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Abstract

Purpose

The objective of the investigation was to determine the concomitant effects of upper arm

blood flow restriction (BFR) and inversion on elbow flexors neuromuscular responses.

Methods

Randomly allocated, 13 volunteers performed four conditions in a within-subject design: rest

(control, 1-min upright position without BFR), control (1-min upright with BFR), 1-min

inverted (without BFR), and 1-min inverted with BFR. Evoked and voluntary contractile prop-

erties, before, during and after a 30-s maximum voluntary contraction (MVC) exercise inter-

vention were examined as well as pain scale.

Results

Inversion induced significant pre-exercise intervention decreases in elbow flexors MVC

(21.1%, Z2
p = 0.48, p = 0.02) and resting evoked twitch forces (29.4%, Z2

p = 0.34, p = 0.03).

The 30-s MVC induced significantly greater pre- to post-test decreases in potentiated twitch

force (Z2
p = 0.61, p = 0.0009) during inversion (#75%) than upright (#65.3%) conditions. Over-

all, BFR decreased MVC force 4.8% (Z2
p = 0.37, p = 0.05). For upright position, BFR induced

21.0% reductions in M-wave amplitude (Z2
p = 0.44, p = 0.04). There were no significant differ-

ences for electromyographic activity or voluntary activation as measured with the interpo-

lated twitch technique. For all conditions, there was a significant increase in pain scale

between the 40–60 s intervals and post-30-s MVC (upright<inversion, and without

BFR<BFR).

Conclusion

The concomitant application of inversion with elbow flexors BFR only amplified neuro-

muscular performance impairments to a small degree. Individuals who execute forceful
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contractions when inverted or with BFR should be cognizant that force output may be

impaired.

Introduction

Individuals can experience an involuntary inverted posture such as with an overturned vehicle

or voluntary inversion with aerial maneuvers and sports (e.g. gymnastics). A decrease in force

or power output, with an increased perceived difficulty in some situations can be life threaten-

ing or affect performance. For example, in an overturned vehicle (e.g. car, helicopter) the vic-

tim must have sufficient force to release the seat belt and shoulder harness while constrained

by their body mass and blood flow can be restricted by both the harness and near maximal

muscle contractions. Although inhibited neuromuscular function (i.e., force, rate of force

development) has been reported when shifting from an upright to an inverted position [1–5],

the underlying mechanisms are not clearly elucidated. Altered sympathetic nervous system

activity during inversion (i.e., higher hydrostatic pressure increases vagal inputs), has been

suggested as one primary mechanism that may influence changes in neuromuscular functions

with inversion [1–4]. Inversion-induced hydrostatic pressure has also been suggested to con-

tribute to neuromuscular impairments in animals [6–9] and humans [10].

Changes in perfusion pressure to a target muscle can be found during contractions at mod-

erate-to-high intensities [11], low-intensity contractions combined with blood flow restriction

(BFR) [12], and when the position of a working muscle changes in respect to the level of heart

(i.e., above the heart induced lower perfusion pressure) [13]. Decrements in neural function

and perceived exertion can be exacerbated by changes in perfusion pressure and reduced oxy-

gen-induced peripheral fatigue [14], which for example can occur if an individual is trapped in

a position with load exerted upon an immobilized limb. A squeezed or compressed limb can

lead to ischaemia, increasing metabolic by-product accumulation, thereby activating pain

afferents (group III and IV) [15–17], contributing to central nervous system inhibition [15].

Decreased force production and muscle performance were observed with changes in perfusion

pressure (i.e. an arm lifted above the heart level) [18] and graded ischaemia of the lower limb

[10]. Hobbs and McCloskey [19] indicated that with ischemia, there was greater muscle activ-

ity (electromyography: EMG) to keep the force output at the requisite level. Partial occlusion

(increased pressure and ischaemia) concomitant with prolonged exercise could influence the

perception of effort and sense of pain [20]. Although both inversion [1–4] and blood flow

restriction [10,14,18,19] can alter force output and muscle activation, the combination of

inversion (increased hydrostatic pressure) with blood flow restriction (BFR: increased perfu-

sion pressure), on neuromuscular performance has not been previously investigated. It is

unknown whether additive effects of hydrostatic (whole body effects) and perfusion (local

muscle effects) pressure occur (inversion and BFR respectively), exacerbating neuromuscular

performance decrements.

With these contexts, the objective of this study was to investigate the potential effects of a

one-minute inverted position with upper arm BFR on measures of elbow flexors isometric

maximum voluntary contraction (MVC) force production, biceps and triceps brachii electro-

myographic (EMG) activity, perceived pain, and performance fatiguability (extent of force

reduction with a 30-s MVC). Based on prior inversion studies [1–4], it was hypothesized, that

inversion and BFR would decrease both voluntary and evoked force output, decrease voluntary

activation, and increase fatigue during the 30-s MVC, and the addition of BFR to inversion

would amplify these impairments to neuromuscular function.
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Materials and methods

