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Fei Wang,1,2,8,* and Xiaobo Yang1,2,10,*
SUMMARY

The causality between circulating proteins and thyroid cancer (TC) remains unclear. We employed five
large-scale circulating proteomic genome-wide association studies (GWASs) with up to 100,000 partici-
pants and a TC meta-GWAS (nCase = 3,418, nControl = 292,703) to conduct proteome-wide Mendelian
randomization (MR) and Bayesian colocalization analysis. Protein and gene expressions were validated
in thyroid tissue. ThroughMR analysis, we identified 26 circulating proteinswith a putative causal relation-
ship with TCs, among which NANS protein passed multiple corrections (PBH = 3.28e-5, 0.05/1,525). These
proteins were involved in amino acids and organic acid synthesis pathways. Colocalization analysis further
identified six proteins associated with TCs (VCAM1, LGMN, NPTX1, PLEKHA7, TNFAIP3, and BMP1). Tis-
sue validation confirmedBMP1, LGMN,andPLEKHA7’s differential expressionbetweennormal andTC tis-
sues. We found limited evidence for linking circulating proteins and the risk of TCs. Our study highlighted
the contribution of proteins, particularly those involved in amino acid metabolism, to TCs.

INTRODUCTION

Thyroid Cancer (TC), recognized as one of the most prevalent endocrine malignancies,1 significantly impacts the endocrine system and phys-

iological functions and markedly diminishes patients’ quality of life. TC can be divided into several types: papillary TC (PTC), follicular TC

(FTC), medullary TC (MTC), poorly differentiated TC (PDTC), and anaplastic TC (ATC).2 PTC and FTC are collectively known as differentiated

TC (DTC), which has a high incidence, accounting for almost 90% of all TC pathological types.3 Over recent decades, the global incidence of

TC has escalated, positioning it as a critical public health issue.4,5 Comprehensive genome-wide association studies (GWASs) have identified

over 30 single-nucleotide polymorphisms (SNPs) associated with increased risk for TC, predominantly in gene regions related to FOXE1,6

PCNXL2,7 and the TERT-CLPTM1L.8 Despite these advances in previous studies in elucidating the causes of TC, the underlying pathogenesis

of TC has remained largely elusive. The interplay between genetic predispositions and environmental risk factors in the pathogenesis of TC is

still largely unexplored. Therefore, deeper understanding of the biological pathways involved in TC is crucial for discovering potential ther-

apeutic interventions.

Proteomics, employing various sample types such as serum, plasma, and tissue, has become an integral part of TC research. This surge is

largely attributed to the continual advancements in mass spectrometry and other state-of-the-art technologies.9 These developments play a

pivotal role in identifying protein markers, elucidating pathogenesis, and predicting risks associated with TC.10–12 In observational studies,

previous research has identified certain proteins linked to TC susceptibility, such as LCAT, GPX3, and leukotriene B4.10,13 However, current

studies have not definitively determined whether these proteins act as intermediaries between risk genes and TC susceptibility or are merely

reflections of changes induced by TC. And traditional observational epidemiological association studies are prone to reverse causation and

bias due to confounding variables.
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Table 1. Data sources for studied phenotypes

Study Phenotype Cases Controls Seq-platform Adjustment

deCODE14 Plasma proteins 35,559 – Illumina age, gender, and sample age

UKB-PPP15 Plasma proteins 54,219 – Illumina age, gender, batch, UKB center,

UKB genetic array, time between

blood sampling and measurement,

and the first 20 genetic principal

components

ARIC16 Plasma proteins 7,213 – Affymetrix age, gender, 10 genetic principal

components (PCs), and study sites.

AGES17 Serum proteins 5,457 – Illumina age and gender

INTERVAL18 Plasma proteins 3,622 – Affymetrix age, gender, duration between

blood draw and processing

(binary, %1 day/>1day), and the

first three principal components

of ancestry from multi-dimensional

scaling

UKBB19 Thyroid cancer 986 5,135 Illumina age, gender, race, assessment

center, and year of enrollment

FinnGen R9 Thyroid cancer 1783 287137 Illumina and

Affymetrix

age, gender, 10 PCs, genotyping batch.

