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Abstract 

Rational drug design often starts from specific scaffolds to which side chains/substituents are added or modified due 
to the large drug-like chemical space available to search for novel drug-like molecules. With the rapid growth of  deep 
learning in drug discovery, a variety of effective approaches have been developed for de novo drug design. In previ-
ous work we proposed a method named DrugEx, which can be applied in polypharmacology based on multi-objec-
tive deep reinforcement learning. However, the previous version is trained under fixed objectives and does not allow 
users to input any prior information (i.e. a desired scaffold). In order to improve the general applicability, we updated 
DrugEx to design drug molecules based on scaffolds which consist of multiple fragments provided by users. Here, 
a  Transformer model was employed to generate molecular structures. The Transformer is a multi-head self-attention 
deep learning model containing an encoder to receive scaffolds as input and a decoder to generate molecules as 
output. In order to deal with the graph representation of molecules a novel positional encoding for each atom and 
bond based on an adjacency matrix was proposed, extending the architecture of the Transformer. The graph Trans-
former model contains growing and connecting procedures for molecule generation starting from   a given scaffold 
based on fragments. Moreover, the generator was trained under a reinforcement learning framework to increase the 
number of desired ligands. As a proof of concept, the method was applied to design ligands for the adenosine  A2A 
receptor  (A2AAR) and compared with SMILES-based methods. The results show that 100% of the generated molecules 
are valid and most of them had a high predicted affinity value towards  A2AAR with given scaffolds.

Keywords Deep learning, Reinforcement learning, Policy gradient, Drug design, Transformer, Multi-objective 
optimization, Adenosine  A2A receptor

Introduction
Due to the size of drug-like chemical space (i.e. esti-
mated at  1033–1060 organic molecules) [1] it is impossi-
ble to screen every corner of it to discover optimal drug 

candidates. Commonly, specific scaffolds derived from 
endogenous substances, high throughput screening, or 
a phenotypic assay [2] are taken as a starting point to 
design analogs while side chains/substituents are added 
or modified [3]. These fragments are used as “build-
ing blocks” to develop drug leads with e.g. combinato-
rial chemistry such as growing, linking, and merging [4]. 
After a promising drug lead has been discovered it is 
further optimized by modifying side chains to improve 
potency towards the relevant targets, to improve selec-
tivity over off-targets, and physicochemical properties 
which in turn can improve safety and tolerability [5].
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In scaffold-based rational drug design it is generally 
accepted that a chemical space consisting of  109 diverse 
molecules can be sampled with only  103 fragments [6]. 
For instance, one well known class of drug targets are G 
Protein-coupled receptors (GPCRs), a family via which 
approximately 35% of drug exert their effect [7]. The 
adenosine receptors (ARs) form a family within rhodop-
sin-like GPCRs and include four subtypes  (A1,  A2A,  A2B 
and  A3). Each of them has a unique pharmacological pro-
file, tissue distribution, and effector coupling [8, 9]. ARs 
are ubiquitously distributed throughout the human tis-
sues, and involved in many biological processes and dis-
eases [10]. As adenosine is the endogenous agonist of the 
ARs, a number of known ligands of the ARs are adeno-
sine analogs and/or have a common scaffold. Examples 
of the latter include purines, xanthines, triazines, pyrimi-
dines [11]. In this work, we aim to design novel ligands 
for this family of receptors with deep generative neural 
networks.

Deep learning methods have been gaining ground over 
the last decade in computational drug discovery, includ-
ing de novo design [12]. Deep learning has achieved 
breakthroughs in visual recognition, natural language 
processing, and other data-rich fields [13]. In drug dis-
covery the following developments rapidly followed each 
other. For distribution-directed issues, Gomez-Bom-
barelli et al. implemented variational autoencoders (VAE) 
to map molecules into a latent space where each point 
can also be decoded into unique molecules inversely [14]. 
They used recurrent neural networks (RNNs) to success-
fully learn SMILES (simplified molecular-input line-entry 
system) grammar and construct a distribution of molec-
ular libraries [15]. For goal-directed issues, Sanchez-
Lengeling et  al. combined reinforcement learning and 
generative adversarial networks (GANs) to develop an 
approach named ORGANIC to design active compounds 
for a given target [16]. Olivecrona et  al. proposed the 
REINVENT algorithm which updated this reinforce-
ment learning with a Bayesian approach and combined 
RNNs to generate SMILES-based desired molecules 
[17, 18]. Moreover, Lim et  al. proposed a method for 
scaffold-based molecular design with a graph generative 
model [19]. Li et  al. also used deep learning to develop 
a tool named DeepScaffold for this issue [20]. Arús-Pous 
et al. employed RNNs to develop a SMILES-based scaf-
fold decorator for de novo drug design [21]. Finally, Yang 
et al. used the Transformer model [22] to develop a tool 
named SyntaLinker for automatic fragment linking [23]. 
Here we continue to address this issue further with dif-
ferent molecular representations and deep learning 
architectures.

