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ABSTRACT
Genome wide association studies (GWAS) have been very successful over the last

decade at identifying genetic variants associated with disease phenotypes. However,

interpretation of the results obtained can be challenging. Incorporation of further rel-

evant biological measurements (e.g. ‘omics’ data) measured in the same individuals

for whom we have genotype and phenotype data may help us to learn more about the

mechanism and pathways through which causal genetic variants affect disease. We

review various methods for causal inference that can be used for assessing the rela-

tionships between genetic variables, other biological measures, and phenotypic out-

come, and present a simulation study assessing the performance of the methods under

different conditions. In general, the methods we considered did well at inferring the

causal structure for data simulated under simple scenarios. However, the presence of

an unknown and unmeasured common environmental effect could lead to spurious

inferences, with the methods we considered displaying varying degrees of robust-

ness to this confounder. The use of causal inference techniques to integrate omics

and GWAS data has the potential to improve biological understanding of the path-

ways leading to disease. Our study demonstrates the suitability of various methods

for performing causal inference under several biologically plausible scenarios.
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1 INTRODUCTION

Many genetic variants associated with human diseases have

been successfully identified using genome wide association

studies (GWAS) (Visscher, Brown, McCarthy, & Yang, 2012).

However, a typical GWAS provides limited further insight

into the biological mechanism through which these genetic

variants are implicated in disease. The variants implicated by

GWAS are not necessarily true causal variants (that directly

influence disease risk) but may rather correspond to variants

in linkage disequilibrium with the causal variant(s). Even for

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original

work is properly cited.
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putative causal variants, there is typically a lack of under-

standing of how the identified genetic variants influence the

phenotype at a molecular/cellular level. Consequently, mov-

ing towards therapeutic intervention is not straightforward.

It has become popular to use data from publicly available

databases to provide functional evidence for loci that have

been identified through GWAS (Cordell et al., 2015; Wain

et al., 2017; Warren et al., 2017). For example, it may be

of interest to consider whether a single nucleotide polymor-

phism (SNP) associated with disease associates with gene

expression in a relevant tissue. If such an association can be
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demonstrated, it might indicate that the observed association

between the SNP and disease phenotype is mediated through

altering the level of gene expression. However, the individ-

uals contributing to public databases are typically different

from those who feature in the original GWAS data set (and

the results may even derive from experiments on a different

organism), making direct conclusions about causality prob-

lematic. We therefore consider instead the situation whereby

we have measurements of a potential intermediate phenotype

(such as gene expression) taken in the same set of individuals

as are included in the GWAS data set. Use of such ‘overlap-

ping’ sets of measurements allows us to address directly ques-

tions regarding the causal relationships between variables.

This approach has been employed previously for examining

the potential role of DNA methylation as a mediator between

SNP genotype and rheumatoid arthritis (Liu et al., 2013) or

ovarian cancer (Koestler et al., 2014), and for investigating

the role of metabolites as a potential mediator between SNP

genotype and various lipid traits (Shin et al., 2014).

In these previous studies, a filtering step based on consider-

ation of pairwise correlations/associations between variables

of different types was first used in order to filter the num-

ber of variables considered to a manageable level, retaining

only those variables whose pairwise correlations reached a

specified level of significance. All resulting ‘triplets’ of vari-

ables (consisting of a genetic variable, a potential media-

tor variable such as a variable related to DNA methylation

or metabolite concentration, and an outcome variable such

as rheumatoid arthritis or a lipid trait) were then subjected

to a causal inference test (CIT)—the CIT (Millstein, 2016;

Millstein, Zhang, Zhu, & Schadt, 2009) in Liu et al. (2013),

and Mendelian randomisation (Smith & Ebrahim, 2003) and

structural equation modelling (Bollen, 1989) in Shin et al.

(2014)—in order to elucidate the causal relationships between

the variables in each triplet. Use of a similar pairwise filtering

approach was employed by Zhu et al. (2016), who developed

a method known as SMR (summary data-based Mendelian

randomisation). SMR uses GWAS summary statistics (SNP

effects) together with eQTL summary statistics from pub-

licly available databases to test for association between pre-

dicted gene expression and phenotype, with a further test

known as HEIDI (heterogeneity in dependent instruments)

used to elucidate causal relationships between triplets of vari-

ables; in their application Zhu et al. (2016) restricted the

HEIDI analysis to expression probes that (a) showed asso-

ciation at 𝑃 < 5 × 10−8 with nearby SNPs (so-called cis-

eQTLs) and (b) also showed association at 𝑃 < 8.4 × 10−6
with one of five complex traits considered. In an expanded

version of this study, Pavlides et al. (2016) increased the num-

ber of phenotypes considered to 28 complex traits and dis-

eases, while using the same filtering thresholds to focus the

HEIDI analysis on 271 triplets of variables, each consisting of

a SNP (cis-eQTL), its associated gene expression probe and

a complex trait with which the gene expression probe is also

associated.

More ambitiously, the (probabilistic) construction of entire

causal networks of multiple variables, including metabolomic

and transcriptomic (gene-expression) measurements, has

been carried out using approaches based on Bayesian net-

works (Zhu et al., 2004, 2012). This approach allows in princi-

ple the simultaneous consideration of a potentially large num-

ber of variables. Bayesian networks can only be solved at the

level of Markov (mathematically) equivalent structures; how-

ever genetic data can be incorporated in the network prior

as ‘causal anchor’ to help direct the edges in the network.

