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ABSTRACT
Background: Observational studies provide important information about the effects of exposures
that cannot be easily studied in clinical trials, such as nutritional exposures, but are subject to
confounding. Investigators adjust for confounders by entering them as covariates in analytic
models.

Objective: The aim of this study was to evaluate the reporting and credibility of methods for
selection of covariates in nutritional epidemiology studies.

Methods: We sampled 150 nutritional epidemiology studies published in 2007/2008 and
2017/2018 from the top 5 high-impact nutrition and medical journals and extracted information
on methods for selection of covariates.

Results: Most studies did not report selecting covariates a priori (94.0%) or criteria for selection of
covariates (63.3%). There was general inconsistency in choice of covariates, even among studies
investigating similar questions. One-third of studies did not acknowledge potential for residual
confounding in their discussion.

Conclusion: Studies often do not report methods for selection of covariates, follow available
guidance for selection of covariates, nor discuss potential for residual confounding. Curr Dev
Nutr 2019;3:nzz104.

Introduction

The majority of studies published in nutrition are observational in design (1). Observational
studies can provide important information about the comparative effectiveness and safety of
interventions or exposures that cannot be easily studied in clinical trials owing to ethical or
feasibility reasons. Typically, nutritional interventions and exposures are difficult to study in
randomized trials. Usually, participants are unable to adhere to dietary interventions long enough
to reasonably expect to observe an effect on health outcomes (2–5). The rigorous randomized
trials that maintain adherence through housing of participants in controlled environments and
the provision ofmeals are costly and cannot recruit large enough numbers of participants or study
clinically important outcomes that require long durations of follow-up (6). Hence, observational
studies are likely to remain an important source of evidence on the relation between nutrition and
health.

Despite their high prevalence in nutrition, as well as other fields, observational studies are
subject to potential confounding bias, whereby there is a distortion of the observed effect of the
exposure of interest due to its association with other factors that affect the outcome (7). The risk of
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bias from known confounders can be mitigated through design
considerations, such as restricting the study sample to ≥1 levels of
confounding factors ormatching, as well as through statistical methods,
such as stratified analyses or adjustment through generalized linear
models. Generalized linear models are currently the most common
method by which data from observational studies are analyzed, owing
to their flexibility (8).

Unlike clinical trials that commonly operate under strict standards
at every step of data analysis, including the preparation of detailed
data analysis plans before the review of data by investigators, when
researchers conduct statistical analyses of observational studies, they
have a great deal of discretion over data analysis methods (9). A major,
but often overlooked, source of discretion is the choice of covariates
to include in analytic models (10). Covariates are variables that are
included in analytic models to adjust for confounding and to produce
more precise effect estimates (11). By including covariates that inflate
the effect of the exposure of interest and excluding covariates that
deflate the effect estimate, an analyst’smodel-building proceduremay be
heavily influenced by the possibility of obtaining statistically significant
or interesting results.

Selecting covariates a priori reduces opportunity for P value
shopping, whereby the choice of covariates is influenced by the
possibility of obtaining statistically significant results (12–17). Although
authors should strive to be comprehensive in the covariates included
in analytic models, sometimes, any additional covariate not part of
the correct model specification can increase bias (18, 19) and decrease
precision (12, 14, 19). Current guidance suggests that the choice
of covariates should be primarily guided by empirical evidence or
theoretical knowledge of suspected or established confounding factors
and adequately justified in study reports (12–16, 20). Use of variable
selection algorithms that do not incorporate subject matter knowledge
may lead to inclusion of variables that increase bias (12, 14, 21–23).
Given the potential for residual confounding in observational studies,
authors should also be cautious in their interpretation of results and
discuss the possibility of residual confounding (20, 24). Inappropriately
exaggerating the certainty of findings from observational studies that
are at risk of residual confounding may be misleading and perceived as
sensationalism, overall diminishing trust in research.

To our knowledge, no work has been done to evaluate the reporting
and credibility of methods for selection of covariates, to assess
consistency in choice of covariates among studies reporting on the same
outcome and similar exposures, or to describe how authors discuss
potential for residual confounding in nutritional epidemiology studies.
Furthermore, it is unclear whether the reporting of methods used to
select covariates has improved over time. The selection of confounders
in nutritional epidemiology can be more challenging than in other
areas owing to the very high correlation observed between nutritional
exposures, whichmakes teasing apart the effects of individual exposures
difficult (25).