Participants

Based on the force data from previous studies on similar research topics [1,2], a statistical a pri-

ori power analysis (G�Power 3.1, Dusseldorf, Germany) indicated that a minimum of six par-

ticipants would be needed to attain an alpha of 0.05 (α error) with an actual power of 0.8 (1-β
error). We were able to recruit a convenience sample of 13 (males, n = 7, age: 24.7 ± 4.9, height:

178.3 ± 8.3 cm, and mass: 79.9 ± 8.6 kg and females, n = 6, age: 24.5 ± 4.8, height: 162.0 ± 3.6

cm, and mass: 73.5 ± 14.3 kg) healthy physically active university students. Participants per-

formed structured physical activity 3–4 days per week, which included resistance training on a

regular (1–3 times per week) basis for the prior six months. They had no previous history of

cerebral, hypertensive, or visual health problems or injuries. The participants were given an

overview of all procedures (i.e., orientation and testing sessions) before data collection. If will-

ing to participate, participants signed the consent form and completed a ‘Physical Activity

Readiness Questionnaire for Everyone’ (PAR-Q+: Canadian Society for Exercise Physiology,

approved September 12, 2011 version). The Interdisciplinary Committee on Ethics in Human

Research, Memorial University of Newfoundland (ICEHR Approval #: 20192154-HK)

approved this study and the study was conducted in accordance with the latest version of the

Declaration of Helsinki.

Experimental design

Based on the recommendation of the Canadian Society for Exercise Physiology [21], partici-

pants were advised to not smoke, drink alcohol or partake in intensive physical activity six

hours prior to testing and to not eat food or ingest caffeine two hours before participating in

the testing procedure. Participants attended an orientation session, at least a week before data

collection, where they were familiarized with both upright and inversion postures; and also

became familiar with BFR, the interpolated twitch technique (ITT), EMG electrode placement,

and isometric maximal voluntary contractions (MVC) techniques. Following the orientation

session, all participants were capable of achieving near maximal (83.5%-95.9%) voluntary acti-

vation before commencing the experimental conditions. Using random allocation (generated

by Microsoft Excel) participants performed four, ~60 minutes, experimental conditions in a

within subject design: 1) Control (1-min upright position without BFR), 2) Control with BFR

(1-min upright position with BFR), 3) 1-min inversion (without BFR), and 4) Combined:

1-min inversion with BFR. Testing included 1) initial testing (upright seated position pre-

fatigue), 2) pre-testing (one of the four conditions pre-fatigue) and post-testing after the 30-s

MVC (one of the four conditions after the 30-s MVC). There was approximately 48 h between

each experimental condition. To decrease diurnal rhythms effects, all of the test procedures

were completed at approximately the same time of day. The temperature of the laboratory was

maintained at 20C.

Maximal evoked muscle twitch (i.e., resting position) and voluntary contractile properties

(MVC with ITT) were initially tested from an upright seated position. The participant then

performed a warm-up, which consisted of arm cycling (cycle ergometer: Monark Ltd. Swe-

den), at 70 rpm with 1 kp for 5-min; followed by a specific warm-up of five 5-s isometric elbow

flexion (~50% of perceived maximum) contractions. Following the warm-up and a 5-min rest

period, pre-fatigue BFR testing procedures (relative to the posture) with the participant posi-

tioned in the inversion chair were assessed. The subsequent condition/position (without/with

an upper right arm BFR) also included an evoked twitch (10-s after achieving desired position

or condition), MVC with ITT (5-s after the evoked twitch), a 30-s MVC protocol (5-s after
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MVC), followed by another evoked twitch and MVC with ITT (5- and 10-s after 30-s MVC

respectively) (Fig 1). It is noted that there was a 5-s transition from both upright to supine, and

supine to inversion positions. In total, a participant was placed at each condition for 150s,

from positioning at the desired posture to post-30s MVC measures (i.e., post-fatigue evoked

twitch, MVC ITT, and potentiated twitch force).

Force measures

For voluntary and evoked force measures, the participants were seated in an inversion chair

(initially in an upright position), which was designed and constructed by Technical Services of

Memorial University of Newfoundland [1,3,4]. The chair can rotate through a 360-degree

range. Straps secured the participant at the head, torso, shoulder, hip, and thighs. Hips and

knees were positioned at 900 during data collection. A Wheatstone bridge configuration strain

gauge (Omega Engineering Inc., Don Mills, Ont.) via a high-tension wire cable was attached to

a reinforced strap around the right wrist to assess force output, and forces were collected and

amplified via analog to digital data collection hardware and software (i.e., Biopac System Inc.

DA 100, A/D convertor MP100WSW; Holliston, MA). Due to the physical layout of the labo-

ratory equipment, the right elbow flexors were tested.

Fig 1. Experimental design.

https://doi.org/10.1371/journal.pone.0245311.g001
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Evoked contractile properties

To assess evoked twitch forces and muscle compound action potentials (M-wave), evoked con-

tractile properties were measured. To stimulate the musculocutaneous nerve, stimulating elec-

trodes (electrode width was 5 cm) were placed at the intersection of the biceps brachii and

deltoid (anode) and antecubital space (cathode), respectively [22]. Furthermore, the placement

of electrodes was marked with ink from test to test to maintain the correct position of elec-

trodes during each session. Stimulating electrodes were connected to a stimulator (Digitimer

Stimulator, Model DS7AH, Hertfordshire, UK) with a maximum of one ampere (A) and 400

volts (V). Then, both amperage (10 mA– 1 A) and voltage (100–400 V) of the 200-μs duration

square wave pulse were increased sequentially by 10mA increments until a plateau in the

twitch torque and M-wave was attained. The electrode leads were taped to the participants’

arm to reduce movement and stress on the lines.