In previous studies we investigated the performance of 
RNNs and proposed a method named DrugEx that bal-
ances distribution-directed and goal-directed tasks in 
reinforcement learning [24]. Subsequently, DrugEx was 
updated with multi-objective reinforcement learning and 
applied in a polypharmacology use case [25]. However, 
these models cannot receive any input data from users 
and can only produce a distribution of desired molecules 
with fixed conditions. If the objectives are changed, the 
model needs to be trained again. Here, different end-
to-end deep learning methods are compared to update 
the DrugEx model to allow users to provide prior infor-
mation, e.g. fragments that should occur in the gener-
ated molecules. Based on the extensive experience in 
our group with the  A2AAR, this target is again used as 
an  example to evaluate the performance  of these novel 
methods. The Transformer model takes scaffolds com-
posed of multiple fragments as input to generate desired 
molecules which are predicted to be active on  A2AAR 
enabling scaffold-constrained drug design. All python 
code developed in this study is freely available at https:// 
github. com/ CDDLe iden/ DrugEx.

Materials and methods
Data source
The ChEMBL set from DrugEx v2 was reused [25]. This 
set consisted of small molecule compounds downloaded 
from ChEMBL using a SMILES notation (version 27) 
[26]. After data preprocessing via RDKit ~ 1.7 million 
molecules remained for model pre-training. Preprocess-
ing included neutralizing charges and removing metals 
and small fragments. In addition, 10,828 ligands and their 
bioactivity data on one or more of the four human adeno-
sine receptors were extracted from ChEMBL to construct 
the LIGAND set. The LIGAND set structures were used 
for fine-tuning the generative model. Moreover, mol-
ecules with annotated  A2AAR activity were used to train 
a bioactivity prediction model. If multiple measurements 
for the same ligand existed, the average pChEMBL [27] 
value (pX, including pKi, pKd, pIC50 or pEC50) was cal-
culated and duplicate items were removed. For the bio-
activity models the threshold of affinity was defined as 
pX = 6.5 to predict if the compound was active (> = 6.5) 
or inactive (< 6.5). It was shown previously that this ena-
bles the creation of a balanced classifier [28].

The dataset was constructed with an input–
output pair for each data point. Each molecule was 
decomposed into a series of fragments with the 
BRICS method [29] in RDKit (Fig.  1A). If a molecule 
contained more than four leaf fragments, the smaller 
fragments were ignored and a maximum of four larger 
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fragments were kept. For example, if one molecule M 
contained four fragments, including A, B, C and D, 
then there were 15 input–output pairs (A-M, B-M, 
C-M, D-M, AB-M, AC-M, AD-M, BC-M, BD-M, 
CD-M, ABC-M, ABD-M, ACD-M, BCD-M, ABCD-M) 
based on the full combination. The order of input 
fragments was randomly selected. The SMILES of the 
fragments were joined with ‘.’ as input data and a pair 
was created with the full SMILES of molecules. The 
scaffold was defined as the combination of different 
fragments which can be either continuous (linked) or 
discrete (separated). The resulting scaffold-molecule 
pairs formed the input and output data (Fig.  1B). 
After completion of the data pairs, the set was split 
into a training set, a validation set, and a test set with 
the ratio 8:1:1 based on the scaffolds. As a result, the 
ChEMBL set contained 9,335,410 pairs in the training 
set, 1,104,125 pairs in the validation set, and 1,083,271 
pairs in the test set. In addition, in the LIGAND set 
there were 53,888 pairs in the training set, 7,380 pairs 
in the validation set, and 7,525 pairs in the test set. 
Moreover, the scaffolds in LIGAND set were also split 
into training set (11,836 samples), validation set (1,479 
samples), and test set (1,479 samples) with the ratio 
8:1:1 for reinforcement learning.

Molecular representations
Two different molecular representations were tested: 
SMILES and graph. For SMILES representations each 
scaffold-molecule pair was transformed into two SMILES 
sequences which were then split into different tokens to 
denote atoms, bonds, or tokens for grammar control (e.g. 
parentheses or numbers). All of these tokens were put 
together to form a vocabulary which recorded the index 
of each token (Fig. 1D). The same conversion procedure 
and vocabulary as in DrugEx v2 was used [25]. Summa-
rizing, for both input and output sequences of each pair, 
a start token (GO) was put at the beginning and an end 
token (END) at the end. After sequence padding with a 
blank token at empty positions, each SMILES sequence 
was rewritten as a series of token indices with a fixed 
length to form the input and output matrix (Fig. 1E).