Objectives
The objectives of this investigation are as follows:

1) describe the reporting of methods for selection of covariates in a
sample of nutritional epidemiology studies:

a) estimate the proportion of studies that describe how covariates
are selected for analysis;

b) describe methods by which authors select covariates for
analysis;

c) assess consistency in choice of covariates among studies
reporting on similar exposures and outcomes;

d) describe how authors discuss potential for residual confound-
ing; and

2) evaluate whether methods for selection of covariates and report-
ing of methods have evolved from 2007/2008 to 2017/2018.

Methods

The protocol for this study was registered on the Open Science
Framework website (https://osf.io/4p7jx).

Search strategy
Our search strategy was developed with the help of an experienced
research librarian and is presented in Supplemental Appendix 1. We
randomly sampled 150 nutritional studies from the top 5 general
medicine and nutrition journals, based on the h5-index (Google
Scholar, 2019), with start of publication preceding 2007: New England
Journal of Medicine, Lancet, British Medical Journal (BMJ), Journal
of the American Medical Association (JAMA), and Annals of Internal
Medicine; andTheAmerican Journal of Clinical Nutrition,British Journal
of Nutrition, Clinical Nutrition, Nutrition Journal, and The Journal of
Nutrition. A sample size of 150 studies was selected to allow estimation
of the prevalence of even uncommon methods by which authors of
nutritional studies select covariates (i.e., methods used in ∼5% of
studies) with acceptable precision (i.e., ±3.5%) (26).

Our aim was to sample 50 studies from general medicine journals
and 100 studies fromnutrition journals, with an equal number of studies
being sampled from 2007/2008 and 2017/2018 and from each general
medicine journal and nutrition journal. Because we did not identify
a sufficient number of eligible studies from general medicine journals,
we also searched their associated subjournals (BMJ Open, Lancet Public
Health, etc.). To reach our target sample size, we oversampled studies
from 2017/2018 and from select journals that published nutritional
epidemiology more frequently (i.e., BMJ, The American Journal of
Clinical Nutrition, Clinical Nutrition, and The Journal of Nutrition).

Study selection
Teams of 2 reviewers independently screened studies for eligibil-
ity. Reviewers resolved discrepancies by discussion or consultation
with an expert nutrition researcher and methodologist. We included
observational studies that reported on the association between ≥1
nutritional exposures and patient-important health outcomes using
generalized linear models. We defined nutritional exposures as foods
or food chemicals that are typically consumed through the diet
(excluding fortification and supplementation) or measures of dietary
patterns and patient-important health outcomes as direct measures of
mortality,morbidity, and quality of life.We excluded systematic reviews,
commentaries, and diagnostic and prognostic studies inwhich themain
aim was prediction modelling (e.g., What is the risk of cancer in North
American women>40 y of age who regularly consume coffee?) and not
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causal inference (e.g., Does drinking coffee increase risk of cancer?).
Studies with <100 participants were excluded because nonrandomized
studies with few participants are typically experimental or mechanistic
studies, rather than epidemiological studies.

Data extraction
Teams of 2 reviewers, working independently, extracted the following
information from each study, focusing on the primary analytic model:
research question, study design, methods used to control for effects
of covariates, methods used to select covariates for analysis, list of
covariates addressed through the study design or analysis, presentation
of results, and authors’ discussion of potential for confounding bias. We
defined the primary model as the model on the association between
the primary exposure and outcome of interest that authors most
frequently discussed in the study abstract and the results and discussion
sections of the article and that was primarily used to guide authors’
conclusions. This was usually (but not always) themost adjustedmodel.
If a primary exposure and outcome of interest were not specified, we
assumed that the primary exposure and outcome were the exposure
and outcome for which results were first presented in the study abstract.
For studies that used matching or propensity score methods, we treated
matching variables and variables used to create propensity scores the
same as covariates included in analytic models. Reviewers resolved
discrepancies through discussion or by consultation with an expert
nutrition researcher and methodologist. If a study cited a protocol,
reviewers retrieved the protocol and reviewed for additional relevant
information.

Data synthesis and analysis
We present descriptive statistics (frequencies and percentages) to
describe reporting of methods for selection of covariates and authors’
discussion of potential for residual confounding. We stratified results
by year of publication and type of journal. For outcomes for which
we included >10 studies (all-cause mortality and type 2 diabetes), we
assessed consistency in choice of covariates among studies.We grouped
studies by the types of exposures (i.e., micronutrients, macronutrients,
foods, food groups, and dietary patterns) and present the number and
proportion of studies that included each covariate in their primary
analytic model. We do not present covariates related to study design
(e.g., study center) because inconsistency in adjustment for these
covariates would be expected given design variations across studies.
We also indicate studies for which adjustment for certain covariates is
not applicable (e.g., baseline diabetes status if participants with diabetes
were not eligible for inclusion in the study) and studies that considered
additional covariates in secondary models.