Although the Bayesian networks considered generally contain

large numbers of variables, this incorporation of genetic data

in order to help direct edges has typically involved calcula-

tions performed on smaller subunits such as triplets of vari-

ables (e.g., one genetic factor and a pair of nongenetic factors

such as metabolite concentrations or gene expression values)

(Zhu et al., 2004, 2012). The use of genetic data as a causal

anchor for delineating the causal relationships between other

variables (in particular between modifiable risk factors and

phenotypic outcome) has a long history in the field of genetic

epidemiology and has been popularised in the approach of

Mendelian randomisation (Smith & Ebrahim, 2003) and its

extensions (such as SMR, described above).

Given the focus, thus far, in the literature, on using triplets

of variables to perform causal inference, we were interested to

examine the performance of the available methods in this sim-

ple situation, before moving to the more complex situation of

analysing multiple variables (as are routinely encountered in

modern ‘omics’ data sets) simultaneously. We chose to inves-

tigate the following methods for causal inference: Mendelian

randomisation (Smith & Ebrahim, 2003), a CIT (Millstein,

2016; Millstein et al., 2009), structural equation modelling

and several Bayesian methods. We present a simulation study

that assesses the performance of the methods under differ-

ent conditions, assuming throughout that we have genotype

data along with two observed quantitative (continuous) phe-

notypes. We also consider how inference is affected by the

presence of unmeasured environmental confounding factors.

We begin by outlining the details of our simulation study

before presenting an overview and discussion of the results.

2 METHODS

For the purposes of our study, we assume we have genotype

data (𝐺) from a single SNP, along with measurements of gene

expression (𝑋) and a further phenotype of interest (𝑌 ). In real-

ity, 𝑋 could be any omics measurement of interest (e.g., gene

expression, DNA methylation, metabolite concentration, pro-

teomic measurements etc.). We assume that it is known that

there exist some pairwise associations between the variables;
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F I G U R E 1 Possible causal models explaining the relationship between a genetic variant 𝐺 and two observed traits 𝑋 and 𝑌 . Models (h)–(l)

include an unmeasured common enviromental effect 𝐸

this could have been established during a preprocessing or

filtering step.

Figure 1 shows some hypothesised causal models to

explain the relationship between the variables 𝐺, 𝑋, and

𝑌 . Where an arrow is present between two variables, this is

indicative of a causal relationship between these variables,

the direction is characterised by the direction of the arrow.

The set of models is restricted to those that are biologically

plausible, consequently we do not consider models in which

the genetic variant 𝐺 can be influenced by any other variable.

In models (h)–(l), we also include an unmeasured confounder

corresponding to an environmental effect 𝐸.

Given observed data on 𝐺, 𝑋, and 𝑌 , we were interested

to explore how well the underlying causal structure can be

learned. We consider several commonly used techniques for

attempting to infer underlying causal structure between vari-

ables. We first consider two methods designed to detect causal

associations in specific scenarios: Mendelian randomisation

(MR) (Smith & Ebrahim, 2003) and a CIT (Millstein, 2016;

Millstein et al., 2009). These methods are not designed for

an exploratory analysis involving many structures and would

normally only be used when there is a strong prior hypothesis

that a particular causal model gave rise to the data. Neverthe-

less, we consider it useful to explore how well these methods

perform on our simulated data sets. We also consider several

approaches used for causal modelling that are more flexible,

these are structural equation modelling (SEM) (Bollen,

1989; Fox, Nie, & Byrnes, 2015), a Bayesian unified

framework (BUF) (Stephens, 2013), and two different R

packages for learning Bayesian networks: DEAL (Bottcher &

Dethlefsen, 2013) and BNLEARN (Scutari, 2010). A more

detailed overview of all of these techniques is provided in the

Supporting Information.

2.1 Simulation Study
For each of the 12 causal scenarios given in Figure 1, 1,000

replicate data sets were simulated, each containing 1,000 indi-

viduals. The SNP genotype data (𝐺) were generated assuming

Hardy-Weinberg equilibrium and a minor allele frequency of

0.1. The direct effect sizes were initially chosen to be con-

stant throughout all models. For example, when simulating

data from model (a) in Figure 1, the effect size of 𝐺 on 𝑋 is

the same as the effect size of 𝐺 on 𝑌 . Full details of the sim-

ulation models are given in Table 1. For each simulated data

set, we applied each of the six causal inference methods under

consideration. The idea was to assess how well these methods

could recover the true underlying causal structure. Because

the methods we consider approach the problem from differ-

ent angles, direct comparison of results is not straightforward.

MR and the CIT are designed to test for specific causal scenar-

ios, usually informed by prior knowledge. In our setup, MR

is designed to identify the causal relationship 𝑋 → 𝑌 while

the CIT identifies that 𝑋 acts as a mediator between 𝐺 and 𝑌
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T A B L E 1 Details of simulation models for scenarios given in Figure 1

Simulation model
Scenario X Y E
(a) 𝑋|𝐺 ∼ 𝑁(𝜇𝑋 + 𝛼𝐺, 𝜎2

𝑋
) 𝑌 |𝐺 ∼ 𝑁(𝜇𝑌 + 𝛽𝐺, 𝜎2

𝑌
)

(b) 𝑋|𝐺 ∼ 𝑁(𝜇𝑋 + 𝛼𝐺, 𝜎2
𝑋
) 𝑌 |𝑋 ∼ 𝑁(𝜇𝑌 + 𝛾𝑋, 𝜎2

𝑌
)