While the initial resting twitch involved a single stimulus, the superimposed and subse-

quent potentiated twitches had a 10 ms inter-pulse interval between two maximal twitches

during biceps brachii nerve stimulation [23]. The ITT using doublet stimulation has been

reported to be a valid and reliable measure of voluntary muscle activation (VMA) [23].

Previous studies [23–26] have shown that there is a possibility to activate all muscle fibres

via a superimposed twitch on a voluntary contraction (ITT). For consistency, each session

commenced with an initial evoked twitch. Since evoked single twitches are sensitive to prior

contractions resulting in a potentiated response, the twitches were evoked both prior to (rest-

ing twitch) and after (potentiated twitch) the MVC testing [27,28]. Superimposed twitches

were delivered during 2–3 MVCs (4-s duration with 2-min rest between each MVC), before

the BFR and fatigue intervention, and once following the BFR and 30-s MVC fatiguing muscle

contraction (i.e., MVC during elbow flexion). The first supramaximal (120% of maximum)

electrical stimulation was delivered at the 3-s point of the MVC (all participants could achieve

maximal force within this duration), and the second twitch (as a potentiated twitch) was

evoked at a 3-s interval after the MVC (subject was instructed to relax). This procedure was

repeated if the MVC force of the second MVC was 5% higher than the first MVC [1,22–

25,28,29]. To estimate VMA, the amplitudes of the superimposed and post-contraction stimu-

lation were compared [voluntary activation = [1 –(superimposed twitch/potentiated twitch)] �

100] [23].

A fatiguing protocol consisting of a 30-s MVC of the elbow flexors, was performed using an

isometric elbow flexion MVC (right arm). The researcher provided consistent verbal encour-

agement in terms of wording and timing (e.g., “keep it up” every 10 s, starting at 10 s point).

Voluntary contractile properties

With the same set-up as the evoked contractile properties, elbow flexors MVC isometric force

was measured while seated and secured in the inversion chair with a supinated forearm at a

90o elbow flexion angle with shoulders at 0o (mid-frontal plane), with a reinforced strap

around the right wrist. An instruction (“as hard and as fast as possible”), with verbal encour-

agement (“go go”) was provided by the researcher during the entire 4-s isometric MVC. The

forces detected by the strain gauge, were used to analyze the peak isometric MVC.

Electromyography (EMG)

Surface EMG was monitored during evoked twitches (muscle action potential: M-wave), 4-s

MVC and 30-s MVC. First, the skin was prepared before electrode placement with shaving

(removal hair), abrading (to remove possible dead epithelial cells), and cleaning the area with

an alcohol swab to remove oils. Then, two pairs of bipolar electrodes (Kendall Medi-trace 100
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series, Chikopee, Mass.) were positioned (established by SENIAM) [30] at the mid-belly of the

biceps brachii (i.e., at 50% on the line from medial acromion to the fossa cubit) as an agonist

muscle (corresponding to the muscle fibres), and the lateral head of the triceps brachii (i.e.,

halfway from the posterior crista of the acromion to the olecranon as an antagonist muscle).

Bipolar electrodes were placed collar to collar (2 cm apart).The reference electrode was posi-

tioned on the ulnar styloid process.

The EMG signal was collected at 2000 Hz, band-pass filter 10–500 Hz and amplified 1000x

(Biopac System MEC 100 amplifier, Santa Barbara, Calif; input impedance = 2M, common

mode rejection ratio > 100 dB minimum [50/60 Hz]). The collected data (via the A/D con-

verter, Biopac MP150) was stored on a personal computer for post-processing analysis. The

final data (i.e., raw EMG) was rectified and integrated over 500 ms following an MVC [2–4].

Blood flow restriction (BFR)

To decrease potential harmful biological effects, which can occur following an extremely high

dose of BFR [31], previous evidence [32] using Doppler ultrasonograms showed that a moder-

ate BFR and partial occlusion of the brachial artery can lead to 100% venous restriction and

partial arterial BFR, respectively. In order to reduce hydrostatic pressure effects, and perfusion

to the right elbow flexors muscles, BFR was implemented. At the resting position, a pressure

cuff (A+ Med 7–62 pressure cuff; Toronto, Canada) was placed around the upper right arm,

while positioned at the level of the heart. Then, the hand bulb was squeezed to manually find a

pulse elimination pressure (100% BFR). The individualized BFR in the present study was set

relative to brachial systolic blood pressure. To create partial BFR for upright/inverted position,

the hand bulb was squeezed to 50% of complete BFR. Furthermore, with a maximal isometric

contraction, the blood flow would be further restricted, obviating the need for maximal BFR

with a cuff.