Results

Study characteristics
Supplemental Appendix 2 presents details of study selection and
Table 1 presents study characteristics. We included 36 studies from
general medicine journals and 114 studies from nutrition journals.
Fifty-three studies were published in 2007/2008 and 97 in 2017/2018.
Supplemental Appendix 3 lists the included studies.

The majority of studies described cohort designs. The median
number of participants included in each study was slightly >8000. The
majority of studies reported on dietary patterns. The most commonly
reported outcome was all-cause mortality, followed by digestive cancers
and type 2 diabetes. Other outcomes investigated included measures of
weight, BMI, waist circumference, psychological profiles, and cognitive
measures.

Most studies used regression methods to control for the effects of
covariates and one-third used a combination of regression methods
and stratification, most commonly by sex. Other methods included
a combination of regression methods and individual or frequency
matching. One study did not control for the effects of any covariates
in its analysis (27). In this study, participants’ change in weight was
evaluated before and after Ramadan, with participants acting as their
own controls. The most commonly used analytic model was the
Cox proportional hazards model, followed by logistic regression and
multivariable linear regression. Over two-thirds of studies reported
statistically significant associations between the primary exposure and
outcome of interest. Characteristics of studies were similar between
studies published in 2007/2008 and in 2017/2018, except a larger
proportion of studies published in 2017/2018 reported statistically
significant effects.

Reporting of methods for selection of covariates
Table 2 presents details on reporting of methods for selection of
covariates. Examples of these methods are presented in Supplemental
Appendix 4. A smallminority of studies reported selecting all covariates
a priori (i.e., before the review of data by investigators) and a very
small minority reported selecting some (but not all) covariates a priori.
Among studies that reported that all covariates were selected a priori,
all were published in 2017/2018. None of the included studies reported
that covariates were not selected a priori.

Two-thirds of studies did not report the methods or criteria used
to select covariates for analysis. The proportion of studies was similar
between studies published in 2007/2008 and in 2017/2018. Among
studies that did report methods for selection of covariates, most studies
reported selecting established or suspected risk factors for the outcome
of interest. Other criteria used included known or suspected factors
associated with the exposure, factors associated with both the exposure
and the outcome, or factors associated with either the exposure or the
outcome. A very small minority of studies reported using Directed
Acyclic Graphs to select potential confounders (factors associated with
the exposure that also act on the outcome) for adjustment (28).

Over three-quarters of studies did not cite any sources to justify
their choice of covariates. This was similar between studies published
in 2007/2008 and in 2017/2018. Among studies that cited sources, most
cited other epidemiological studies, systematic reviews, or authoritative
documents (e.g., World Cancer Research Fund report on risk factors
for cancer). A small minority of studies reported conducting de
novo literature searches to identify relevant confounding factors.
Among studies that cited additional literature to justify their choice of
covariates, the additional literaturemost often addressed risk factors for
the outcome of interest.

After selecting covariates for analysis, approximately one-third of
studies reported using data-driven methods to narrow down their pool
of covariates for inclusion in the final analytic model. The proportion
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TABLE 1 Study characteristics1

2007/2008 2017/2018 All articles
(n = 53) (n = 97) (n = 150)

Journal
Annals of Internal Medicine 2 (3.8) 3 (3.1) 5 (3.3)
British Medical Journal 4 (7.5) 11 (11.3) 15 (10.0)
Journal of the American Medical Association 3 (5.7) 5 (5.2) 8 (5.3)
Lancet 1 (1.9) 6 (6.2) 7 (4.7)
New England Journal of Medicine 0 (0) 1 (1.0) 1 (0.7)
The American Journal of Clinical Nutrition 14 (26.4) 10 (10.3) 24 (16.0)
British Journal of Nutrition 14 (26.4) 10 (10.3) 24 (16.0)
Clinical Nutrition 0 (0) 24 (24.7) 24 (16.0)
The Journal of Nutrition 14 (26.4) 10 (10.3) 24 (16.0)
Nutrition Journal 1 (1.9) 17 (17.5) 18 (12.0)

Study design
Cohort 30 (56.6) 67 (69.1) 97 (64.7)
Case-control 8 (15.1) 5 (5.2) 13 (8.7)
Nested case-control 0 (0) 2 (2.1) 2 (1.3)
Case-cohort 1 (1.9) 0 (0) 1 (0.7)
Cross-sectional 14 (26.4) 23 (23.7) 37 (24.7)