(c) 𝑋|𝑌 ∼ 𝑁(𝜇𝑋 + 𝛾𝑌 , 𝜎2
𝑋
) 𝑌 |𝐺 ∼ 𝑁(𝜇𝑌 + 𝛽𝐺, 𝜎2

𝑌
)

(d) 𝑋|𝐺 ∼ 𝑁(𝜇𝑋 + 𝛼𝐺, 𝜎2
𝑋
) 𝑌 |𝐺, 𝑋 ∼ 𝑁(𝜇𝑌 + 𝛽𝐺 + 𝛾𝑋, 𝜎2

𝑌
)

(e) 𝑋|𝐺, 𝑌 ∼ 𝑁(𝜇𝑋 + 𝛼𝐺 + 𝛿𝑌 , 𝜎2
𝑋
) 𝑌 |𝐺 ∼ 𝑁(𝜇𝑌 + 𝛽𝐺, 𝜎2

𝑌
)

(f) 𝑋|𝐺, 𝑌 ∼ 𝑁(𝜇𝑋 + 𝛼𝐺 + 𝛿𝑌 , 𝜎2
𝑋
) 𝑌 ∼ 𝑁(𝜇𝑌 , 𝜎

2
𝑌
)

(g) 𝑋 ∼ 𝑁(𝜇𝑋, 𝜎
2
𝑋
) 𝑌 |𝐺, 𝑋 ∼ 𝑁(𝜇𝑌 + 𝛽𝐺 + 𝛾𝑋, 𝜎2

𝑌
)

(h) 𝑋|𝐺, 𝐸 ∼ 𝑁(𝜇𝑋 + 𝛼𝐺 + 𝜁𝐸, 𝜎2
𝑋
) 𝑌 |𝐺, 𝐸 ∼ 𝑁(𝜇𝑌 + 𝛽𝐺 + 𝜁𝐸, 𝜎2

𝑌
) 𝐸 ∼ 𝑁(0, 𝜎2

𝐸
)

(i) 𝑋|𝐺, 𝐸 ∼ 𝑁(𝜇𝑋 + 𝛼𝐺 + 𝜁𝐸, 𝜎2
𝑋
) 𝑌 |𝑋, 𝐸 ∼ 𝑁(𝜇𝑌 + 𝛾𝑋 + 𝜁𝐸, 𝜎2

𝑌
) 𝐸 ∼ 𝑁(0, 𝜎2

𝐸
)

(j) 𝑋|𝑌 , 𝐸 ∼ 𝑁(𝜇𝑋 + 𝛿𝑌 + 𝜁𝐸, 𝜎2
𝑋
) 𝑌 |𝐺, 𝐸 ∼ 𝑁(𝜇𝑌 + 𝛽𝐺 + 𝜁𝐸, 𝜎2

𝑌
) 𝐸 ∼ 𝑁(0, 𝜎2

𝐸
)

(k) 𝑋|𝐺, 𝐸 ∼ 𝑁(𝜇𝑋 + 𝛼𝐺 + 𝜁𝐸, 𝜎2
𝑋
) 𝑌 |𝐸 ∼ 𝑁(𝜇𝑌 + 𝜁𝐸, 𝜎2

𝑌
) 𝐸 ∼ 𝑁(0, 𝜎2

𝐸
)

(l) 𝑋|𝐸 ∼ 𝑁(𝜇𝑋 + 𝜁𝐸, 𝜎2
𝑋
) 𝑌 |𝐺, 𝐸 ∼ 𝑁(𝜇𝑌 + 𝛽𝐺 + 𝜁𝐸, 𝜎2

𝑌
) 𝐸 ∼ 𝑁(0, 𝜎2

𝐸
)

The default parameter values are 𝛼= 1, 𝛽= 1, 𝛿= 1, 𝜇𝑋= 10, 𝜇𝑌 = 10, 𝛾= 1, 𝜁= 1, 𝜎
𝑋
= 0.3, 𝜎

𝑌
= 0.3, 𝜎

𝐸
= 0.3. G is coded as (0, 1, 2) according to the number of minor

alleles present at the SNP

(i.e., identifies the relationship 𝐺 → 𝑋 → 𝑌 ) and, moreover,

that 𝑋 is the only causal link between 𝐺 and 𝑌 . For MR and

the CIT, we consider that the specified causal relationships

have been established if a significant P-value (𝑃 < 0.05) is

returned from the respective test.

The other four methods are more flexible because they all

consider a wider range of causal models. The Bayesian net-

work methods (DEAL and BNLEARN) can consider the full

space of models arising from three variables, including mod-

els (a)–(g) in Figure 1. However, they naturally exclude any

models with an arrow going towards the SNP because the

methods assume that discrete variables do not have contin-

uous parents. This convenient feature of Bayesian networks

automatically imposes the natural biological assumption that

genetic factors (such as SNPs) are assigned at birth and will

not be influenced by any other of the measured variables. The

Bayesian network methods assign to each model a network

score, and we consider the model with the highest network

score to be the most plausible.

For SEM, not all structures are considered as only a subset

of models have enough degrees of freedom to be testable.

These models are (a), (b), (c), (f) and (g) from Figure 1. We

choose the model with the lowest Bayesian information crite-

rion (BIC) (Schwarz, 1978) to be the most plausible. The BUF

method considers all possible partitions of variables X and Y
into three categories: 𝑈 (unassociated with 𝐺), 𝐷 (directly

associated with 𝐺), and 𝐼 (indirectly associated with 𝐺). This

gives a total of nine partitions. Of these nine partitions, three

correspond to models in Figure 1, namely (a), (b), and (c). In

the following, we will refer to two further partitions, (m) and

(n), where (m) represents a model with just one arrow 𝐺 → 𝑋

and (n) represents a similar model with 𝐺 → 𝑌 . We take the

model with the highest Bayes factor to be the most plausible.