Aleksandra et al., GWAS20 Thyroid cancer 649 431 Illumina age, gender, and genotyping batch

TCGA21 Tissue transcriptions 502 58 Illumina –

GTEx22 Tissue transcriptions 279 – Illumina –

GEO23,24 Tissue transcriptions 105 73 Affymetrix –

Our multi-omic cohort Tissue proteins and

Transcriptions

50 50 Illumina –

ARIC, the Atherosclerosis Risk in Communities study; NA, not available; UKB-PPP, The UK Biobank Pharma Proteomics Project; TCGA, The Cancer Genome Atlas

Program; GTEx, Genotype-Tissue Expression Project; GEO, Gene Expression Omnibus.
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Mendelian randomization (MR), a genetic epidemiological method, overcomes the limitations of traditional observational studies by using

genetic instrumental variables to assess the presumed causal relationship between exposure and outcome. InMR analysis, genetic risk alleles

and non-risk alleles are hypothesized to be randomly assigned at conception, mirroring the random assignment of participants to treatment

and control groups in randomized clinical trials. In two-sample MR studies, proteomic quantitative trait loci (pQTLs) and GWASs of TC are

utilized independently to evaluate the putative causal relationship between proteins and TC. Advanced genetic analytical techniques like

Bayesian colocalizationmethods and transcriptome-wide association studies could identify shared causal genetic loci between complex traits

or diseases and explore the associations between protein-coding genes and TC.

Therefore, we aimed to explore the putative causal relationship between circulating proteins and TC, through integrating data from five

large-scale proteomic studies across multiple ancestries with a meta-analyzed TC cohort for genetic analysis. Initially, we assessed the cor-

relations and variabilities in the proteomes across different protein cohorts. Secondly, we performed a comprehensive proteome-wide MR

analysis to examine the putative causal relationship and identified shared causal variant loci between proteins and TC. Thirdly, the relation-

ships between the genes encoding these proteins and thyroid tumorigenesis were investigated. Finally, the protein and gene expression data

from our cohort and public databases were used to conduct external validation, aiming to elucidate the actual biological mechanisms of the

special proteins in TC pathogenesis.

RESULTS

Multi-ancestry pQTL comparability validation

All analyzed data were based on the summarized information listed in Table 1. Among the five different proteomic cohorts, a total of 315

pQTLs were consistently detected across each cohort (Figure S1). The results of the protein correlation analysis between different cohorts

(Figure S2) showed Pearson correlations ranging from 0.37 to 0.69 (p range: 3.57e-58 to 6.27e-11). The Atherosclerosis Risk in Communities

(ARIC) cohort showed higher correlations compared to other cohorts, showing a correlation of 0.61 with the deCODE cohort (p = 1.12e-165)

and 0.69 with the INTERVAL cohort (p = 2.98e-81). Consistent correlations were also observed between proteins detected in plasma and

serum (Pearson: 0.37–0.57, p range: 1.39e-43 to 9.94e-21). In terms of protein variability across different cohorts (Figure S3), only the deCODE
2 iScience 27, 109961, June 21, 2024



Figure 1. Mendelian randomization and colocalization analysis results

(A) Ven diagram depicting proteins in discovery only, replication only, or in both.

(B) Proteome-wide MR volcano map results in the discovery cohort.

(C) Proteome-wide MR volcano map results in the replication cohort.

(D) Proteome-wide MR analyzed by four different methods and colocalization analysis (PP.H4) results.
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and UK Biobank Pharmaceutical Proteomics Project (UKB-PPP) cohorts were relatively balanced (deCODE: 54.8% vs. UKB-PPP: 45.2%). This

result confirms the comparability of pQTL data across different populations.

Putative causal associations between proteins and TC

In total, 1,525 proteins were found to be replicated across the discovery and replication cohorts (Figure 1A), and detailed results of F, R2, and

MR analysis for all cis-pQTLs are provided in Data S1 and S2. Based on the Bonferroni significance threshold (p < 3.28e-5), MR analysis

(Figures 1B and 1C) revealed that only the N-acetylneuraminate synthase (NANS) protein was associated with a reduced risk of developing

TC. In the discovery cohort, for a 1-standard deviation increase in NANS expression, the odds ratio (OR) for TC is 0.33 (95% confidence interval

[CI] = 0.20–0.52, p = 2.92e-6). And in the replication cohort, the OR is 0.11 (95% CI = 0.04–0.28, p = 2.94e-6). The Steiger test and reverse MR

analysis did not reveal any opposite causal relationship.