Participants, n 5823 [1864–26,238] 11,879 [2121–88,184] 8072 [2035–62,461]
Primary exposures investigated

Micronutrient 10 (18.9) 10 (10.3) 20 (13.3)
Macronutrient 6 (11.3) 13 (13.4) 19 (12.7)
Food 9 (17.0) 23 (23.7) 32 (21.3)
Food group 10 (18.9) 13 (13.4) 23 (15.3)
Dietary pattern 18 (34.0) 38 (39.2) 56 (37.3)

Primary outcomes investigated
All-cause mortality 4 (7.5) 16 (16.5) 20 (13.3)
Cardiovascular mortality 1 (1.9) 2 (2.1) 3 (2.0)
Cardiovascular disease 1 (1.9) 3 (3.1) 4 (2.7)
Stroke 0 (0) 3 (3.1) 3 (2.0)
Myocardial infarction 3 (5.7) 3 (3.1) 6 (4.0)
Brain cancer and tumors of the spinal cord 1 (1.9) 1 (1.0) 2 (1.3)
Digestive cancers 7 (13.2) 11 (11.3) 18 (12.0)
Endocrine-related cancers 0 (0) 1 (1.0) 1 (0.7)
Female cancers 3 (5.7) 1 (1.0) 4 (2.7)
Prostate cancer 4 (7.5) 1 (1.0) 5 (3.3)
Overall cancer mortality 1 (1.9) 0 (0) 1 (0.7)
Type 2 diabetes 4 (7.5) 9 (9.3) 13 (8.7)
Other 24 (45.3) 46 (47.4) 70 (46.7)

Methods for controlling for effects of covariates
Regression methods 31 (58.5) 52 (53.6) 83 (55.3)
Combination of regression methods and stratification 14 (26.4) 39 (40.2) 53 (35.3)
Combination of regression methods and individual matching 4 (7.5) 3 (3.1) 7 (4.7)
Combination of regression methods and frequency matching 4 (7.5) 2 (2.1) 6 (4.0)
None 0 (0) 1 (1.0) 1 (0.7)

Analytic model
Multivariable linear regression 5 (9.4) 9 (9.3) 14 (9.3)
Logistic regression 21 (39.6) 30 (30.9) 51 (34.0)
Cox proportional hazards model 22 (41.5) 51 (52.6) 73 (48.7)
ANOVA methods 2 (3.8) 4 (4.1) 6 (4.0)
Poisson regression 2 (3.8) 0 (0) 2 (1.3)
Other 1 (1.9) 3 (3.1) 4 (2.7)

Reported statistically significant association between the primary exposure and outcome of interest?
Yes 35 (66.0) 82 (84.5) 117 (78.0)
No 18 (34.0) 15 (15.5) 33 (22.0)

1Values are n (%) or median [IQR].
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TABLE 2 Reporting of methods for selection of covariates1

2007/2008 2017/2018 All articles
(n = 53) (n = 97) (n = 150)

Reported whether covariates were selected a priori?
Some (but not all) covariates were selected a priori 1 (1.9) 1 (1.0) 2 (1.3)
All covariates were selected a priori 0 (0) 7 (7.2) 7 (4.7)
Not reported 52 (98.1) 89 (91.8) 141 (94.0)

Reported methods for selection of covariates for analysis?
Reported criteria for selection of all covariates 9 (17.0) 21 (21.7) 30 (20.0)
Reported criteria for selection of some covariates 10 (18.9) 15 (15.5) 25 (16.7)
Not reported 34 (64.2) 61 (62.9) 95 (63.3)

Among studies that reported methods for selection of covariates, covariates were selected from:2

Factors known or suspected to be associated with the exposure 2 (3.8) 3 (3.0) 5 (3.3)
Known or established risk factors for the outcome 13 (24.5) 26 (26.8) 39 (26.0)
Factors known or suspected to be associated with both the exposure and outcome 1 (1.9) 4 (4.1) 5 (3.3)
Factors known or suspected to be associated with either the exposure or the outcome 2 (3.8) 0 (0) 2 (1.3)
Confounders (factors associated with the exposure that also act on the outcome) as
identified by Directed Acyclic Graphs

0 (0) 4 (4.1) 4 (2.7)

Other 4 (7.5) 2 (2.1) 6 (4.0)
Not reported 34 (64.2) 61 (62.9) 95 (63.3)