For the graph representation each molecule was repre-
sented as a five-row matrix, in which the first two rows 
stand for the atom type and and bond types, respec-
tively. The third and fourth rows represent the connected 
atom index and current atom index, and the fifth row 
represents the fragment index (Fig.  1C). The columns 
of this matrix contain three sections to store the frag-
ment, growing part, and linking part. The fragment sec-
tion starts with a start token in the first row and the last 

Fig. 1 scaffold-molecule pair dataset construction. (A) Each molecule in the dataset is decomposed hierarchically into a series of fragments with 
the BRICS algorithm. (B) Subsequently data pairs between input and output are created. Combinations of leaf fragments form the scaffold as input, 
while the whole molecule becomes the output. For clarity token colors alternate. (C) After conversion to an adjacency matrix, each molecule was 
represented as a graph matrix. The graph matrix contains five rows, standing for the atom type, bond type, connected atom index, atom index, 
and fragment index. Columns are divided in three parts to store the information of the fragment, the growing section and the linking section. (D) 
All tokens are collected to construct the vocabularies for SMILES-based and graph-based generators, respectively. (E) An example of the input and 
output matrices for the SMILES representation of scaffolds and molecules.
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row was labeled with the index of each fragment starting 
from one. The fragments of each molecule are put in the 
beginning of the matrix, followed by the growing part for 
the fragment, and the last part is the connecting bond 
between these growing fragments with single bonds. For 
the growing and linking sections the last row was always 
zero and these two sections were separated by the col-
umn of the end token. It is worth noticing that the last 
row was not directly involved in the training process. The 
vocabulary for graph representation was different from 
the SMILES representation, containing 38 atom types 
(Additional file 1: Table S1), and four bond types (single, 
double, triple bonds and no bond). For each column, if an 
atom is the first occurrence in a given fragment the type 
of the bond will be empty (indexed as 0 with token ‘*’). In 
addition, if the atom at the current position has occurred 
in the matrix, the type of the atom in this column will be 
empty. In order to grasp more details of the graph repre-
sentation, the pseudocode for encoding (Additional file 1: 
Table  S2) and decoding (Additional file  1: Table  S3) is 
provided.

End‑to‑end deep learning
Here, four different end-to-end DL architectures 
were compared to deal with different molecular 
representations of either graph or SMILES (Fig.  2). 
These methods included: (A) a Graph Transformer, 
(B) an LSTM-based encoder-decoder model 

(LSTM-BASE), (C) an LSTM-based encoder-decoder 
model with an attention mechanism (LSTM + ATTN) 
and (D) a Sequential Transformer model. All of these 
DL models were constructed with PyTorch [30].

For the SMILES-based models, three different types 
were constructed as follows (Fig.  2, right). The two 
LSTM-based models share similarities as will be out-
lined here. In the LSTM-BASE model (Fig.  2B) the 
encoder and decoder had the same architecture as used 
in DrugEx v2, containing one embedding layer, three 
recurrent layers, and one output layer. The number of 
neurons in the embedding and hidden layers were 128 
and 512, respectively. The hidden states of the recurrent 
layer in the encoder are directly sent to the decoder as 
the initial states. The LSTM + ATTN modes is con-
structed on top of this LSTM-BASE model by adding 
an attention layer between the encoder and decoder 
(Fig.  2C). The attention layer calculates the weight 
for each position of the input sequence to determine 
which position the decoder needs to focus on during 
the decoding process. For each step the weighted sums 
of the output calculated by the encoder are combined 
with the output of the embedding layer in the decoder 
to form the input for the recurrent layers. The output 
of the recurrent layers is dealt with by the output layer 
to generate the probability distribution of tokens in the 
vocabulary.

Fig. 2 Architectures of four different end-to-end deep learning models: A The Graph Transformer; B The LSTM-based encoder-decoder model 
(LSTM-BASE); C The LSTM-based encoder-decoder model with attention mechanisms (LSTM + ATTN); D The sequential Transformer model. The 
Graph Transformer accepts a graph representation as input and SMILES sequences are taken as input for the other three models
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The sequential Transformer has a distinct architec-
ture compared to the LSTM-BASE and LSTM + ATTN 
models although it also exploits an attention mecha-
nism. For the embedding layers “position encodings” 
are added into the typical embedding structure as the 
first layer of the encoder and decoder. This ensures 
that the model no longer needs to encode the input 
sequence token by token but can process all tokens in 
parallel. For the position embedding, sine and cosine 
functions are used to define its formula as follows:

where PE(p, i) is the ith dimension of the position encod-
ing at position p. It has the same dimension dm = 512 
as the typical embedding vectors so that the two can be 
summed.

In addition, self-attention is used in the hidden layers 
to cope with long-range dependencies. For each hidden 
layer in the encoder, it employs a residual connection 
around a multi-head self-attention sublayer and feed-
forward sublayer followed by layer normalization.  Fur-
thermore, a third sublayer with multi-head attention is 
inserted to capture the information from output of the 
encoder.

This self-attention mechanism is defined as the scaled 
dot-product attention with three vectors: queries (Q), 
keys (K) and values (V), of which the dimensions are dq, 
dk, dv, respectively. The output matrix is computed as:

Instead of a single attention function, the Trans-
former adopts multi-head attention to combine infor-
mation from different representations at different 
positions which is defined as:

where h is the number of heads. For each head, the atten-
tion values were calculated by different and learned lin-
ear projections with Q, K and V as follows:

where WO, WQ, WK and WV are metrics of learned 
weights and we set h = 8 as the number of heads and 
dk = dv = 64 in this work.