Universal pain assessment tool

The researcher utilized a universal pain assessment tool (scale with numbers and cartoon facial

Figs) [33] to assess the degree of overall discomfort (pain perception) during inversion. Also,

to investigate whether there was any interaction between the effects of inversion and BFR (dur-

ing two control sessions), the sense of discomfort with and without BFR was examined.

Data analysis

All data analyses were conducted using the AcqKnowledge software program (Biopac System

Inc. Holliston, MA). With the single electrical stimulation, peak twitch force (Newtons), time

to peak twitch force (ms), half relaxation time (ms) and M wave (millivolts: mV) were mea-

sured for resting and potentiated twitches. Peak MVC forces [34] were analyzed. The resting

force output in the upright position was zeroed and used as the baseline when compensating

for the suspended arm mass in the inverted position. The mass of the arm was recorded in the

inverted position and this value subtracted from the peak force in order to counterbalance the

force of gravity negatively affecting force output in the upright position. A force fatigue index

was calculated from the 30-s MVC, which involved dividing the mean force of the last 5-sec-

onds of the fatigue protocol into the mean force output of the first 5-seconds.

The peak amplitude of integrated EMGs, from the biceps and triceps brachii, were analyzed

from a one second period of the 4-s MVC (before the superimposed twitch) [29]. Furthermore,

a Fast Fourier transform was used to report the EMG median frequency following the fatigue

protocol, as it is a reliable indicator for signal conduction velocity (following a fatigued-
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exercise) and generally considered a more sensitive indicator of fatigue than a raw EMG signal

[35–38].

Statistical analysis

The SPSS software (version 23.0, SPSS, Inc. Chicago, IL) was used for statistical analysis. Nor-

mality of the data was assessed and confirmed using a histogram chart to illustrate skewness

and kurtosis with a Shapiro-Wilks test. The value of Greenhouse-Geisser were reported if the

assumption of sphericity was not met. Initially, sex effects were considered as a factor, but with

a lack of any significant differences, the sample population was integrated for analysis. To

determine the effect of inversion with BFR on fatigue index of the 30-s MVC, a two-way

repeated measures ANOVA (2 seated positions ⤬ 2 blood flow conditions), while three-way

repeated measures ANOVA (2 seated positions ⤬ 2 blood flow conditions ⤬ 2 times) was con-

ducted for EMG median frequency. For the evoked twitches, MVCs, ITT, potentiation

twitches, muscle action potential (M-) waves, EMG, a three-way ANOVA (2 seated positions

and 2 blood flow conditions and three times [initial upright resting position, pre-, and post-

30-s MVC]) was applied. Further, a repeated measures ANOVA was conducted to analyze the

pain scale. Differences were considered significant when a minimum value of p = 0.05 was

reached. Planned pairwise comparisons; Bonferroni adjustment, was selected to compare

main effects. Additionally, the calculated partial eta squared (Z2
p) by SPSS was reported as a

magnitude of outcomes (effect sizes); which is classified as small (0.00� Z2
p � 0.24), medium

(0.25� Z2
p � 0.39), and large (Z2

p � 0.40) [39]. Day to day reliability of measures (for initial

upright resting position test) was assessed with Cronbach’s alpha intraclass correlation coeffi-

cient (ICC).

Results

Within the results text and Figs, significant interactions are reported. Main effects are listed

and described in Table 1. All data is available from the Open Science Framework: DOI 10.

17605/OSF.IO/TZM4B. Representative raw data sample tracings are provided in Fig 2.

Reliability

With the exception of moderate internal consistency (0.7) for biceps brachii’s M-wave, and

acceptable (0.7� α< 0.8) reliability for resting twitch force, ICC reliability scores were excel-

lent (0.82� α< 0.94) for MVC forces, potentiated twitch forces, biceps and triceps brachii

EMG (Table 2).

Voluntary contractile properties

Elbow flexors MVC. A significant seated position x time interaction (F(2,16) = 5.07,

p = 0.02, (Z2
p = 0.48) (Fig 3) was observed for elbow flexor MVC force. The interaction revealed

9.1% and 21.1% MVC force decrements with the initial measures exceeding pre-fatigue mea-

sures for upright and inverted positions, respectively. Furthermore, there were 21.4% and

14.2% force impairments from the initial and pre-test to post-test respectively for the upright

position. Similarly, there were 33.1% and 17.7% decrements from the initial and pre-test to

post-test respectively for the inverted position. A non-significant, medium effect size, seated

position x BFR interaction (F(1,8) = 3.79, p = 0.08, Z2
p = 0.32); demonstrated 9.1% lower MVC

forces with BFR compared to without BFR for inverted seated positions.
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Voluntary muscle activation (VMA %). A non-significant, but large eta2 magnitude,

BFR x time interaction revealed 7.9% and 16.4% decrements post-30-s MVC (F(1,4) = 5.48,

p = 0.07, Z2
p = 0.57) for without BFR and BFR conditions, respectively (Fig 4).