Sources cited to support choice of covariates?2

Systematic review 1 (1.9) 5 (5.2) 6 (4.0)
Authoritative document (e.g., World Cancer Research Fund report) 0 (0) 4 (4.1) 4 (2.7)
Narrative review 0 (0) 1 (1.0) 1 (0.7)
Epidemiological study 9 (17.0) 11 (11.3) 20 (13.3)
De novo literature search conducted by authors 1 (1.9) 9 (9.3) 10 (6.7)
Methodology article 0 (0) 1 (1.0) 1 (0.7)
No source cited 44 (83.0) 76 (78.4) 120 (80.0)

Reported use of data-driven methods for selection of covariates for inclusion in final analytic model?
Reported use of data-driven methods for selection of all covariates for inclusion in
final analytic model

6 (11.3) 8 (8.3) 14 (9.3)

Reported use of a combination of data-driven and hypothesis-driven methods to
select covariates for inclusion in final analytic model

11 (20.8) 15 (15.4) 26 (17.3)

Did not report using any data-driven methods to select covariates 36 (67.9) 74 (76.3) 110 (73.3)

Among studies that reported use of data-driven methods for selection of covariates, covariates were selected based on:2

If their inclusion appreciably changed the effect estimate of the primary exposure
(change-in-estimate criterion)

11 (20.8) 11 (11.3) 22 (14.7)

P value in the final analytic model 2 (3.8) 1 (1.0) 3 (2.0)
P value in univariate model with the exposure as the dependent variable 1 (1.9) 3 (3.1) 4 (2.7)
P value in univariate model with the outcome as the dependent variable 3 (5.7) 6 (6.1) 9 (6.0)
Backward elimination 1 (1.9) 0 (0) 1 (0.7)
Stepwise selection 0 (0) 2 (2.1) 2 (1.3)
Magnitude of correlation with exposure 0 (0) 1 (1.0) 1 (0.7)
Whether inclusion reduced the SE of the effect estimate of the primary exposure 1 (1.9) 1 (1.0) 2 (1.3)
Model fit3 0 (0) 1 (1.0) 1 (0.7)
Some description provided but unclear which specific method was used 4 (7.5) 3 (3.1) 7 (4.7)
Did not report using any data-driven methods to select covariates 36 (67.9) 74 (76.3) 110 (73.3)

Conducted quantitative bias analysis to evaluate impact of potential unadjusted/unmeasured confounders on results?
Yes, according to methods described by Lin et al. (29) 0 (0) 1 (1.0) 1 (0.7)
Yes, according to methods described by Ding and VanderWeele (30) 0 (0) 1 (1.0) 1 (0.7)
Yes, by constructing a hypothetical confounder 1 (1.9) 0 (0) 1 (0.7)
No 52 (98.1) 95 (97.9) 147 (98.0)

1Values are n (%).
2Categories are not mutually exclusive.
3Specific measure of model fit used not reported.

of studies was similar between studies published in 2007/2008 and in
2017/2018. Among studies that reported using data-driven methods,
the majority used a combination of hypothesis- and data-driven
methods, whereby some covariates were forced to be included in

the model based on prior knowledge. Common data-driven methods
for selection of covariates included the change-in-estimate criterion,
P values in either univariate or multivariate models, and stepwise
procedures. Studies that used the change-in-estimate criterion included
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TABLE 3 Interpretation of results in nutritional epidemiology studies1

2007/2008 2017/2018 All articles
(n = 53) (n = 97) (n = 150)

Acknowledge potential for residual confounding?
Yes 31 (58.5) 67 (69.1) 98 (65.3)
No 22 (41.5) 30 (30.9) 52 (34.7)

Acknowledge existence of unadjusted confounders?2

Yes, because the confounder was not measured 4 (7.5) 11 (11.3) 15 (10.0)
Yes, for other reasons 0 (0) 4 (4.1) 4 (2.7)
Yes, no reason is provided 6 (11.3) 9 (9.3) 15 (10.0)
No, the authors do not acknowledge the existence of
confounders not included in the analysis

43 (81.1) 74 (76.3) 117 (78.0)

Acknowledge measurement error as a potential source of confounding?
Yes 4 (7.5) 11 (11.3) 15 (10.0)
No 49 (92.5) 86 (88.7) 135 (90.0)

Described likelihood of residual confounding affecting results?
Likely 1 (1.9) 2 (2.1) 3 (2.0)
Possible 23 (43.4) 62 (63.9) 85 (56.7)
Unlikely 6 (11.3) 1 (1.0) 7 (4.7)
Not possible 0 (0) 0 (0) 0 (0)
Not discussed 23 (43.4) 32 (33.0) 55 (36.7)