To identify as many potentially positive proteins as possible, we adopted a suggestive p threshold of 0.05 for further screening. Addition-

ally, we integrated the analysis methods of Summary-data MR(SMR) and random effects model meta-analysis across three independent

cohort MR results. Proteins that were significant in all four methods with consistent beta directions were selected for subsequent analysis.

We identified 26 proteins potentially related to the etiology of TC (Figure 1D). The pooled results showed that higher levels of 14 proteins

are associated with an increased risk of TC occurrence, including BMP1, COL15A1, COL18A1, EIF2B1, FAM20B, GSTA1, HINT1, IL5RA, KYNU,

LHB, NPTX1, SEMA4A, SPOCK2, and TNFAIP3. The three proteins that most significantly increased the risk were BMP1 (ORReplication = 1.86,

95% CI = 1.26–2.75, p = 1.88e-3), NPTX1 (ORReplication = 1.35, 95% CI = 1.16–1.58, p = 1.49e-4), and TNFAIP3 (ORReplication = 3.45, 95% CI =

1.58–7.53, p = 1.92e-3). Conversely, higher levels of 12 proteins are associated with decreased risk of TC occurrence, such as NANS, GUSB,

VCAM1, OMD, INHBA, MTHFD1, PDCD6IP, LGMN, PLEKHA7, VPS26A, MSR1, and ADAM23. The three proteins that most significantly

decreased the TC risk were NANS (ORReplication = 0.33, 95% CI = 0.20–0.52, p = 2.92e-6), VCAM1 (ORReplication = 0.41, 95% CI = 0.24–0.68,
iScience 27, 109961, June 21, 2024 3



Figure 2. GeneMANIA predictions of functions and networks for cis-pQTL related to TC
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p = 6.72e-4), and LGMN (ORReplication = 0.62, 95% CI = 0.47–0.82, p = 8.29e-4). All passed the HEIDI test (p > 0.05) (Data S3). The results of

weighted mode, weighted median, MR Egger, and inverse-variance weighted method are shown in Data S4.

Colocalization analysis

The results of colocalization analysis (Table S1) for the 26 circulating proteins in relation to TC indicated that only one protein (Figure 1D),

VCAM1 (coloc.analysis using Bayes factors posterior probability H4 (abf-PP.H4) = 0.82), showed strong evidence of colocalization with TC.

Additionally,moderate evidence of colocalizationwas observed for five proteins: LGMN,NPTX1, PLEKHA7, TNFAIP3, and BMP1. The remain-

ing proteins, which showed limited colocalization evidence, were identified as low-intensity colocalization targets.

Function and network prediction of TC proteins

The identified 26 proteins associatedwith TC formed a co-regulatory network, characterized by common expression and physical interactions

(Figure 2). In the Gene Ontology (GO) enrichment analysis, these proteins were involved in several biological processes (BPs), including the

biosynthesis of dicarboxylic acids, proteoglycan metabolism, and chondroitin sulfate metabolism. As for cellular components (CCs), they are

associatedwith collagen trimers, theGolgi lumen, and the lysosomal lumen. In terms ofmolecular functions (MFs), these proteins relate to the

extracellular matrix’s structural constituent conferring tensile strength, cysteine-type peptidase activity, and receptor ligand activity (Fig-

ure S4A). Analysis via the Kyoto Encyclopedia of Genes andGenomes (KEGG) showed that these genes aremainly involved in the biosynthesis

of cofactors and the regulation of nuclear factor kB (NF-kB) and tumor necrosis factor (TNF) signaling pathways (Figure S4B). The PPI network

revealed interactions among these proteins (Figure S5).

Thyroid tissue transcription-wide association

We conducted thyroid tissue-specific SMR analysis for genes encoding the identified 26 proteins, focusing on the 13 genes with complete

expression quantitative trait loci (eQTL) data from thyroid tissues in the Genotype-Tissue Expression Project(GTEx) v8 database (Data S5).

In thyroid tissues, genes predicted to have higher transcription levels, such as FAM20B, HINT1, KYNU, and SEMA4A, are associated with

increased risk of TC. Conversely, lower levels of the proteins GUSB, VCAM1, PDCD6IP, and ADAM23 were related to higher risk of TC. All

eight genes passed the HEIDI test (p > 0.05) and exhibited directions of effect consistent with proteins.