3 RESULTS

Figure 2 shows the results of applying MR and the CIT to

simulated data sets. In each plot, the 𝑥-axis indicates the sce-

nario under which the data have been simulated, as illustrated

in Figure 1. The 𝑦-axis represents the proportion of simulated

data sets in which the test detects a specified causal relation-

ship. This relationship is 𝑋 → 𝑌 for MR and 𝐺 → 𝑋 → 𝑌

(with no other causal link between 𝐺 and 𝑌 ) for the CIT.

As expected, for data simulated under scenario (b), the

causal structure can be successfully identified (as highlighted

in black) by both methods. It is also of interest to consider how

the methods perform for data simulated under scenario (i),

which is akin to model (b) with the addition of an unmeasured

common environmental effect. MR was able to successfully

suggest a causal relationship 𝑋 → 𝑌 existed in scenario (i),

whereas the CIT did not typically establish the causal struc-

ture 𝐺 → 𝑋 → 𝑌 (with no other causal link between 𝐺 and

𝑌 ). For data simulated under other scenarios, both methods

incorrectly identified the specified causal relationships some

of the time (shown in grey). However, this is not unexpected

because in these cases there has typically been a violation of

the modelling assumptions.

In these initial simulation scenarios, both MR and CIT per-

formed well when their assumptions were satisfied, with the

existence of a causal link between 𝑋 and 𝑌 identified 100%

of the time under scenario (b) (Fig. 2). However, one might

expect that the performance of both methods would dete-

riorate when the relationships between the variables (either

between 𝐺 and 𝑋 or between 𝑋 and 𝑌 ) are less strong. Sup-

porting Information Figure S1 shows the results of lowering

either the effect size of 𝐺 on 𝑋 (𝛼) or the effect size of 𝑋

on 𝑌 (𝛾), while keeping all other effects constant, for data
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F I G U R E 2 Results of applying MR and the CIT to simulated data sets. The x-axis represents the scenario from which the data were simulated.

The 𝑦-axis represents the proportion of time (the proportion of replicates where) a causal model was detected (𝑋 → 𝑌 for MR, and 𝐺 → 𝑋 → 𝑌 with

𝑋 the only link between 𝐺 and 𝑌 , for the CIT). Black and grey represent true and false detections, respectively. For MR, we considered detections from

simulated data sets with an arrow 𝑋 → 𝑌 as true detections. For the CIT, we considered detections from simulated data sets with arrows 𝐺 → 𝑋 → 𝑌

but no additional link between 𝐺 and 𝑌 as true detections

simulated under scenario (b). When 𝛼 or 𝛾 are sufficiently

low (<0.012), encapsulating the situation of much weaker

relationships between the variables, we find that performance

does indeed deteriorate, with MR achieving overall higher

power than the CIT in this situation.

The results of causal inference using SEM, BUF, DEAL,

and BNLEARN are shown in Supporting Information Fig-

ures S2– S5 and summarized numerically in Table 2. In this

table, each cell represents an average score calculated from the

1,000 replicate data sets. Columns represent data simulated

under the 12 different scenarios in Figure 1 and rows describe

which model is being tested. For each of the four methods of

inference, a different score is calculated. For SEM, we use BIC

and models with low BIC scores are considered to be a better

fit. For the other three methods, the better fitting models have

the higher numeric scores assigned to them. The model(s) that

are considered on average most likely (i.e., that have the low-

est average BIC for SEM, or the highest average score for the

other methods) are underlined. Where a cell is marked in bold,

this highlights the correct model choice. For models (a)–(g),

we consider the inferred model to be correct when the simu-

lation model is recovered precisely. However, for models (h)–

(l), we assume the correct model is the one which corresponds

to the simulation model with the variable 𝐸 omitted.

For SEM, it can be seen that for data simulated the under

scenarios that are testable, the correct model is identified as

having the lowest BIC each time. Furthermore, the average

BIC for the correct model is notably lower than that of its

competitors. For scenario (h), SEM suggests that the most

favourable model is either model (b) or (c). Here, the pres-

ence of an unmeasured/unknown environmental effect causes

SEM to suggest that the effect of 𝐺 is mediated by another

variable rather than influencing 𝑋 and 𝑌 independently. For

data simulated under scenarios (i) and (j), SEM successfully

suggests the best fitting models are (b) and (c), respectively.

Although the other models are not directly testable, for data

simulated under these scenarios, the inferences made by SEM

appear largely sensible. For data simulated under models (k)

and (l), models (f) and (g) are found to give the best fit, which

seems reasonable as the causal link between 𝐺 and 𝑋 or 𝑌 ,

respectively, is retained. For data simulated under models (d)

and (e) (which are Markov equivalent and therefore statisti-

cally indistinguishable), models (c) and (b), respectively, are

inferred. This seems initially counter-intuitive as the causal

arrows between 𝑋 and 𝑌 appear to have been inferred in the

wrong direction. Our explanation for this is that, for data simu-

lated under (d), the correlation between 𝐺 and 𝑌 will be larger

than the correlation between 𝐺 and 𝑋, which better fits model

(c) than it does models (a) or (b). Similarly, for data simulated

under (e), the correlation between 𝐺 and 𝑋 will be larger than

the correlation between 𝐺 and 𝑌 , which better fits model (b)

than it does models (a) or (c).