Report a causal link between exposure and outcome?
Yes 6 (11.3) 6 (6.2) 12 (8.0)
No 47 (88.7) 91 (93.8) 138 (92.0)

1Values are n (%).
2Categories are not mutually exclusive.

covariates in the final analytic model if their inclusion changed the
effect estimate of the exposure of interest by an appreciable amount
(e.g., 5%, 10%). Studies that used P values to screen covariates either
excluded covariates from the final model if their P values were not
sufficiently low (e.g., P < 0.10) or included covariates in the final
model if their P values in univariate models with either the outcome
or exposure of interest as the dependent variable were sufficiently
low. Stepwise procedures included backward elimination or stepwise
regression. A small minority of studies reported using some data-driven
methods but did not provide an adequate description to classify the
methods used.

Three studies, 1 published in 2007/2008 and 2 published in
2017/2018, conducted quantitative bias analysis to evaluate the impact
of potential unadjusted confounders. Two of the studies used methods
by Lin et al. (29) andDing andVanderWeele (30) and the third explored
the sensitivity of results to a hypothetical confounder.

Consistency in selection of covariates for similar outcomes
and exposures
Supplemental Appendix 5 presents matrixes of covariates included in
the final analytic models of 20 and 13 studies reporting on all-cause
mortality and diabetes, respectively. Studies adjusted for a total of
72 and 62 unique covariates for all-cause mortality and diabetes,
respectively. We did not find any studies that adjusted for exactly
the same set of covariates and we found substantial inconsistency,
even among studies investigating similar types of exposures. We
categorized covariates as participant characteristics, measures of
socioeconomic status, health-related covariates, medications, family
history of diseases, dietary characteristics, and dietary patterns. The

median number of studies that adjusted for each covariate was 1
out of 20 studies for all-cause mortality and 1 out of 13 studies for
diabetes.

Interpretation of results in light of potential for confounding
Table 3 presents information on authors’ interpretation of their results.
Examples are presented in Supplemental Appendix 4. One-third of
studies did not acknowledge the potential for residual confounding
in their discussion. Among studies that discussed the likelihood of
residual confounding, most studies described the likelihood as possible
and a very small minority of studies described the likelihood as
unlikely. A quarter of studies identified unadjusted confounders that
may have influenced results. This was most often because an important
confounder was not measured in the study. The vast majority of studies
did not discuss the possibility of measurement error in covariates
leading to residual confounding. There was a slight improvement in
the interpretation of results from 2007/2008 to 2017/2018, with slightly
more references from the latter years acknowledging the potential
for residual confounding, the existence of unadjusted confounders,
and the potential for measurement error being a source of residual
confounding.

Type of journal
Results stratified by type of journal (general medicine compared with
nutrition) are presented in Supplemental Appendix 6. Reporting and
methods used to select covariates and discussion of residual confound-
ing were similar between studies published in general medicine and
nutrition journals.
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Discussion

Main findings
Our investigation of a sample of 150 nutritional epidemiology studies
suggests that the reporting of methods for selection of covariates
does not adhere to available guidance. In addition, methods used to
select covariates are often suboptimal. Selecting covariates a priori
reduces opportunity for the choice of covariates to be influenced
by the possibility of obtaining statistically significant or interesting
results (9, 12–17). Our investigation shows that authors of nutritional
epidemiology studies very rarely report selecting covariates a priori.
The STROBE Statement recommends authors to make clear “which
confounders were adjusted for and why they were included” (20).
However, only one-third of studies reported criteria for selection of
covariates for analysis.

Among studies that described criteria for selection of covariates
for analysis, one-quarter selected known or suspected risk factors
for the outcome as covariates for analysis. A few also considered
factors suspected to be associated with the exposure. Including all
factors suspected to be associated with the exposure or the outcome
as covariates may be occasionally problematic because it may lead to
more covariates than needed to adequately adjust for confounding (12).
Within even the largest studies, including toomany covariates may lead
to the breakdown of conventional fitting methods, such as maximum
likelihood, and lead to data sparsity in which there are too few
subjects at crucial combinations of covariates, with consequent inflation
of effect estimates (15, 19, 31). In addition, selecting factors highly
predictive of the exposure can produce multicollinearity, and hence
unnecessarily wide CIs and potentially inflated effect estimates (12,
14, 15). For example, adjustment for instrumental variables, variables
that are predictive of exposure but have no causal association with the
outcome, has been shown to decrease precision and increase bias in the
presence of residual confounding (32–35).