Tissue-specific proteins and gene expression validation

We performed expression validation for proteins with moderate to strong colocalization in our multi-omics TC cohort (Data S6). NPTX1 and

TNFAIP3 proteins were not detectable in over 70% of our cohort, with expression levels at zero. Therefore, validation was conducted only for

BMP1, LGMN, PLEKHA7, and VCAM1 (Figure 3A). Compared to normal thyroid tissue, TC tissue showed a significant upregulation of BMP1
4 iScience 27, 109961, June 21, 2024



Figure 3. Visual validation of protein and transcriptional expression boxplots

(A) Putative causal proteins of MR and colocalization analysis (PP.H4>0.5) results of TC.

(B) Boxmap results of differential expression of proteins and transcriptomes between TC patients (red) and normal tissues (blue) in ourmulti-omics thyroid tumor-

specific cohort (a) protein expression (b) gene expression.

(C) Differential expression of thyroid cancer transcriptomes in public database between TCpatients (orange) and healthy controls (wathet) (a) TCGA (b) TCGA and

GTEx (c) GEO:GSE33630 (d) GEO:GSE60542. NS, no significance, *: 0.01%p<0.05, **:0.001%p<0.01, ***:p<0.001
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protein expression in TC patients (Log2 fold change [log2FC] = 0.23; p = 4.3e-8; Figure 3B), and downregulation was observed for LGMN

(log2FC = �0.37; p = 6.0e-4) and PLEKHA7 (log2FC = -0.37; p = 2.9e-5) proteins. No significant difference was observed in VCAM1 protein

expression between the two groups (p = 0.54). In terms of gene expression, LGMN (p = 6.7e-7) and PLEKHA7 (p = 9.7e-5) showed downre-

gulation in TC tissues.

Further external validation in public databases (Figure 3C), including The Cancer Genome Atlas (TCGA), GTEx, and Gene Expression

Omnibus(GEO) thyroid cohorts, revealed similar findings. BMP1 gene expression was significantly upregulated in the TCGA and GEO

cohorts, while LGMN and PLEKHA7 showed consistent upregulation across all four public cohorts (Data S7).

DISCUSSION

Our findings indicate moderate level of consistency in pQTLs across diverse ancestries and proteomic platforms. We employed proteome-

wide MR approach to assess the putative causal relationships between proteins and TC. After rigorous multiple testing, we identified 26 pro-

teins that potentially exert causal influence on TC. Further, using Bayesian colocalization analysis, we pinpointed six shared causal variant loci

with moderate to strong evidence of association with TC, including BMP1, VCAM, LGMN, and PLEKHA7. We substantiated the reliability of

these identified proteins and their encoding genes by validating their dual expression in both TC and normal tissues.

Despite previous reports of associations between TC risk SNPs and circulating proteins, no study has yet employed MR approach. In this

study, we confirmed associations between several proteins previously identified and thyroid tumors, such as BMP1,25 COL18A1,26 and

GUSB.27 However, apart from VCAM1, LGMN, NPTX1, PLEKHA7, TNFAIP3, and BMP1, we observed weaker colocalization support for asso-

ciations with TC, suggesting these links might be influenced by linkage disequilibrium (LD). The lack of strong colocalization support could be

attributed to insufficient statistical power. Despite our colocalization analysis being based on large-scale TC meta-GWAS, further research is

required to validate our findings.
iScience 27, 109961, June 21, 2024 5
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The strong colocalization of VCAM128 andmoderate evidence for LGMN29 and PLEKHA730 suggest their significant roles in TC pathogen-

esis. VCAM1 is a cell adhesion molecule that helps regulate inflammation-associated vascular adhesion and the transendothelial migration of

leukocytes.31 LGMN has been demonstrated to be overexpressed not just in breast, prostate, and liver tumor cells but also in the macro-

phages that compose the tumor microenvironment.29,32 LGMN may promote the progression of TC through the miR-495/autophagy

axis,33 and VCAM1 can promote the migration and invasion of TC cells.34 PLEKHA7 contributes to the trafficking and retention of transmem-

brane proteins, including nectins, Tspan33, and the copper pump ATP7A, at cell-cell junctions and lateral membranes.35 These proteins’

involvement in endothelial function could relate to angiogenesis in TC, a key factor in tumor growth and metastasis.