The results for BUF in Table 2 indicate that, when data are

simulated from scenarios (a), (b), and (c), the correct models

all have the highest average Bayes factor. When considering

data with added environmental effects, BUF correctly iden-

tifies on average that data simulated under scenarios (k) and

(l) come from scenarios (m) and (n). For scenario (h), BUF

identifies the correct model, however, it fails to identify the

correct model for scenarios (i) and (j). Models (d)–(g) are not

testable by BUF, however, for data simulated under these sce-

narios, sensible models are chosen. It must be noted that many

of the Bayes factors for competing models are very close in

magnitude. In practice, it would not be sensible to favour one

model over another on the basis of these Bayes factors alone.

For example, the incorrect model has the highest Bayes factor

under scenarios (b) and (c) in approximately 25% of data sets

(see Supporting Information Fig. S3).



582 AINSWORTH ET AL.

T
A

B
L

E
2

R
es

u
lt

s
fr

o
m

p
er

fo
rm

in
g

ca
u
sa

l
in

fe
re

n
ce

o
n

si
m

u
la

te
d

d
at

a
se

ts

Si
m

ul
at

io
n

m
od

el
M

et
ho

d
Te

st
ed

m
od

el
a

b
c

d
E

f
g

h
i

j
k

l
S

E
M

a
−

6
6
8
9

6
8
8

6
8
9

6
8
9

6
8
6

6
8
5

28
2

1
,3

8
1

1
,3

8
0

2
8
2

2
8
3

b
5
0
4

−
6

4
0
2

5
0
3

−
6

3
9
9

1
,0

8
8

1
4
8

14
8

5
5
3

1
4
8

8
4
1

c
5
0
4

4
0
0

−
6

−
6

5
0
5

1
,0

9
1

3
9
8

1
4
8

5
5
2

14
8

8
4
0

1
4
8

f
1
,0

9
0

6
8
5

1
,0

9
1

1
,6

0
0

1
,0

9
0

−
6

6
8
4

6
8
8

2
8
2

6
8
7

−
6

6
8
6

g
1
,0

8
9

1
,0

9
1

6
8
4

1
,0

9
2

1
,6

0
1

6
8
6

−
6

6
8
7

6
8
6

2
8
2

6
8
7

−
6

B
U

F
a

15
6.