Evoked twitch contractile properties. A significant seated position x time interaction

(F(1,11) = 5.80, p = 0.03, Z2
p = 0.34), for resting pre-MVC twitch force revealed that initial values

exceeded pre-30-s MVC, by 29.4% for inverted seated positions (Fig 5). No significant effects

or interaction were found for baseline time to peak twitch force. Meanwhile, a non-significant,

large magnitude effect size effect was observed (F(1,6) = 4.81, p = 0.07, Z2
p = 0.44), in terms of

seated position and BFR, when comparing upright values (without BFR<BFR, 3.9%") with

inverted seated positions (without BFR>BFR, 5.6%#). No significant effects were observed for

half relaxation time-twitch force.

Biceps and triceps brachii M-wave. A significant seated position x BFR interaction (F(1,7)

= 5.69, p = 0.04, Z2
p = 0.44), revealed that the without BFR condition exceeded BFR condition

biceps brachii’s M-wave by 30.4% and 12.5% for upright, and inverted seated positions, respec-

tively (Fig 6).

Table 1. Main effects (means ± standard deviation).

Main Effects for Time Initial Test Pre-Fatigue Post-Fatigue Initial to Pre-

Fatigue

Pre to Post-Fatigue

MVC Force (N) F(2,16) = 52.58 309.32 ± 84.55 269.18 ± 75.16 226.30 ± 63.38 p<0.001, Z2
p = 0.82,

Δ14.9%

p<0.001, Z2
p = 0.84

Δ18.9%

F100 (N) (F(2,18) = 31.81 73.28 ± 36.47 52.14 ± 25.64 34.32 ± 18.17 p = 0.003, Z2
p = 0.63

Δ40.5%

p<0.001, Z2
p = 0.80

Δ51.9%

BB EMG (mV/s) F(1,12) = 22.41 0.30 ± 0.16 0.29 ± 0.15 0.24 ± 0.12 p>0.05 p<0.001, Z2
p = 0.65

Δ22.0%

TB EMG (mV/s) F(1,8) = 7.34 0.07 ± 0.02 0.06 ± 0.02 0.05 ± 0.01 p = 0.02, Z2
p = 0.47

Δ16.6%

p = 0.003, Z2
p = 0.67

Δ20.0%

BB M-wave (mV) F(1,7) = 3.89 9.05 ± 4.06 8.96 ± 3.22 8.49 ± 2.95 p>0.05 p = 0.08, Z2
p = 0.35

Δ7.6%

PTF (N) F(2,10) = 36.3 66.48 ± 19.11 63.82 ± 18.38 28.86 ± 14.07 p>0.05 p<0.001, Z2
p = 0.87

Δ121.1%

VMA (%) F(1,4) = 6.62 91.71 ± 5.36 92.47 ± 3.44 82.53 ± 11.35 p>0.05 p = 0.06, Z2
p = 0.62

Δ12.0%

Main Effects for BFR no BFR Conditions BFR Conditions no-BFR to BFR

MVC Force (N) F(1,8) = 4.84 274.61 ± 76.60 261.93 ± 72.12 p = 0.05, Z2
p = 0.37 Δ4.8%

BB M-Wave (mV) F(1,7) = 7.28 9.67 ± 2.11 7.99 ± 2.44 P = 0.03, Z2
p = 0.51 Δ21.0%

Perceived Pain Scale F(1,12) = 7.85, 2.5 ± 2.59 3.19 ± 2.27 p = 0.01, Z2
p = 0.39 15.6%

Main Effects for Seated Position Upright Seated Positions Inverted Seated Positions Upright vs. Inverted

F100 (N) F(1,9) = 3.42 58.27 ± 28.01 48.22 ± 25.51 p = 0.09, Z2
p = 0.27 Δ8.3%

Perceived Pain Scale F(1,12) = 14.56, 2.26 ± 1.98 3.42 ± 2.8 p = 0.002, Z2
p = 0.54 Δ26.5%

Main Time Effects for Fatigue–Force, and Fatigue

-EMG Relationships

0-5s interval (no-BFR and

BFR)

25-30s interval (no-BFR

and BFR)

0-5s to 25-30s intervals

Force (N) F(1,11) = 29.96 278.42 ± 85.72 242.86 ± 74.45 p<0.001, Z2
p = 0.73 Δ14.6%

BB EMG Median Frequency (Hz) F(1,10) = 84.65 57.67 ± 10.61 41.32 ± 5.59 p<0.001, Z2
p = 0.89 Δ39.5%

TB EMG Median Frequency (Hz) F(1,12) = 86.69 59.25 ± 12.53 44.26 ± 9.25 p<0.001, Z2
p = 0.87 Δ33.8%

�BB = Biceps Brachii, EMG: Electromyography, F100: Force output within the first 100 ms of the MVC, MVC: Isometric maximal voluntary contraction, M-wave:

Muscle action potential, PTF = Potentiated Twitch Force, RTF = Resting Twitch Force, TB = Triceps Brachii, VMA = Voluntary Muscle Activation.

https://doi.org/10.1371/journal.pone.0245311.t001
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Evoked potentiated twitch contractile properties. Significant seated position x time

interaction (F(2,10) = 7.91, p = 0.009, Z2
p = 0.61) was observed for potentiated twitch force

(PTF). The pre- and post-30-s MVC results showed 65.3% and 75% PTF impairments for

upright and inverted positions from pre-to post 30-s MVC, respectively (Fig 7).

