovarian
and endocrine functions in reproductive aging and
premature aging mice [271].

Follicular granulosa cells isolated from adult mouse
ovaries can be robustly induced to generate germline-
competent pluripotent stem cells (gPSCs) by a purely
chemical approach, with additional Rock inhibition and
critical reprogramming facilitated by crotonic sodium or
acid. These gPSCs acquired high germline competency and
could consistently be directed to differentiate into PGCLCs
and form functional oocytes that produce fertile mice
(Figure 3A) [272]. Also, parthenogenetic embryonic stem
cells are able to differentiate into PGCLCs and form oocytes
following in vivo transplantation into kidney capsule that
produce fertile pups and reconstitute ovarian endocrine
function (Figure 3A) [273]. Recently, culture conditionswere
developed to recreate the stepwise differentiation process
from pluripotent cells to fetal ovarian somatic cell-like cells
(FOSLCs). When FOSLCs were aggregated with PGCLCs
derived from embryonic stem cells, the PGCLCs entered
meiosis to generate functional oocytes capable of fertiliza-
tion anddevelopment to live offspring (Figure 3B) [274]. This
methodology opens the possibility for application in fertility
preservation because it does not require embryonic gonads.
Taken together, we can conclude that germ cells could be
generated frommouse somatic cells without transfection of
transcription factors [272, 275]. Human oogonia also could
be generated from PSCs in culture [276, 277].

Conclusion and perspectives

Women increasingly delay childbearing later in their life
worldwide [14, 15]. Though cryogenically stored eggs or
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ovarian tissues avoid exposure to the biological and
environmental factors that compromise the quality of
oocytes in the ovary, these procedures together with ART
are costly and carry an approximately only 6.5% chance of
achieving pregnancy with each mature oocyte thawed
from the preservation of oocytes or ovarian tissue, which
further decreases with age. Moreover, after ANM, ovaries
are doomed to lose the function in maintaining female
hormone secretion, leading to increased risk for certain
chronic diseases associated with age. Thus, a better
understanding of oocyte biology is essential to develop
the strategies to prevent the decline in fertility asmaternal
age advances. This review provides a broad survey and
insight into mechanisms of ovarian aging.

Recent studies have provided a deeper understanding
of the mechanisms of ovarian aging and the major factors
that impact it including non-OSCs in adulthood female
mammals, chromosomal cohesion deterioration, telomere
shortening, DNA damage and DDR-associated genetic mu-
tations, mitochondrial dysfunction, ROS and OS, epigenetic
alteration and aging ovarian microenvironment. These fac-
tors influence both the quantity andquality of the oocytes. A

range of promising strategies have been developed to pro-
long fertility in women. Limiting exposure to oxidative
damage may help preserve more oocytes with high quality
within the ovaries during aging. Antioxidants, such as
resveratrol, NMN, NAC, melatonin and CoQ10, may prevent
oxidative damage and delay oocyte aging. If successful,
delaying reproductive aging with the use of antioxidants
could help lower the costs of infertility treatment when us-
ing ART. Currently, the main limitation for use the antioxi-
dants inhuman reproductive aging is to establish the correct
time, the optimal frequency and dosage, as well as the
possible side effect of long-term administration. In future,
it is possible to realize fertility preservation or reconstruct
the ovarian function by ovarioids rejuvenated from plurip-
otent stem cells, however, this methodology may have
the challenges with ethical and technical concerns to
overcome.

Research funding: This work was funded by the National
Natural Science Foundation of China (31970667; 82230052;
91749129; 32030033) and China National Key R&D Program
(2018YFC1003004; 2018YFA0107002).

Figure 3: Current strategies for reconstitution of follicle structures. (A) Scheme for PGCLC induction from PSCs and ovary reconstitution.
PGCLCs aggregated with gonadal somatic cells effectively restores folliculogenesis and endocrine function. (B) Scheme for reconstitution of
both FOSLCs and PGCLCs from PSCs. Oocytes in the reconstituted environment gave rise to offspring after fertilization. PGCLCs, primordial
germ cells-like cells; PSCs, pluripotent stem cells; FOSLCs, fetal ovarian somatic cells-like cells; ESC, embryonic stem cell; pESC, parthe-
nogenetic embryonic stem cell; gPSC, granulosa cells-derived germline competent pluripotent stem cell; Sr, strontium; GV, germinal vesicle;
IVM, in vitro maturation; IVF, in vitro fertilization.
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