01
1
2
0
.9

3
1
2
0
.7

1
5
5
.9

7
1
5
6
.1

8
1
2
0
.8

4
1
2
1
.0

6
98

.7
9

9
8
.8

4
9
8
.9

5
9
8
.8

0
9
8
.7

8

b
1
2
0
.7

8
12

0.
95

8
3
.6

8
1
2
0
.9

4
1
5
6
.1

9
8
3
.5

8
−

0
.0

8
8
3
.6

1
83

.7
8

3
7
.8

9
8
3
.7

6
−

0
.0

8

c
1
2
0
.9

5
8
3
.6

4
12

0.
73

1
5
5
.9

8
1
2
1
.1

3
−

0
.0

9
8
3
.8

4
8
3
.6

9
3
7
.8

1
83

.9
0

−
0
.0

8
8
3
.7

1

m
3
5
.0

6
3
7
.2

8
−

0
.0

3
−

0
.0

1
3
5
.0

5
1
2
0
.9

3
3
7
.2

2
1
5
.1

6
1
.0

3
1
5
.0

5
98

.8
8

1
5
.0

6

n
3
5
.2

3
−

0
.0

2
3
7
.0

3
3
5
.0

3
−

0
.0

1
3
7
.2

5
1
2
1
.1

4
1
5
.1

8
1
5
.0

7
6
1
.0

6
1
5
.0

4
98

.8
6

D
E

A
L

a
−

1,
01

9
−

1
,3

5
9

−
1
,3

6
0

−
1
,3

7
8

−
1
,3

7
9

−
1
,3

4
3

−
1
,3

4
3

−
1,

69
7

−
2
,2

4
5

−
2
,2

4
4

−
1
,6

8
9

−
1
,6

8
9

b
−

1
,2

5
4

−
1,

00
3

−
1
,2

0
0

−
1
,2

6
4

−
1
,0

1
9

−
1
,2

6
3

−
1
,5

3
0

−
1
,1

9
6

−
1,

61
8

−
1
,8

2
1

−
1
,6

2
0

−
1
,9

5
4

c
−

1
,2

5
4

−
1
,1

9
9

−
1,

00
4

−
1
,0

1
9

−
1
,2

6
3

−
1
,5

3
0

−
1
,1

9
6

−
1
,6

1
8

−
1
,8

2
1

−
1,

62
5

1
,9

5
4

−
1
,6

1
9

d
−

1
,0

1
6

−
1
,0

1
1

−
1
,0

1
2

−
1,

02
5

−
1
,0

2
5

−
1
,0

1
0

−
1
,0

1
0

−
1
,5

5
1

−
1
,5

6
0

−
1
,5

6
0

−
1
,5

5
3

−
1
,5

5
4

e
−

1
,0

1
6

−
1
,0

1
1

−
1
,0

1
2

−
1
,0

2
5

−
1,

02
5

−
1
,0

1
0

−
1
,0

1
0

−
1
,5

5
1

−
1
,5

6
0

−
1
,5

6
0

−
1
,5

5
3

−
1
,5

5
4

f
−

1
,5

4
1

−
1
,3

3
9

−
1
,5

3
7

−
1
,7

9
4

−
1
,5

5
0

−
1,

00
4

−
1
,3

3
9

−
1
,8

8
0

−
1
,6

9
3

−
1
,8

8
9

−
1
,5

4
8

−
1
,8

8
4

g
−

1
,5

4
1

−
1
,5

3
6

−
1
,3

4
1

−
1
,5

4
9

−
1
,7

9
3

1
,3

3
8

−
1,

00
5

−
1
,8

8
0

−
1
,8

8
8

−
1
,6

9
3

−
1
,8

8
3

−
1
,5

4
8

m
−

1
,5

4
4

−
1
,6

8
8

−
1
,8

8
6

−
2
,1

4
8

−
1
,9

0
4

−
1
,3

3
8

−
1
,6

7
3

−
2
,0

2
7

−
2
,3

7
7

−
2
,5

7
3

−
1,

68
4

−
2
,0

1
9

n
−

1
,5

4
4

−
1
,8

8
4

−
1
,6

9
0

−
1
,9

0
2

−
2
,1

4
7

−
1
,6

7
1

−
1
,3

3
8

−
2
,0

2
7

−
2
,5

7
3

−
2
,3

7
7

−
2
,0

1
9

−
1,

68
3

B
N

L
E

A
R

N
a

−
97

6
−

1
,3

2
2

−
1
,3

2
3

−
1
,3

2
3

−
1
,3

2
1

−
1
,3

2
2

−
1
,3

2
0

−
1,

67
1

−
2
,2

1
4

−
2
,2

1
5

−
1
,6

6
7

−
1
,6

6
8

b
−

1
,2

3
0

−
97

3
−

1
,1

7
8

−
1
,2

2
9

−
9
7
4

−
1
,1

7
6

−
1
,5

1
6

−
1
,6

0
1

−
1,

59
6

−
1
,7

9
9

−
1
,5

9
8

1
,9

4
5

c
−

1
,2

3
1

−
1
,1

7
6

−
97

5
−

9
7
4

−
1
,2

2
8

−
1
,5

2
2

−
1
,1

7
3

−
1
,6

0
2

−
1
,7

9
9

−
1,

59
7

−
1
,9

4
4

−
1
,5

9
9

d
−

9
8
5

−
9
8
4

−
9
8
5

−
98

4
−

9
8
4

−
9
8
4

−
9
8
2

−
1
,5

3
6

−
1
,5

3
0

−
1
,5

3
1

−
1
,5

3
1

−
1
,5

3
3

e
−

9
,8

5
−

9
8
4

−
9
8
5

−
9
8
4

−
98

4
−

9
8
4

−
9
8
2

−
1
,5

3
6

−
1
,5

3
0

−
1
,5

3
1

−
1
,5

3
1

−
1
,5

3
3

f
−
−

1
,5

3
0

−
1
,3

2
5

−
1
,5

3
1

−
1
,7

8
4

−
1
,5

2
8

−
97

9
−

1
,3

2
0

−
1
,8

7
6

−
1
,6

6
9

−
1
,8

7
1

−
1
,5

2
7

−
1
,8

7
4

g
−

1
,5

3
2

−
1
,5

2
8

−
1
,3

2
8

−
1
,5

2
9

−
1
,7

8
2

−
1
,3

2
5

−
97

7
−

1
,8

7
8

−
1
,8

7
2

−
1
,6

6
9

−
1
,8

7
3

−
1
,5

2
8

m
−

1
,5

2
1

−
1
,6

6
3

−
1
,8

6
9

−
2
,1

2
3

−
1
,8

6
4

−
1
,3

1
7

−
1
,6

5
8

−
2
,0

1
2

−
2
,3

5
3

−
2
,5

5
5

−
1,

66
3

−
2
,0

0
9

n
−

1
,5

2
3

−
1
,8

6
6

−
1
,6

6
5

−
1
,8

6
7

−
2
,1

1
9

−
1
,6

6
3

−
1
,3

1
5

−
2
,0

1
3

−
2
,5

5
6

−
2
,3

5
3

−
2
,0

0
9

−
1,

66
3

C
el

ls
re

p
re

se
n
t

th
e

av
er

ag
e

(o
v
er

1
,0

0
0

re
p
li

ca
te

s)
o
f

th
e

sc
o
re

s
d

es
cr

ib
in

g
h
o
w

w
el

l
ea

ch
m

o
d
el

fi
ts

th
e

d
at

a.
C

o
lu

m
n
s

re
p
re

se
n
t

d
at

a
si

m
u
la

te
d

u
n
d
er

th
e

1
2

d
iff

er
en

t
sc

en
ar

io
s

an
d

ro
w

s
d

es
cr

ib
e

w
h

ic
h

m
o

d
el

is
b
ei

n
g

te
st

ed
.
E

ac
h

o
f

th
e

fo
u
r

m
et

h
o
d
s

u
se

s
a

d
iff

er
en

t
sc

o
re

to
as

se
ss

m
o
d
el

fi
t.

F
o
r

S
E

M
,
lo

w
n
u
m

er
ic

sc
o
re

s
in

d
ic

at
e

b
et

te
r

fi
t.

F
o
r

th
e

o
th

er
th

re
e

m
et

h
o
d
s,

h
ig

h
er

n
u
m

er
ic

sc
o
re

s
in

d
ic

at
e

b
et

te
r

fi
t.