For the graph representation of the molecules, the 
structure of the sequential Transformer was updated 
to a Graph Transformer model (Fig.  2A). Similar to the 

PE(p,2i) = sin(pos/100002i/dm)

PE(p,2i+1) = cos(pos/100002i/dm)

Attention(Q,K ,V ) = softmax

(

QK⊺

√

dk

)

V

MultiHead(Q,K ,V ) = Concat(head1, . . . , headh)W
O

headi = Attention(QW
Q
i ,KWK

i ,VWV
i )

sequential Transformer the Graph Transformer also 
requires the encoding of both word and position as the 
input. For the input word, the atom and bond cannot be 
processed simultaneously; therefore the indices of the 
atom and the bond are combined together   as follows:

The index of the input word (W) for calculating word 
vectors is obtained by multiplying the atom type (Tatom) 
by four (the total number of bond types defined) and sub-
sequently add the bond index (Tbond). Similarly, the posi-
tion of each step cannot be used to calculate the position 
encoding directly. Faced with more complex data struc-
ture than sequential data, Dosovitskiy et  al. proposed a 
new positional encoding scheme to define the position 
for each patch in image data for image recognition [31]. 
Inspired by their work the position encoding at each step 
was defined as:

The input position (P) for calculating the position 
encoding was obtained by multiplying the current atom 
index (IAtom) by the max length (Lmax) and then add-
ing the index of the connected atom (IConnected), which 
was then processed with the same positional encod-
ing method as with the sequential Transformer. For the 
decoder, the hidden vector from the Graph Transformer 
was taken as the starting point to be decoded by a GRU-
based recurrent layer; and the probability of atom type, 
bond type, connected atom index, and current atom 
index was decoded one by one sequentially.

When graph-based molecules are generated, the chem-
ical valence rule is checked in every step. Invalid values 
of atom and bond types will be masked and an incorrect 
previous or current position will be removed   to ensure 
the validity of all generated molecules. It is worth notic-
ing that before being encoded, each molecule will be 
kekulized, meaning that the aromatic rings will be  trans-
formed into either single or double bonds. The reason for 
this is that aromatic bonds interfere with the calculation 
of the valence value for each atom.

During the training process of SMILES-based mod-
els, a negative log likelihood function was used to con-
struct the loss function. The loss function guarantees that 
the probability of the token at each step in the output 
sequence becomes large enough in the probability dis-
tribution of the vocabulary calculated by the deep learn-
ing model. In comparison, the loss function used by the 
Graph Transformer model also contains four parts for 
atom type, bond type, connected atom index and current 
atom index. Here the sum of these negative log probabil-
ity values is minimized to optimize the parameters in the 
model. For this, the Adam algorithm was used for the 

W = Tatom × 4 + Tbond

P = IAtom × Lmax + IConnected
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optimization of the loss function. Here, the learning rate 
was set as  10–4, the batch size was 256, and training steps 
were set to 20 epochs for pre-training and 1,000 epochs 
for fine-tuning. In the end, optimal models were selected 
from the epoch in which the loss function achieved a 
minimum on the validation set. In the fine-tuning pro-
cess, early stopping was evoked if the loss value did not 
decrease after 100 epochs.

Multi‑objective optimization
In order to combine multiple objectives, we exploited a 
Pareto-based ranking algorithm with GPU acceleration 
as mentioned in DrugEx v2 [25]. Given two solutions m1 
and m2 with their scores (x1, x2, …, xn) and (y1, y2, …, yn), 
then m1 is said to Pareto dominate m2 if and only if:

Otherwise, neither m1 nor m2 is dominates. After the 
dominance between all pairs of solutions has been deter-
mined, the non-dominated scoring algorithm is exploited 
to obtain a rank of Pareto frontiers which consist of a set 
of solutions. In the same frontier, molecules were ranked 
based on the average Tanimoto-distance to other mole-
cules instead of the commonly used crowding distance in 
the same frontier. Subsequently molecules with smaller 
average distances were ranked on the top. The final 
reward R* is defined as:

here k is the index of the solution in the Pareto rank. 
Rewards of undesired and desired solutions will be evenly 
distributed in (0, 0.5] and (0.5, 0.1], respectively.