Fatigue–force relation. When comparing force output values, at 0–5 s and 25–30 s inter-

vals of the 30-s MVC task in the without BFR conditions versus 0–5 s and 25–30 s of BFR con-

ditions, there was 4.1% force decrements for BFR effects (F(1,11) = 5.54, p = 0.03, Z2
p = 0.33).

Fig 2. Representative 1) evoked resting twitch, 2) MVC force, 3) interpolated twitch technique (ITT), 4) biceps

brachii EMG, 5) triceps brachii EMG and 6) potentiated twitch force (PTF) tracings presented under different

conditions/posture. Top channel represents elbow flexor MVC force, second channel illustrates biceps brachii EMG

and third channel shows triceps brachii EMG.

https://doi.org/10.1371/journal.pone.0245311.g002

Table 2. Daily intraclass correlation coefficient reliability (initial resting position test performed on separate days).

MVC F100 BB EMG TB EMG RTF BB M-wave TB M-wave PTF

ICC 0.93 0.82 0.94 0.83 0.77 0.66 0.6 0.87

CV 0.28 0.51 0.54 0.48 0.41 0.34 0.40 0.43

TEM 35.17 32.68 0.07 0.03 15.77 2.05 1.7 10.12

�BB = Biceps Brachii, CV: Coefficient of variance, EMG: Electromyography, F100: Force output within the first 100 ms of the MVC, MVC: Isometric maximal voluntary

contraction, M-wave: Muscle action potential, PTF = Potentiated Twitch Force, RTF = Resting Twitch Force, TB = Triceps Brachii, TEM = typical error of

measurement.

https://doi.org/10.1371/journal.pone.0245311.t002
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Fatigue—EMG relation. Biceps brachii. Furthermore, contrasts revealed a non-signifi-

cant, medium magnitude effect size, seated position x time interaction (F(1,10) = 3.84, p = 0.07,

Z2
p = 0.27); with 45.6% and 38.6% decreases in biceps brachii EMG median frequency during

upright without BFR and BFR conditions respectively, versus similar 32.8% and 41.4% median

frequency decrements during the inverted seated position for without BFR and BFR condi-

tions, respectively (Table 2).

Perceived pain—pain scale. Seated position x BFR interaction revealed significant differences

(F(1,12) = 6.55, p = 0.02, Z2
p = 0.35) between upright (without BFR<BFR, 0.64 to 1.53, 58.1%") and

inversion (without BFR>BFR, 2.70 to 2.43, -11.1%) positions. For the interaction of BFR x time

Fig 3. Isometric maximal voluntary contraction force (MVC) interaction effects for seated position and time. Star (�) symbol

represents that significant MVC force decreases between initial and pre-fatigue tests, for upright and inverted seated positions. Means

and standard deviations are illustrated. There was no statistically significant BFR interaction.

https://doi.org/10.1371/journal.pone.0245311.g003

Fig 4. Voluntary muscle activation (VMA) interaction effects for BFR and time. There was a non-significant effect

for percentage of VMA (p = 0.07), with 7.9% and 16.4% decreases post-fatigue for without BFR and BFR conditions.

Means and standard deviations are illustrated. There was no statistically significant interaction between seated

positions (inverted versus upright).

https://doi.org/10.1371/journal.pone.0245311.g004
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(F(2.05,24.62) = 4.68, p = 0.01, Z2
p = 0.28), a 4.6% pain scale decrease between 20–40 s and 40-60s

intervals for the without BFR condition, contrasted with an overall (both without BFR and BFR)

increase from initial (upright/inverted) to post-30-s MVC measures. Furthermore, a seated posi-

tion x BFR x time interaction (F(2.87,34.47) = 3.18, p = 0.03, Z2
p = 0.29) showed significant differences

when comparing without BFR and BFR, upright versus inverted conditions between 0–20 s and

Fig 5. Resting twitch force interaction effects for seated position and time. Star (�) symbol represents significant

decreases between initial and pre-fatigue tests, for upright and inverted seated positions. Means and standard

deviations are illustrated. There was no statistically significant BFR interaction.

https://doi.org/10.1371/journal.pone.0245311.g005

Fig 6. Biceps brachii M-wave interaction effects for seated position and BFR. Star (�) symbol represents that

significant decreases in amplitude of M-wave for Biceps Brachii, between without BFR and BFR, with 30.4% and 12.5%

for upright and inverted seated positions, respectively. Means and standard deviations are illustrated.

https://doi.org/10.1371/journal.pone.0245311.g006
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20–40 s intervals (-32.6% (0.61 to 0.46) without BFR and 13.6%" (1.46 to 1.69) for BFR upright

positions, versus 7.8%" (2.69 to 2.92) and 3.2%" (2.38 to 2.46) for inverted without BFR and BFR

conditions), and between 40–60 s and post-30-s MVC (77.5%" (0.38 to 1.69)) and 35.2%" (1.84 to

2.84) for upright without BFR and BFR versus 13.9%" (2.84 to 3.30) and 26%" (2.61 to 3.53) for

inverted without BFR and BFR conditions).