A
v
er

ag
e

sc
o
re

(s
)

th
at

in
d
ic

at
e

th
e

p
re

fe
rr

ed
m

o
d
el

o
u

t
o

f
th

o
se

te
st

ed
ar

e
u

n
d

er
li

n
ed

.
C

el
ls

w
it

h
b

o
ld

in
d

ic
at

e
th

e
co

rr
ec

t
m

o
d

el
ch

o
ic

e.



AINSWORTH ET AL. 583

DEAL correctly identifies the correct model for data simu-

lated under scenarios (b), (c), (f), and (g). However, for scenar-

ios (a), (h), (i), and (j), DEAL suggests that models (d) or (e)

are the most favourable. In each case, these models are overpa-

rameterised compared with the simulation model. This effect

could be explained by the specification of the prior distribu-

tion in the DEAL method. The parameter 𝐼𝑆𝑆 (imaginary

sample size) governs how much weight is given to the prior

distribution in the calculation of the network score and must

be specified in any analysis which uses the DEAL method.

Because there appears to be no consensus on how to choose

this parameter, we initially used the default choice which for

our data sets was 𝐼𝑆𝑆 = 6. The sensitivity of the network

score to the choice of ISS has been previously documented

(Silander, Kontkanen, & Myllymäki, 2007). We subsequently

considered different choices of 𝐼𝑆𝑆 and in Supporting Infor-

mation Figure S6 we show that identification of the correct

final model is indeed highly sensitive to the choice of 𝐼𝑆𝑆.

For BNLEARN, models (a)–(g) were testable and, for data

simulated under these scenarios, the correct model gave the

highest average network score in all cases apart from with

data simulated under models (d) and (e). However the average

network score for the correct model ((d) or (e), respectively)

was not very different from that of the chosen model ((c) or

(b), respectively). For data simulated under scenarios (h), (i),

and (j), BNLEARN suggests that models (d) and (e) are the

most likely. In these cases, the correct structure is identified

but extra edges are suggested. For data simulated under sce-

narios (k) and (l), BNLEARN suggests that models (f) and

(g) are most plausible and we consider these inferences to be

sensible.

Statistically speaking, models (d) and (e) are indistinguish-

able. Both DEAL and BNLEARN make this fact clear by gen-

erating identical network scores for models (d) and (e), regard-

less of the input data. We consider this an appealing feature

of these methods.

To assess the sensitivity of our study to the parameter

choices used to simulate the data, we chose certain scenar-

ios for further investigation. First, we considered changing the

effect size 𝜁 of the common environmental effect 𝐸 in sce-

narios (h) and (i). Second, we considered changing 𝛼, which

represents the effect size of 𝐺 on 𝑋, in scenarios (a) and (b).

In both cases we kept all other effect sizes the same.

Figure 3 displays the results of changing the effect size of

the common environmental effect (𝜁 ). In general, increasing

the effect size of 𝜁 results in a decreased proportion of cor-

rectly identified models. For scenario (h), BUF seemed to be

able to infer the correct causal relationship the majority of the

time, even when the effect size of 𝐸 was around three times

as large as other effect sizes. The other methods began to per-

form badly much sooner. For scenario (i), all methods were

no longer able to correctly identify the correct causal model

once the effect size for 𝐸 reached around 1.5.

Figure 4 shows the results of changing the effect size of

𝐺 on 𝑋 (𝛼) while keeping all other effects constant for data

simulated under scenarios (a) and (b). This aims to replicate

the very plausible biological scenario whereby the association

between a SNP (𝐺) and gene expression (𝑋) is very strong but

the association between gene expression and a phenotype (𝑌 )

is much weaker. In scenario (a), SEM, BUF, and BNLEARN

all perform consistently well over a wide range of 𝛼 values.

For scenario (b), the accuracy of these three methods seems to

be unaffected by the choice of 𝛼. The performance of DEAL in

both scenarios seems particularly sensitive to the effect sizes

considered.

4 DISCUSSION

Here, we have presented a simulation study considering the

performance of a broad range of methods for inferring causal

relationships when we have observed data on three variables:

𝐺, 𝑋, and 𝑌 . We envisaged a situation whereby these vari-

ables represent a genetic variant (𝐺), a gene expression level

(𝑋) or other relevant biological measurement, and a pheno-

type of interest (𝑌 ). Several of the causal scenarios considered

also included an unmeasured environmental effect (𝐸), which

modifies 𝑋 and 𝑌 .

The methods that we considered for performing causal

inference approach the problem from different perspectives.

MR and the CIT assume an initial hypothesis regarding the

structure of the causal effects and test this hypothesis accord-

ingly, whereas the other four methods assume no such hypoth-

esis but infer the most likely causal structure from data after

enumerating all (or most) plausible structures. Although all

methods—at least as implemented here—make use of essen-

tially the same data (measurements of phenotypic outcome,

genotypic exposure and potential intermediate biological vari-

ables or mediators), the use of SNP genotype as a ‘genetic

instrument’ operates in a subtly different manner between the

different approaches. In the exploratory approaches (SEM,

BUF, DEAL, and BNLEARN), the SNP provides information

that can be used to help orient the causal direction between the

proposed mediator and outcome. In MR, the SNP is instead

used as a surrogate for the mediator, in order to estimate the

mediator’s causal effect on the outcome, under the assump-

tion that the SNP associates with outcome only through that

particular intermediate variable. MR and the CIT are thus not

appropriate for an exploratory analysis of the range of models

considered in our study. However, we consider that MR and

the CIT could potentially be useful at a later stage of an anal-

ysis, after an initial hypothesis generation exercise has taken

place.