BMP1 association with increased risk of TC offers insights into the role of bonemorphogenetic proteins in cancer.36 BMP1, multifunctional

cytokines and members of the transforming growth factor b (TGF-b) family,37 are involved in extracellular matrix organization, which might

influence tumor microenvironment and malignant phenotypes in TC.38

Collagens like COL15A1 and COL18A1 are integral to tissue structure. Their upregulation in TC may reflect altered extracellular matrix

remodeling, a key factor in cancer invasion39 Specifically, COL15A1, non-fibrillar collagen associated with basement membranes, has

been found to be involved in smooth muscle cell proliferation and atherosclerosis.40 Similarly, COL18A1, another non-fibrillar collagen,

has been associated with various BPs, including angiogenesis and tumorigenesis.41 EIF2B1 in protein synthesis suggests its involvement in

the abnormal proliferation characteristic of TC. Its increased levels in TC might be linked to heightened translational activity in cancer cells.42

GSTA1 and HINT1 are involved in detoxification and stress responses.43 GSTA1 is part of the glutathione S-transferase (GST) family, which

are key phase II detoxification enzymes.44 These enzymes were involved in the metabolism of endogenous reactive compounds as well as

xenobiotics, including toxicants and drugs.45 GSTs also exhibit significant ligand-binding properties, and several GST isoenzymes have

been shown to interact with stress kinases during regulation of cell signaling pathways responsible for stress response, cell proliferation,

and apoptosis.46 Their elevated levels in TC could be a response to oxidative stress in the tumor microenvironment.47

IL5RA andKYNUare intriguing due to their roles in immune response and tryptophanmetabolism,48 respectively. IL5RA has been shown to

be involved in immunogenic cell death, a form of cell death that stimulates an immune response against dead cell antigens.49 It has been

associated with various diseases, including asthma andmultiple myeloma, and its expression has been found to be upregulated in these con-

ditions.49,50 KYNU is an enzyme involved in the kynurenine pathway.51,52 Dysregulation of this pathway has been associated with various dis-

eases, including cancer and neurodegenerative disorders.51 Their association with TC could imply an altered immune response and amino

acid metabolism in TC, as seen in colorectal cancer.53

NPTX1, SEMA4A, SPOCK2, andTNFAIP3 are linked to neural development and inflammation.54–59 NPTX1may play a key role in synaptic loss,

neurite damage, andneuronal apoptosis,mechanismsevokedbyAb1.57 Their roles in TCmight reflect the involvementof inflammatory pathways

and nerve interactions in TCprogression. SEMA4A, a class IV transmembrane semaphorin, plays crucial roles indendritic cells,macrophages, and

Tcells.60Moreover,emerging literaturedescribes the roleof immunoregulatorysemaphorinsandtheir receptors,plexinsandneuropilins, asmod-

ulators of innate immunity and diseases defined by acute injury to the kidneys, abdomen, heart, and lungs.55 TNFAIP3 plays a crucial role in con-

trolling the NF-kB signaling pathway, which promotes cell activation and can lead to autoinflammatory and autoimmune diseases.61

The lower levels of NANS, GUSB, INHBA, MTHFD1, PDCD6IP, and ADAM23 associated with higher risk of TC raise questions. NANS is

involved in the biosynthesis of sialic acids, which are important for brain development and synaptic plasticity. However, its specific role in TC

is not well studied and requires further research. GUSB is an enzyme that degrades glycosaminoglycans. It has been found to be overexpressed

in some cancers. A study found that increased GUSB inhibits the expression of PD-L1, leading to primary resistance to anti-PD1 therapy in he-

patocellular carcinoma.62 INHBA isamemberof theTGF-b superfamily andhasbeenshowntobedifferentially expressed in various cancer types,

including cervical cancer.63MTHFD1 are substrates for methionine, thymidylate, and de novo purine syntheses.64 One study suggested that the

functional alterationcausedby the1958G>Apolymorphism inMTHFD1may influenceDNAsynthesis reactions andcell development, eventually

affecting carcinogenesis.65 A study found that the Long non-coding RNA (lncRNA), ARHGEF26-AS1, acts as amiR-372-3p sponge that regulates

the neuropeptide LGI1 receptor PDCD6IP and expression, thereby inhibiting the proliferation andmigration of cancer cells.66 In summary, these

proteins play significant roles in various cellular processes and their dysregulation could potentially contribute to the pathogenesis of TC. How-

ever, theexactmechanismsand implicationsof theseproteins’ roles inTCrequire further research.Understanding theseprocesses couldprovide

valuable insights into the development and progression of TC and potentially guide the development of new therapeutic strategies.