In this work, two objectives were considered: (1) the 
QED score [32] as implemented by RDKit (from 0 to 1) 
to evaluate the drug-likeness of each molecule (a larger 
value means more drug-like); (2) an affinity score towards 
the  A2AAR which was implemented by a random for-
est regression model with Scikit-Learn [33]. The input 
descriptors consisted of 2048D ECFP6 fingerprints and 
19D physico-chemical descriptors (PhysChem). Phy-
sChem included: molecular weight, logP, number of H 
bond acceptors and donors, number of rotatable bonds, 
number of amide bonds, number of bridge head atoms, 
number of hetero atoms, number of spiro atoms, num-
ber of heavy atoms, the fraction of SP3 hybridized 
carbon atoms, number of aliphatic rings, number of 
saturated rings, number of total rings, number of aro-
matic rings, number of heterocycles, number of valence 
electrons, polar surface area, and Wildman-Crippen MR 
value. Again, it was determined if generated molecules 
are desired based on the Affinity score (larger than the 

∀j ∈ {1, . . . , n} : xj ≥ yj and ∃j ∈ {1, . . . , n} : xj; yj

R∗ =

{

0.5+
k−Nundesired
2Ndesired

, if desired
k

2Nundesired
, if undesired

threshold = 6.5). In addition, the SA score [34] was also 
exploited an independent measurement to evaluate the 
synthesizability of generated molecules, which is also cal-
culated by RDKit.

Reinforcement learning
A reinforcement learning framework was constructed 
based on the interplay between a Graph Transformer 
(agent) and two scoring functions (environment). A 
policy gradient method was implemented to train the 
reinforcement learning model, the objective function is 
designated as follows:

For each step t during the generation process the gen-
erator (G) determines the probability of each token (yt) 
from the vocabulary  based on the generated sequence 
in previous steps (y1:t-1). In the sequence-based models 
yt   is only  a token selected from the vocabulary to con-
struct SMILES while in the graph-based model it can be 
different type of atoms or bonds or the atoms connected 
by the bond. The parameters in the objective function are 
updated by  a policy gradient based on the expected end 
reward  (R*) received from the predictors. By maximiz-
ing this function, the parameter θ in the generator can be 
optimized to ensure that the generator designs desired 
molecules which obtain a high reward score.

In order to improve the diversity and reliability of gen-
erated molecules, the exploration strategy for molecule 
generation during the training loops was implemented. 
In the training loop the generator is trained to produce 
a chemical space as defined by the target of interest. In 
this strategy there are two networks with the same archi-
tectures, an exploitation net (Gθ) and an exploration 
net (Gφ). Gφ did not require training as the parameters 
are always fixed and it is based on the general drug-
like chemical space for diverse targets obtained from 
ChEMBL. The parameters in Gθ on the other hand were 
updated for each epoch based on the policy gradient. 
Again, an exploring rate (ε) was defined with a range of 
[0.0, 1.0] to determine the percentage of scaffolds being 
randomly selected as input by Gφ to generate molecules. 
Conversely Gθ generated molecules with other input 
scaffolds. After the training process was finished Gφ was 
removed and only Gθ was left as the final model for mol-
ecule generation.

Performance evaluation
In order to evaluate the performance of the generators, 
five coefficients were calculated from the population 

J (θ) = E
[

R∗(y1:T )|θ
]

=

T
∑

t=1

logG
(

yt |y1:t−1

)

• R∗
(

y1:T
)
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of generated molecules (validity, accuracy, desirability, 
uniqueness, and novelty) which are defined as:

here Ntotal is the total number of molecules, Nvalid is the 
number of molecules parsed as valid SMILES sequences, 
Naccurate is the number of molecules that contained all 
given scaffolds, Ndesired is the number of desired mol-
ecules that reach all required objectives, Nunique is the 
number of molecules which are different from others 
in the dataset, Nnovel is the number of generated unique 
molecules that do not exist in the ChEMBL set.

To measure molecular diversity, we adopted the 
Solow Polasky measurement as in the previous work. 
This approach was proposed by Solow and Polasky in 
1994 to estimate the diversity of a biological popula-
tion in an eco-system [35]. The formula to calculate 
diversity was redefined to normalize the range of values 
from [1, m] to (0, m] as follows:

where A is a set of drug molecules with a size of |A| equal 
to m, e is an m-vector of 1’s and F(s) = [f(dij))] is a non-
singular m × m distance matrix. Hereing f(dij) stands for 
the distance function of each pair of molecules provided 
as follows:

Here θ was set to 0.5 as suggested in [35]. The dis-
tance dij between molecules si and sj was defined by 
using the Tanimoto-distance with ECFP6 fingerprints 
as follows:

Validity =
Nvalid

Ntotal

Accuracy =
Naccurate

Ntotal

Desirability =
Ndesired

Ntotal

Uniqueness =
Nunique

Ntotal

Novelty =
Nnovel

Ntotal

I(A) =
1

|A|
e
⊺F(s)−1

e

f (d) = e−θdij

dij = d
(

si, sj
)

= 1−

∣

∣si ∩ sj
∣

∣

∣

∣si ∪ sj
∣

∣

,

where | si ∩ sj | represents the number of common 
fingerprint bits, and | si ∪ sj | is the number of union 
fingerprint bits.