Despite widespread endorsement in the literature, very few studies
reported using causal diagrams to select covariates (12, 14, 28, 36–
38). Causal diagrams are constructed to display the analysts’ best
understanding of factors associated with the exposure and outcome
of interest. They are used to identify all potential confounders for
inclusion in the model, while also ensuring that unnecessary variables
or variables whose inclusion in the model may increase bias are not
included. For example, causal diagrams can be used to identify colliders,
variables with≥2 antecedent causes that lie within the pathway between
the exposure and outcome of interest, that are often confused with
confounders, but adjustment for which biases results (18). Causal
diagrams can also reduce the potential for inclusion of intermediary
variables in analytic models.

More than one-quarter of studies reported using data-driven
methods, alone or in combination with hypothesis-driven methods, to
narrow the pool of covariates for inclusion in the final analytic model.
Among studies that reported using data-driven methods, the 3 most
commonmethodswere stepwise procedures, screening covariates based
on P values in univariate or multivariate models, and the change-in-
estimate criterion.

Stepwise procedures and screening covariates based on P values
can achieve a parsimonious model but may select weak confounders
over strong confounders if weaker confounders are more strongly

correlated with the exposure or the outcome (12, 15, 21, 39). For
example, a variable that is highly predictive of the outcome but
unrelated to the exposure may be selected over a confounder that is
only moderately correlated with both the exposure and outcome. Even
when a given variable is significantly associated with the exposure or
outcome, statistical significance is not informative about the magnitude
of correlation and hence potential for confounding (21, 39). In addition,
these methods ignore problems with preliminary testing and produce P
values for the exposure effect that are too small and CIs that are too
narrow (12, 15, 22, 40, 41). They also ignore the causal structure of the
data by treating confounders and colliders equally (12, 14, 22).

Selecting covariates based on the change-in-estimate criterion is
generally preferred over other methods, but as with other data-driven
methods, this method ignores theoretical and empirical understanding
of important confounders and relies heavily on the available data, in
which causal relations may or may not be evident (12, 42). In addition,
as with other data-driven methods, this method may produce P values
that are too small because it ignores preliminary testing (12, 15, 22, 40,
41).

Very few studies reported conducting quantitative bias analysis to
evaluate the robustness of results to potential unadjusted confounders.
Authors may not be motivated to present quantitative bias analyses
that are unfavorable because they may reduce the perceived validity
of findings. Authors may also lack knowledge of these methods or the
statistical expertise for their implementation or they may not find these
analyses informative. Because the potential for residual confounding is
a direct function of the effect size and corresponding CIs, it has also
been argued that quantitative bias analysis contributes little information
beyond what is already typically reported in reports of epidemiology
studies (43).

We found a lack of consistency in choice of covariates, even
among studies investigating the same outcome and similar types of
exposures. This may be an artifact of inconsistency of methods used
to select covariates, a general lack of knowledge by authors of the
causal structure of the research questions being investigated, or lack
of availability of important variables in the data. Many epidemiological
studies are initiated decades before the analysis of data, at which point
understanding of the causal structure of the problem being investigated
may have been poor and so measurement of variables considered
important now may have been omitted at the time of study inception.
In addition, many studies are used to investigate secondary research
questions while the variables measured may have only been tailored for
the primary research question.

We also foundmore than one-quarter of studies to not acknowledge
the potential for residual confounding in their discussion of study
results. Some studies even made causal inferences, suggesting authors
have a low level of appreciation of the potential for confounding
bias in observational studies. It is possible that authors of nutritional
epidemiology studies might not acknowledge potential for residual
confounding bias because they may see it as an inevitable limitation of
observational studies that is too well-known to merit discussion. How-
ever, observational studies are too often misconstrued by readers and
sensationalized by the media (44–46). More conspicuous consideration
of residual confounding bias in reports of nutritional epidemiology
studies may lead to more cautious interpretation of findings by
readers.
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Relation to previous work
Previous studies have evaluated the quality of reporting of methods
for handling confounders, as well as authors’ interpretation of results
in light of potential for residual confounding, in the general medicine
and epidemiological literature (24, 47–52). Similarly to our findings,
previous studies have found that choice of covariates is most often
not justified and that many studies lack a satisfactory discussion of
limitations related to confounding bias (24, 47–52). This suggests that
these issues are not unique to nutrition but are also prevalent in
observational studies from other fields.