The genes corresponding to these proteins have different biological functions, but 14 GO entries including ‘‘extracellular exosome’’

(GO:0070062) are associated with 14 of them, and 13 GO entries including ‘‘protein binding’ (GO:0005515) are associated with 13 of

them. Both of these GO entries are associated with extracellular localization, molecular interactions, and signal transduction. Extracellular

vesicles, as small vesicles in the extracellular space, contain various biomolecules, and the protein-binding activity within them plays a crucial

role in intercellular interactions and signal transduction. These observations suggest that these 26 proteins may have certain associations or

regulatory roles in the occurrence and development of TC.

In conclusion, the study conducted an extensive integrative analysis of multi-omics data concerning the risk of TC. It identified proteins

with a putative causal impact on TC and the shared causal genetic variants between these proteins and TC, offering insights into the path-

ogenesis of TC.
Limitations of the study

Firstly, in the MR analysis, one concern is the pleiotropic effects of the instrumental variables, where genetic variations might influence TC

independently of the protein exposure. To address this, we demonstrated that different MR sensitivity analysis provided consistent
6 iScience 27, 109961, June 21, 2024
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estimations and directions. Secondly, as the protein measurements in this study originate from diverse populations, biological samples,

and measurement platforms, the findings may not be universally applicable to all circulating proteins across populations. Therefore, we

repeated the validation in different cohorts and tissues, providing evidence for the ubiquity of TC-related proteins in different ancestors.

Thirdly, this study only focused on cis-pQTL and lacked the results of trans-pQTL, which limited the interpretation of the results. Moreover,

in reverse MR Analysis, most of the SNPs of TC were located in the trans-pQTL range. Therefore, we also supplemented Steiger’s test for

direction verification, which assumes that instrumental variables influence exposure more than outcomes, helping to avoid reverse causality

bias. Finally, the majority of study participants were of non-African descent. To gain more comprehensive understanding of the impact of

genetic variations on metabolite measurements and TC risk, additional studies including individuals of Asian and African ancestry are

necessary.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

deCODE (protein) Ferkingstad et al.14 https://www.decode.com/summarydata/

UKB-PPP (protein) Sun et al.15 https://metabolomips.org/ukbbpgwas/

ARIC (protein) Zhang et al.16 http://nilanjanchatterjeelab.org/pwas/

AGES (protein) Emilsson et al.17 https://pubmed.ncbi.nlm.nih.gov/30072576/

INTERVAL (protein) Sun et al.18 http://www.phpc.cam.ac.uk/ceu/proteins/

UK Biobank (TC) Feng et al.19 https://www.ukbiobank.ac.uk/

FinnGen R9 (TC) - https://finngen.gitbook.io/documentation/v/r9

Aleksandra et al. (TC) Aleksandra et al.20 https://www.ebi.ac.uk/gwas/

TCGA Sanchez-Vega et al.21 https://www.cancer.gov/ccg/research/

genome-sequencing/tcga

GTEx Li et al.22 https://gtexportal.org/home/

GEO GSE33630; GSE60542 https://www.ncbi.nlm.nih.gov/geo/

Our Multi-omic Cohort This study supplemental information

Software and algorithms

R (v 4.3.0) - https://www.r-project.org

TwosampleMR (v 0.5.7) Hemani et al.67 https://www.mrbase.org

Coloc Giambartolomei et al.68 https://github.com/chr1swallace/coloc

ClusterProfiler Yu et al.69 https://bioconductor.org/packages/release/

bioc/html/clusterProfiler.html

STRING - https://cn.string-db.org/

PLINK (v 1.9) Purcell, S. et al.70 https://www.cog-genomics.org/plink/1.9

GeneMANIA Warde-Farley71 https://genemania.org/

SMR (v 1.3.1) Yang et al.72 https://yanglab.westlake.edu.cn/software/smr/#Overview

METAL Willer et al.73 https://genome.sph.umich.edu/wiki/METAL_Documentation
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Prof. Xiaobo Yang

(yangx@gxmu.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� This paper analyzes existing, publicly available data. These access URLs for the datasets are listed in the key resources table.