A main effect for time (F(1.37, 16.49) = 11.39, p = 0.002, Z2
p = 0.48) showed 34.6% (Z2

p = 0.45,

initial<pre-30-s MVC), 14% (Z2
p = 0.26, pre-30-s MVC<0–20 s interval), and 32.3% (Z2

p = 0.49,

40–60 s interval<post-30-s MVC) pain scale increases. Main effects for seated position and

BFR showed 26.5% (upright<inversion) (F(1,12) = 14.56, p = 0.002, Z2
p = 0.54) and 15.6%

increases (without BFR<BFR) (F(1,12) = 7.85, p = 0.01, Z2
p = 0.39) for pain scale.

Discussion

Prior studies have reported upon the deficits related to global (whole body) effects of inver-

sion-induced changes in hydrostatic pressure [1–5]. Similarly, there is a body of literature

exhibiting impairments associated with local (muscle group) BFR-induced increases in perfu-

sion pressure [10,14,18,19]. The present study is the first to investigate the separate and com-

bined effects of inversion (increased hydrostatic pressure) and BFR (increased perfusion

pressure) on voluntary and evoked contractile properties. Major findings of this study were

that inversion induced significantly greater decreases in resting twitch and elbow flexors MVC

forces before the 30-s MVC task. Following the 30-s MVC task, inversion induced greater

decreases in PTF. BFR led to overall (inversion and upright) detriments in MVC force, as well

as greater decreases than without BFR while in the inverted position. Furthermore, there was a

greater decrease in M-wave amplitude for the upright versus inverted position. In addition,

the concomitant application of inversion of the participant with BFR of the elbow flexors only

amplified neuromuscular performance impairments to a small degree. Representative traces of

the measures are presented in Fig 2.

Fig 7. Potentiation Twitch Force (PTF) interaction effects for seated position and time. Star (�) symbol represents that

significant Potentiation Twitch Force decreases between pre- and post-fatigue tests, for upright and inverted seated positions.

The hashtag or number symbol (#) indicates that PTF tested with inversion post-fatigue was significantly lower than all other

times and conditions. Means and standard deviations are illustrated. There was no statistically significant BFR interaction.

https://doi.org/10.1371/journal.pone.0245311.g007
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Inversion effects

Evoked contractile properties. Significant reductions in pre-test evoked twitch force with

inversion are partially in accord with a previous inversion study that showed non-significant,

but moderate magnitude decreases (18.6%, effect size [ES] = 0.74) for elbow flexors resting

twitch force from upright to the inverted position contrasting with non-significant moderate

magnitude increases (17.5%, ES = 0.76) for knee extensors [3]. Similarly, greater 30-s MVC-

induced PTF decreases with inversion versus upright, in this research, also conforms with

Neary et al. [3], who showed non-significant (p = 0.06), small magnitude, decreases for elbow

flexor PTF (11.8%, ES = 0.44); whereas they reported large magnitude increases (p = 0.03,

ES = 1.27, 27.3%) for leg extensor PTF forces during seated inversion.

With inversion, the position of the arm and leg induces higher and lower hydrostatic pres-

sure respectively, hence contributing to the contrasting arm and leg responses in the Neary

et al. [3] study. With high gravitational pressure, previous animal studies have shown an

altered function of acetylcholine receptors [8], relative decrease in psoas single muscle fibre

isometric force [6], decreased tetanic force for extensor digitorum longus muscle [9], and

decreased Ca++ influx into the nerve terminal [7]. In humans, Sundberg and Kaisjer [10]

showed that a graded occluded lower limb (up to 50 mmHg to increase pressure) under

upright conditions caused a progressive decrease in muscle function. These results suggest

higher hydrostatic or perfusion pressures on the arm during inversion can significantly reduce

evoked forces.

In contrast, Paddock and Behm [4] reported no significant alterations to evoked twitch

properties with seated inversion. In the Paddock and Behm study, only male subjects were

recruited, and they spent 30-s rather than 1-min in the inverted position. In addition, after

each contraction, the participants were returned to an upright position for 2-minutes before

adopting the inverted position again for another series of voluntary and evoked contractions.

Hence, the differences in duration and recovery from inversion may have attenuated changes

in hydrostatic pressure while sex differences may have contributed to the differences in evoked

twitch property results.

Voluntary contractile properties. The 21.1% inversion-induced MVC force decrease in

the present study aligns with the 18.9–21.1%, 10.4%, and 6.1% impairments reported by Johar

et al. [2], Hearn et al. [1] and Paddock and Behm [4], respectively. It might be argued that the

relatively less substantial force decreases experienced by the participants in the Hearn et al. [1]

and Paddock and Behm [4] studies may be attributed to shorter durations of inversion (30-s or

less in each study) with 2-min recovery periods to an upright position between each MVC.

However, Johar and colleagues had very similar force decreases as the present study and had

participants exert MVCs for 6-s following rapid rotations of 1- or 3-s to an inverted position.