Strengths and limitations
The strengths of our study include our duplicate screening and
extraction of data for accuracy, as well as inclusion of a representative
sample of high-impact nutritional epidemiology studies from both
general medicine and specialized nutrition journals. We provide a
comprehensive picture of the reporting of methods used to control for
the effects of confounders, the consistency in choice of covariates among
studies reporting on the same outcome and similar exposures, as well as
how authors interpret their findings in light of the potential for residual
confounding.

The most major limitation of this investigation is our inability to
ascertain the methods used to select covariates when they were not
explicitly described in the article or protocol of a study. Given word
limitations of journals, authorsmaynot be able to report on all aspects of
their methods. However, it could be argued that studies that undertake
a systematic effort to identify important covariates will likely report
on such efforts and although methods used may be valid despite poor
reporting, lack of reporting leaves readers unable to gauge validity.
In addition, authors are able to provide detailed descriptions of their
model-building procedures in supplementary materials, the content
of which is not typically limited by journals. None of the studies
included in our sample provided additional details on model-building
procedures in supplementary materials.

We did not evaluate the validity of the methods used for the mea-
surement (e.g., validity and reliability of the instruments used to mea-
sure covariates) and operationalization (e.g., functional form, whether
and how continuous variables were categorized or dichotomized,
whether time-dependency of covariates was appropriately considered)
of covariates in studies because this was considered outside the scope of
this investigation. However, it should be acknowledged that inclusion
of important covariates is not sufficient for valid analysis. Important
covariates should also be measured via valid tools and appropriately
operationalized in analytic models.

Our investigation of the consistency in choice of covariates was
focused on covariates included in the primary analytic model of
each study. Although a minority of studies also considered additional
covariates in secondarymodels, results from thesemodelswere not used
to guide authors’ conclusions and so authors likely did not deem these
additional covariates as being important in estimating the association
between the exposure and outcome of interest. Furthermore, our
investigation likely underestimates inconsistency in choice of covariates
across studies because we combined similar types of covariates (e.g.,
different measures of physical activity were grouped together, including
nonleisure, aerobic, nonaerobic, and moderate-to-vigorous intensity).
Finally, we could not fulfill our originally intended sampling strategy

becausewewere unable to identify a sufficient number of eligible studies
from some journals. Despite this, our sample is still representative
of high-impact nutritional epidemiology studies to which other
researchers and the public are regularly exposed.

Implications
Given that observational studies are likely to continue to predominate
in nutrition, appropriately dealing with confounding bias is essential
to being able to draw valid inferences from these studies. In addition,
to avoid being misleading, reports of nutritional epidemiology studies
should only provide a cautious interpretation of their results, given the
magnitude of associated uncertainty.

Our study shows that there is a need to encourage authors of
nutritional epidemiology studies to select covariates a priori using
the best available theoretical or empirical evidence on important
confounders of the relation being investigated, to transparently describe
the criteria used to select covariates for analysis, and to discourage use
of suboptimal methods for covariate selection. We acknowledge that
recommended guidance for covariate selectionmay not be applicable in
scenarios in which there may be little known about the causal structure
of the outcome of interest and factors related to the exposure (12–
16, 20). In these situations, authors may have to rely on data-driven
model-building procedures. However, in these situations, we encourage
use of more sophisticated techniques, like shrinkage and penalized
regression, that have been shown to outperform traditional data-driven
methods (53–55). In addition, analytic criteria that will be used to
select covariates should be transparent and prespecified. One way in
which this can be done is through protocols or statistical analysis plans.
We caution that no methodology is perfect in all scenarios and that
modelingmethods should be documented in enough detail that readers
can interpret results in light of the strengths and weaknesses of the
methods used. Further, authors should interpret their results cautiously
and provide a discussion of potential for residual confounding to avoid
being misleading.

Conclusions

Improper omission and indiscriminate inclusion of covariates in
statistical models can lead to compromised inferences (12–15, 19, 21).
Selecting important confounders as covariates,minimizing their impact
through appropriate design and statistical considerations, and acknowl-
edging remaining uncertainty due to potential residual confounding
is an integral component of inference-making in epidemiology. Our
review shows that nutritional epidemiology studies do not adhere to
available guidance for reporting of methods for selection of covariates
and thatmethods used to select covariates are often suboptimal. Perhaps
as a result, there is inconsistency in choice of covariates even among
studies evaluating the same outcome and similar types of exposures.We
also found reports of nutritional epidemiology studies to lack adequate
discussion of potential for residual confounding.We encourage authors,
peer reviewers, journal editors, and research funders to bemoremindful
of these issues.
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