� This paper does not report original code.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This study adheres to the reporting guidelines of the Strengthening the Reporting of Observational Studies in Epidemiology using MR

(STROBE-MR).74
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Design

Our study’s overall design is illustrated in the figure below, related to Table 1. Briefly, we utilized pQTL data from five large-scale European

cohorts to explore causal relationship with TC. Bayesian colocalization analysis was employed to enhance the robustness of our findings. Sub-

sequently, targeted gene enrichment analysis of protein-coding genes was conducted in thyroid tissues. Tissue-specific validation through

proteomic and transcriptomic analysis was performed based on our multi-omic cohort and public databases, aiming to identify potential tar-

gets for TC treatment.
Overall study flowchart
Exposures

We selected SNPs associated with circulating cis-pQTL levels as instrumental variables from five major proteomic cohorts: deCODE14 health

study, UK Biobank’s Pharmaceutical Proteomics Project (UKB-PPP),15 ARIC,16 AGES,17 and INTERVAL.75 The deCODE and UKB-PPP cohorts

acted as discovery sets for this study, with ARIC, AGES, and INTERVAL serving as replication sets. Complete summary data were available for

four of the studies.14–16,75 Three of these studies14–16 employed the Illumina genotyping platform, while the other two16,75 used the Affymetrix

genotyping platform. The SOMAscan platform was widely used for proteomic detection in the studies,14,16,17,75 except for the UKB-PPP

cohort,15 which utilized the Olink platform. Detailed GWAS information is available in the original publications.

Outcome

The Meta GWAS of TC in European populations was extracted from one of our previously published articles,19 with the population details,

genotyping, and imputation specifics described in another paper. The study encompassed three cohorts (Aleksandra et al., UKBB, and

FinnGen), totaling 296,121 individuals (nCase=3,418; nControl=292,703). Notably, the study incorporated the latest FinnGen R9 release

(nCase=1,783; nControl=287,137) building upon Feng et al.19 The GWAS meta-analysis was conducted using the Metal software73 as de-

picted in Figure S6. Additionally, the genomic inflation factor for each individual study and the LD score regression was calculated using

the ‘‘LDlink’’ package, detailed in Table S2.

METHOD DETAILS

Mendelian randomization

We conducted Proteome-wide MR analysis between circulating proteins and TC using the ‘‘twosampleMR’’ package. When only single

independent cis-pQTL locus was present, Wald ratio method was employed to assess changes in the log2FC odds ratio of TC risk per

standard deviation (SD) increase in circulating protein levels represented by the instrumental variable. For proteins with multiple
12 iScience 27, 109961, June 21, 2024
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independent cis-pQTL loci, analysis was carried out using the independent lead SNP (p-minimum in LD-clumping windows of 1 Mb, using

a European population-based LD reference panel in the 1000Genomes Project.76 Details of the cis-pQTLs for each cohort are provided in

Data S8, S9, S10, S11, and S12. Sensitivity analysis was performed utilizing inverse-variance weighted, simple mode, weighted mode, and

weighted median to verify the stability of the results. Heterogeneity was tested using Q values. Recognizing that a single meta-analysis

result may not fully reflect the specificity of each independent study, to capture association signals that may be diluted or missed in

the meta-analysis due to inter-study heterogeneity, we conducted second round of MR analysis on the pre-meta statistical data from

each independent TC GWAS. The results of each independent MR analysis were combined using random-effects model. Heterogeneity

was tested using the I2 statistic.

Summary-data MR(SMR)72 (https://yanglab.westlake.edu.cn/software/smr) has been developed to estimate pleiotropic associations be-

tween genetically determined traits and complex traits. It distinguishes shared genetic variation from associations driven by LD through

the aggregation of multiple SNPs within range.77 Heterogeneity was tested using the HEIDI test, where a P > 0.05 indicates that the associ-

ation between the protein and TC is not driven by LD.

Multiple testing correction was conducted using Bonferroni adjustment, setting the threshold for significance at P < 3.28e-5 (0.05/1525),

with suggestive P range between 3.28e-5 and 0.05. Proteins within this range may have causal relationship with TC. Replication MR analysis

based on pQTL data from the replication cohorts were further conducted for the identified proteins, where a P < 0.05 was considered indic-

ative of replication significance.