In MR, the assumptions are critical but in real life appli-

cations it can be difficult to ensure they are suitably satis-

fied (Richmond, Hemani, Tilling, Smith, & Relton, 2016;
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F I G U R E 4 Results showing the effect of changing the 𝐺 → 𝑋 effect size (𝛼) on inference. The 𝑥-axis shows the value of 𝛼 used in the simulation

model, the 𝑦-axis shows the proportion of time (the proportion of replicates where) the correct causal scenario was identified for data simulated under

models (a) (left panel), (b) (right panel)

Ziegler, Mwambi, & König, 2015). In particular, the assump-

tion that the SNP associates with outcome only through the

currently considered intermediate biological variable would

seem quite unlikely to be met, in practice, for complex bio-

logical systems. As expected, our simulation study confirms

that in scenarios when the assumptions are met, MR performs

as expected. Similarly, in scenarios where the assumptions

are violated, MR suggests spurious causal relationships. We

note that a possible solution to this issue has recently been

addressed through development of the MR-Egger method

(Bowden, Davey Smith, Haycock, & Burgess, 2016), which

uses a weighted median estimator of several genetic variants

as the instrumental variable in MR. This method gives con-

sistent estimates even when some of the genetic variables are

not valid instrumental variables.

The CIT is specifically designed to test whether a variable

mediates the association between (and is the only causal link

between) a genetic locus and a quantitative trait. It is more

flexible than MR because it does not assume that the genetic

variant is chosen specifically to be an instrument for the medi-

ator. Due to the way the test is constructed, the CIT is also

immune to problems of pleiotropy and reverse confounding.

As a result, this method can easily be applied in a model selec-

tion context when the aim is to rank many different mediators.

However, the CIT does not have a framework for allowing

model selection between more complex network structures.

In the initial simulation scenarios we considered, both MR

and CIT performed well when their assumptions were sat-

isfied, with the existence of a causal link between media-

tor and outcome identified 100% of the time under scenario

(b). However, one might expect that the performance of both

methods would deteriorate when the relationships between

the variables (either between instrument 𝐺 and mediator 𝑋

or between mediator 𝑋 and outcome 𝑌 ) are less strong, and,

indeed, that is what we find (Supporting Information Fig. S1),

with MR achieving overall higher power than the CIT in this

situation.

The other four methods for causal inference that we consid-

ered allow a much wider range of potential causal structures.

For simple causal scenarios, with no unmeasured environ-

mental effects, the performance of these four methods at dis-

entangling the true causal relationships in simulated data was

consistently good. In these situations, no method stands out

as being uniformly the best. However, we note that for DEAL,
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poor specification of the imaginary sample size parameter can

lead to over-parameterised models, even in very simple cases.

For more complex scenarios, with an unmeasured environ-

mental effect, the performance of the methods at identifying

the true causal structure was less accurate. In these scenarios,

DEAL and BNLEARN tend to suggest models that contain

the correct underlying causal structure but with the addition

of extra edges. This is not surprising, as, by adding an envi-

ronmental effect in our simulated data sets, we have induced

further correlation between variables. We observed that in

certain situations, SEM and BUF suggest spurious causal

relationships in the presence of an environmental effect. For

example in scenario (h), SEM mistakenly suggests that the

effect of the SNP is mediated through another variable.

A limitation of our simulation study is that we only consider

the simplistic case where we have three measured variables.

It is important to consider how these methods would scale to

larger numbers of variables, as would be encountered in prac-

tice in real omics data sets. MR and the CIT do not naturally

have a framework for incorporating more variables in the anal-

ysis. However, there has been much interest in trying to extend

MR to more complex scenarios, see Smith and Hemani (2014)

for a review. For example, network MR (Burgess, Daniel, But-

terworth, Thompson, & EPIC-InterAct Consortium, 2015)

can consider more complex scenarios than the standard MR

framework. More recently, Yazdani, Yazdani, Samiei, and

Boerwinkle (2016b) have proposed the GDAG (granularity

directed acyclie graph) algorithm which uses a principal com-

ponent approach to capture information from multiple SNPs

across the genome before taking these principal components

forward to use in a causal inference scheme (Yazdani, Yaz-

dani, & Boerwinkle, 2016a; Yazdani, Yazdani, Samiei, &

Boerwinkle, 2016c; Yazdani, Yazdani, Saniei, & Boerwinkle,

2016d).

An attraction of SEM is that it can handle very complex

models with large numbers of variables. However, the user is

required to specify precisely which models to test, while mak-

ing sure these models are not over-parameterised. If the num-

ber of variables was very large, it could potentially become

very time consuming for the user specify the full set of mod-

els. BUF can very easily incorporate many more phenotypes

in the analysis, with the full space of partitions being con-

sidered automatically. However, because the end result of a

BUF analysis is to partition variables into three groups reflect-

ing their association with the genetic variant, this would only

give a very partial insight into the overall causal structure. The

Bayesian network methods can incorporate larger numbers of

variables relatively seamlessly, using efficient algorithms to

step through the possible space of models. These approaches

thus arguably represent the most natural class of methods for

use with larger numbers of variables, as are routinely starting

to be generated using omics technologies. Given their gen-

erally good performance when applied to the three-variable

situation considered here, we consider these approaches the

most promising avenue for further investigation in application

to more complex, multi-omics data sets.
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