Results and discussion
Fragmentation of molecules
Each molecule was decomposed into a series of 
fragments with the BRICS algorithm to construct a 
fragment-molecule pair with a compiled elaborate set 
of rules. For the ChEMBL and LIGAND sets, 194,782 
and 2,310   fragments were obtained, respectively. The 
LIGAND set was further split into three parts: active 
ligands (LIGAND+, 2,638 compounds), inactive ligands 
(LIGAND−, 2,710 compounds) and undetermined 
ligands (LIGAND0, 5,480 compounds) based on the 
pX of bioactivity for  A2AAR. The number of fragments 
per each molecule in these four datasets have a similar 
distribution (Fig.  3A) and there are approximately five 
fragments on average for each molecule with a 95% 
confidence between [1, 11] (Fig. 3A).

In the LIGAND set the three subsets have a similar 
molecular weight distribution of the fragments (Fig. 3B) 
with an average of 164.3 Da, smaller than in the ChEMBL 
set (247.3  Da). The average similarity between training 
and test set is also slightly higher in the LIGAND set com-
pared to the ChEMBL set (Additional file  1: Figure S1). 
As the structure of fragments is generally smaller than 
the structure of molecules we used the Tanimoto similar-
ity calculation with ECFP4 (rather than ECFP6) descrip-
tors between each pair of fragments in the same dataset 
to check the similarity of these fragments. It was found 
that most of them were smaller than 0.5 indicating that 
they are dissimilar to each other (Fig. 3C). Especially, the 
fragments in the LIGAND+ set have the largest diversity. 
Moreover, the distribution of different fragments in these 
three subsets of the LIGAND set is shown in Fig. 3D. The 
molecules in these three subsets have their unique frag-
ments and share some common substructures.

Generated molecules
Pre‑training and Fine‑tuning
After finishing the dataset construction four models 
were pre-trained on the ChEMBL set and fine-tuned 
on the LIGAND set. These models were benchmarked 
on a server with Nvidia Tesla P100 GPUs. After the 
training process converged, each fragment in the test 
set was presented as input 20 times for both ChEMBL 
and LIGAND test sets to generate molecules. The 
performance is shown in Table  1 (with additional 
tanimoto frequencies in the Additional file  1: Figure 
S2). Based on this benchmark, Transformer methods 
outperformed LSTM-based methods using SMILES. 
In addition, the training of Transformer models was 
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found to be faster but to consume more computational 
resources than LSTM-based methods with the same 
number of neurons in the hidden layers. Although the 
three SMILES-based models improved after being 
fine-tuned they were still outperformed by the Graph 
Transformer because of the advantages of  graph 
representation. To further check the accuracy of 
generated molecules the chemical space between the 
generated molecules and the compounds in the training 
set was compared with three different representations (1) 
MW ~ logP; (2) PCA with 19D PhysChem descriptors; 
(3) tSNE with 2048D ECFP6 fingerprints (Fig.  4). In 
addition, the loadings of PCA for each descriptor in 
PhysChem are provided in Additional file 1: Table S4. The 

region occupied by molecules generated by the Graph 
Transformer overlapped completely with the compounds 
in both the ChEMBL and LIGAND sets. In addition, 
the average tanimoto similarity of molecules generated 
by the four methods in pre-training, fine-tuning, and 
reinforcement learning using the Graph Transformer are 
shown in supplementary information (Additional file  1: 
Figure S3).

The graph representation for molecules has advantages 
over the SMILES representation when dealing with 
fragment-based molecule design: (1) Invariance on a 
local scale: During the process of molecule generation, 
multiple fragments in a given scaffold can be put into 
any position in the output matrix without changing 

Fig. 3 Analysis of some properties of fragments in the ChEMBL set and three LIGAND subsets. A Violin plot for the distribution of the number of 
fragments per molecules; B Distribution of molecular weight of these fragments; C Distribution of the similarity of the fragments measured by the 
Tanimoto-similarity with ECFP4 fingerprints; D Venn diagram for the intersection of the fragments existing in the three subsets of the LIGAND set
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Table 1 The performance of four different generators with different number of neurons in hidden layers for pre-training and fine-
tuning processes