We selected instrumental variables from theGWAS summary data for TC, adhering to the samepQTL selection criteria, to conduct reverse

MR analysis. Four different MR methods were employed to estimate the effects, and we also carried out Steiger test to ensure the direction-

ality of the association between the proteins and TCs. Results with a P < 0.05 were considered statistically significant.

Colocalization analysis

To assess whether proteins and TC risk involve shared causal variant loci, we conducted Bayesian colocalization analysis using ‘‘coloc’’ pack-

age (https://chr1swallace.github.io/coloc/index.html). The analysis encompassed five hypotheses: 1) no association with either trait; 2) asso-

ciation with only trait 1; 3) association with only trait 2; 4) associations with both traits but involving different causal variants; 5) associations with

both traits involving the same causal variant. Posterior probabilities for each hypothesis test (H0, H1, H2, H3, and H4) were provided.78 A pos-

terior probability (PP.H4) greater than 0.8 indicates strong support for colocalization, while a value between 0.5 and 0.8 suggests moderate

evidence of colocalization. Colocalization analysis was performedwithin a 250kb window around the lead SNP of the cis-pQTL.79 Visualization

of the colocalized regions was conducted using the ‘‘LocusCompareR’’ package.80

Function annotation

We utilized GeneMANIA (http://www.genemania.org) to predict the functions and networks of cis-genes associated with proteins relevant to

TC. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis were employed to explore the func-

tions and pathways of genes encoding these proteins. Additionally, potential protein-protein interaction (PPI) networks related to TC risk were

investigated using the STRING database.

Tissue protein and gene expression validation

To further validate the specific expression of these proteins in thyroid tissues and their potential functional significance, we utilized thyroid

tissue eQTLs from the GTEx (v8) database to perform SMR analysis. Subsequently, from the Thyroid Tumor Precision Prevention and Control

research cohort, which has included 1000 pairs of papillary thyroid carcinoma (PTC), nodular goiter (NG), and normal controls as of December

2023, we randomly selected 100 healthy control matched 1:1 with PTC patients for age (G5 years) and gender to conduct protein and gene

expression assays, with the following inclusion and exclusion criteria: (1) PTC patients were diagnosed by an experienced pathologist after

postoperative pathological diagnosis; (2) healthy controls were those who had no thyroid nodules detected by neck ultrasonography, self-

reported no history of thyroid disease, and had normal thyroid function; (3) not taking antithyroid or thyroid hormone drugs; (4) no history

of other malignant tumors; and (5) complete epidemiological investigation data as well as blood samples were available. Additionally,

RNA-seq data for normal thyroid and TC tissues were extracted from the TCGA-THCA21 and GTEX22 datasets available on the Xena platform

(https://xena.ucsc.edu/), as well as from the GEO database (GSE60542; GSE33630). Differential analysis was conducted using the ‘‘limma’’

package,81 with false discovery rate (FDR) adjustments.

QUANTIFICATION AND STATISTICAL ANALYSIS

Instrumental variable selection

Prior to analysis, we harmonized SNP positioning to the Human Genome Build 37 (GRCH37) using the ‘‘MungeSumstats’’ package.82 Anno-

tations were performed utilizing the GRCH37 release from the GENCODE database (https://www.gencodegenes.org/). Cis-QTLs were

defined as SNPs within a 1MB range of the gene encoding the protein,83 whereas those outside this region were classified as trans-QTLs.

We used beta and se value of cis-pQTL as instrumental variables to carry out the correlation and variation degree among different cohorts.

Inclusion criteria for cis-pQTLs in the analysis were as follows: (1) genome-wide significant association threshold (P < 5e-8); (2) loci within the

major histocompatibility complex (MHC) region on chromosome 6 (26-34MB) were excluded due to their complex LD patterns; (3) only
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independent loci were considered (1000kb; r2<0.0001); and (4) R2 and the F-statistic (R2=23EAF3(1-EAF)3beta^2; F=R23(N� 2)/(1�R2))84

were used to estimate the strength of the genetic instruments, where R2 represents the proportion of protein level variation explained by

each genetic tool. For repeated proteins within the study, the protein with the maximum R2 was selected.85 Missing information for QTLs,

such as allele frequencies, was imputed using reference panel constructed from the human 1000 Genomes Project.
14 iScience 27, 109961, June 21, 2024
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