Methods Hidden Neurons Pre‑trained Model Fine‑tuned Model

Validity Accuracy Novelty Uniqueness Validity Accuracy Novelty Uniqueness

Graph Transformer 512 100.0% 99.3% 99.9% 99.4% 100.0% 99.2% 68.9% 82.9%

Sequential Transformer 128 91.8% 62.4% 90.2% 92.5% 94.5% 80.5% 8.6% 24.3%

256 94.2% 69.3% 89.3% 91.4% 98.8% 89.5% 9.2% 26.6%

512 96.7% 74.0% 89.1% 91.8% 99.3% 92.7% 8.9% 28.9%

1024 97.1% 77.9% 89.5% 91.4% 99.4% 94.3% 8.2% 32.9%

LSTM-BASE 128 87.1% 38.7% 83.2% 84.0% 85.2% 53.1% 9.9% 26.8%

256 91.4% 48.8% 89.0% 91.2% 94.5% 75.8% 5.8% 21.2%

512 93.9% 52.4% 84.3% 89.1% 98.7% 81.6% 3.9% 19.2%

1024 95.7% 57.0% 79.6% 87.5% 99.6% 90.2% 2.1% 18.1%

LSTM + ATTN 128 89.8% 57.0% 84.2% 85.0% 85.2% 64.8% 14.2% 27.8%

256 92.6% 68.4% 87.1% 89.5% 94.9% 80.5% 8.9% 22.4%

512 94.3% 72.8% 85.3% 89.7& 96.9% 85.9% 6.3% 20.7%

1024 96.0% 75.0% 80.7% 89.4% 99.1% 92.9% 4.2% 20.2%

Fig. 4 The chemical space of generated molecules by the Graph Transformer. Shown are the molecules generated by the models pre-training on 
the ChEMBL set (A, C and E) and fine-tuning on the LIGAND set (B, D and F). Chemical space was represented by either logP ~ MW (A and B) and the 
first two components from a PCA on PhysChem descriptors (C, D) and t-SNE on ECFP6 fingerprints (E and F)
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the order of atoms and bonds in that scaffold. (2) 
Extendibility on a global scale: When fragments in the 
scaffold are growing or being linked, they can be flexibly 
appended in the end column of the graph matrix while 
the original data structure does not need changing. (3) 
Free of grammar: Unlike in SMILES sequences there 
is no explicit grammar to constrain the generation of 
molecules, such as the parentheses for branches and 
the numbers for rings in SMILES; (4) Accessibility 
of chemical rules: For each added atom or bond the 
algorithm can detect if the valence of atoms is valid or 
not and mask invalid atoms or bonds in the vocabulary to 
guarantee the whole generated matrix can be successfully 
parsed into a molecule. Due to these four advantages 

the Graph Transformer generates molecules faster while 
using less computational resources.

However, after examining the QED scores and SA 
scores it was found that although the distribution of 
QED scores was similar between the methods (Fig.  5A 
and C), the synthesizability of the molecules generated 
by the Graph Transformer was not better than the 
SMILES-based generators. This was especially true 
when fine-tuning on the LIGAND set. A possible reason 
is that molecules generated by the Graph Transformer 
contain uncommon rings when the model dealt with 
long-distance dependencies. In addition, because of 
more complicated data structure and presence of more 
parameters in the model, the Graph Transformer did not 

Fig. 5 The distribution of the QED score (A, C) and SA score (B, D) of desired ligands. Shown are the molecules generated from the ChEMBL set 
and LIGAND set and of molecules generated by four different generators. For the QED score, four generators had the same performance as the 
molecules in both ChEMBL set (A) and the LIGAND set (C). For the SA score, Graph Transformer did not outperform three other SMILES-based 
generators in the ChEMBL set (B) and even worse in the LIGAND set (D).
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outperform the other methods based on synthesizability 
of generated molecules while trained on a small dataset 
(e.g., the LIGAND set). It is also worth noticing that there 
still was a small fraction of generated molecules that did 
not contain the required scaffolds which is caused by a 
kekulization problem. For example, a scaffold ‘CCC’ 
can be grown into ‘C1 = C(C)C = CC = C1’. After being 
sanitized, it can be transformed into ‘c1c(C)cccc1’. In this 
process one single bond in the scaffold is changed to an 
aromatic bond, which causes a mismatch between the 
scaffold and the molecule. Currently DrugEx v3 cannot 
solve this problem because if the aromatic bond is taken 
into consideration, the valence of aromatic atoms is 
difficult to calculate accurately. This would lead to the 
generation of invalid molecules. Therefore, there is no 
aromatic bond provided in the vocabulary and all of the 
aromatic rings are inferred automatically through the 
molecule sanitization method in RDKit.

Policy gradient
Because the Graph Transformer generates with the best 
performance it was chosen as the agent in the RL frame-
work. Two objectives were tested in the training process. 
The first one was affinity towards  A2AAR, which is pre-
dicted by the random forest-based regression model from 
DrugEx v2; the second one was the QED score calculated 
with RDKit to measure how drug-like a generated mole-
cule is. With the policy gradient method as the reinforce-
ment learning framework two cases were tested. On the 
one hand, predicted affinity for  A2AAR was considered 
without the QED score. On the other hand, both objec-
tives were used to optimize the model with Pareto rank-
ing. After the training process finished, each fragment in 
the LIGAND test set was presented as input 20 times to 
generate molecules. In the first case 86.1% of the gener-
ated molecules were predicted active, while the percent-
age of predicted active molecules in the second case was 
74.6%. Although the generator generated more active 
ligands without the QED score constraint, most of them 
are not drug-like as they frequently have a molecular 
weight larger than 500  Da. However, when we checked 
the chemical space represented by tSNE with ECFP6 
fingerprints the overlap region between generated mol-
ecules and ligands in the training set was not complete 
implying that they fell out of the applicability domain of 
the regression model.

Changes to the exploration rate do not influence accu-
racy and have a low effect on diversity. However, desir-
ability (finding active ligands) and uniqueness can be 
influenced significantly. Empirically determining an opti-
mal value for a given chemical space is recommended.

In DrugEx v2, an exploration strategy simulated the 
idea of evolutionary algorithms such as crossover and 
mutation manipulations. However, when coupled to the 
Graph Transformer there were some difficulties and the 
strategy had to be given up. Firstly, the mutation strategy 
did not improve with different mutation rates. A possible 
reason is that before being generated, part the molecule 
was fixed with a given scaffold counteracting the effect 
of mutation caused by the mutation net. Secondly, the 
crossover strategy is computationally expensive in this 
context. This strategy needs the convergence of model 
training and iteratively updates the parameters in the 
agent. With multiple iterations, it takes a long period of 
time beyond the computational resources available. As a 
result, the exploration strategy was updated as mentioned 
in the Methods section with six different exploration 
rates: [0.0, 0.1, 0.2, 0.3, 0.4, 0.5].

After training the models, multiple scaffolds were input 
20 times to generate molecules. The results for accuracy, 
desirability, uniqueness, novelty,  and diversity with 
different exploration rates are shown in Table 2. With a 
low ε the model generated more desired molecules, but 
the uniqueness of the generated molecules decreased 
significantly. At ε = 0.3 the model generated the highest 
percentage of unique desired molecules (56.8%). Diversity 
was always larger than 0.84 and the model achieved the 
largest value (0.88) with ε = 0.0 or ε = 0.2. The chemical 
space represented by tSNE with ECFP6 fingerprints 
confirmed that the exploration strategy produced a set 
of generated molecules completely covering the region 
occupied by the LIGAND set (Fig. 6).

In the chemical space making up antagonists of  A2AAR 
there are several well-known scaffolds. Examples include 
furan, triazine, aminotriazole, and purine derivatives 
such as xanthine and azapurine. The Graph Transformer 
model produced active ligands for  A2AAR (inferred from 
the predictors) with different combinations of these 
fragments as scaffolds. Taking these molecules generated 
by the Graph Transformer as an example, we filtered out 
the molecules with potentially reactive groups (such as 

Table 2 The performance of the Graph Transformer with 
different exploration rates in the RL framework

ε Accuracy Desirability Uniqueness Novelty Diversity

0.0 99.7% 74.6% 60.7% 60.6% 0.879

0.1 99.7% 66.8% 75.0% 74.6% 0.842

0.2 99.8% 61.6% 80.2% 79.4% 0.879

0.3 99.7% 56.8% 89.8% 88.8% 0.874

0.4 99.7% 54.8% 88.8% 87.5% 0.859

0.5 99.7% 46.8% 88.5% 86.4% 0.875
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aldehydes) and uncommon ring systems and listed 30 
desired molecules as putative  A2AAR ligands/antagonists 
(Fig. 7). For each scaffold five molecules were selected and 
assigned in the same row. These molecules are considered 
a valid starting point for further considerations and work 
(e.g., molecular docking or simulation, or even synthesis).

Conclusions and future perspectives
In this study, DrugEx was updated with the ability to 
design novel molecules based on scaffolds consisting 
of multiple fragments as input. In this version (v3), a 
new positional encoding scheme for atoms and bonds 
was proposed to make the Transformer model deal 
with a molecular graph representation. With one 
model, multiple fragments in a given scaffold can be 
grown at the same time and connected to generate a 
new molecule. In addition, chemical rules on valence 
are enforced at each step of the process of molecule 
generation to ensure that all generated molecules are 
valid. These advantages are impossible to be embodied 

in SMILES-based generation, as SMILES-based 
molecules are constrained by grammar that allows a 
2D topology to be represented in a sequential way. 
With multi-objective reinforcement learning the model 
generates drug-like ligands, in our case for the  A2AAR 
target.

In future work, the Graph Transformer will be 
extended to include other information as input to 
design drugs conditionally. For example, proteoch-
emometric modelling (PCM) can take information for 
both ligands and targets as input to predict the affin-
ity of their interactions, which allows generation of 
compounds that are promiscuous (useful for e.g., viral 
mutants) or selective (useful for e.g., kinase inhibitors) 
[36]. The Transformer can then be used to construct 
inverse PCM models which take the protein informa-
tion as input (e.g., sequences, structures, or descriptors) 
to design active ligands for a given protein target with-
out known ligands. Moreover, the Transformer can also 
be used for lead optimization. For instance, the input 
can be a “hit” already, generating “optimized” ligands, 
or a “lead” with side effects to produce ligands with a 
better ADME/tox profile.

Fig. 6 The chemical space of generated molecules by the Graph Transformer trained with different exploration rates in the RL framework. The 
chemical space was represented by t-SNE on ECFP6 fingerprints
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