Thus, MVCs were competed in less than 10-s in the Johar et al. [2] study. Neary et al. [3]

reported no significant change in elbow flexor MVC force, which might be attributed to the

highly trained track and field (athletics) athletes recruited in their study, who were permitted

1-min recovery periods between contractions. Hence, the relatively lower or non-significant

force decrements in the Hearn et al. [1], Paddock and Behm [4] and Neary et al. [3] studies

respectively may be more related to the greater recovery periods between inversion and return

to upright positions.

The decreases in elbow flexors MVC force with inversion can be related to several factors.

The decreased force output can be related to a muscle stiffening mechanism, associated with a

threat of instability [40], that the participants could have perceived when inverted with only

straps holding them in the chair. Adkin et al. [41] found that the stiffening strategy can nega-

tively influence voluntary movement. Increased co-contractile activity with inversion has been
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previously reported as a factor counteracting target force output [1,4], however there were no

significant increases in triceps brachii EMG in the present study. It is possible that an increased

focus on stabilizing functions of the shoulders, and trunk muscles [42], could negatively

impact the force output of the elbow flexors [43,44]. A shift from mobilizing to stabilizing

strategies of the neuromuscular system has been reported to contribute to force reduction

[43,45].

There were no significant inversion-induced decrements in biceps brachii EMG, which

contrasts with 21.7%-35.9%, 26.6%, 47.9% decreases with Johar et al. [2], Paddock and Behm

[4] and Hearn et al. [1] studies, respectively. As mentioned previously, these contrasts may be

attributed to the greater inversion and contraction recovery periods or recruited population

(i.e., track and field athletes) in the cited studies. Hence, while these other studies postulated

inversion-induced neural inhibition due to increases in cerebral blood pooling and intracra-

nial pressure [46–48], or attenuated sympathetic drive [18,46,49–51], the lack of EMG and ITT

changes in the present study suggests that neural influences did not play a major role in MVC

force reductions. Voluntary activation (ITT) was decreased following the 30-s MVC for both

BFR and no-BFR but EMG did not significantly change. The curvilinear nature of the EMG-

force relationship often resulting in a plateau at high voluntary forces diminishes the EMG

sensitivity to force changes at high contraction intensities [25].

Blood Flow Restriction (BFR)

Voluntary and evoked contractile properties. Overall, BFR induced 4.8% lower MVC

force values than without BFR as well as 9.1% lower MVC forces with BFR in an inverted posi-

tion versus without BFR. This relative impairment is similar to the BFR-induced deficits for

time to peak twitch. Without BFR, time to peak twitch increased 3.9% versus BFR when

upright versus a 5.6% decrease with BFR vs. without BFR when inverted. Overall, BFR also

impaired M-wave amplitudes by 21% (30.4% and 12.5% deficits for upright, and inverted

seated positions respectively) compared to without BFR.

These findings are similar to the force [10] and neuromuscular efficiency deficits reported

by Hobbs and McCloskey [19] with graded ischaemia. Ischaemia and the associated pain can

contribute to central nervous system inhibition [15,16] adversely affecting force output. Simi-

lar to inversion, the occlusion of venous blood flow return would increase hydrostatic / perfu-

sion pressure at the muscle resulting in similar force deficits seen in animals [6,9] and humans

[10]. Hogan et al. [52] reported force decrements with diminished oxygen delivery to working

muscle. Copithorne et al. [53] showed that BFR induced more significant decreases (~80%) in

time to task failure during a sustained isometric fatiguing task, in comparison with normal

blood flow condition. Furthermore, impairments in the evoked time to peak twitch and M-

wave could be partly attributed to an alteration in muscle fibre conduction velocity [54] with

nerve compression [55] as well as impaired sarcoplasmic reticulum Ca2+ uptake [56]. With

median nerve compression in the carpal tunnel, Lunderborg et al. [57] observed a change in

endoneural microcirculation. While it would be logical to suspect peripheral alterations with

BFR, central responses can also be influenced.

The greater BFR-induced decrease (p = 0.07, 16.4%) in biceps brachii EMG versus without

BFR (7.9%) may reflect a greater hypoxia placing a greater emphasis on anaerobic metabolism,

resulting in an earlier higher threshold motor unit recruitment accelerating the onset of force

decrements [58,59]. Occluding arterial flow in the arm, during the post-exercise period, Big-

land-Ritchie et al. [15] observed an impairment of neuromuscular transmission.

The modest but significant decrements in MVC force (<5%) and only near significant

(p = 0.07) changes in EMG activity with blood flow occlusion from a blood pressure cuff
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might be attributed to the occlusion effects from the MVC. Since a MVC also contributes to

BFR, the additional effect of the blood pressure cuff on a maximal contraction might not have

been as prominent as it might be with submaximal contractions.

Perceived pain. Previous seated inversion studies [2–4] have mentioned that there was a

sense of discomfort (i.e., distinct swelling around the head region) during inversion but did

not directly measure or report the degree of discomfort. Overall, pain perception tended to be

higher with BFR (15.6%) as well as when inverted (26.5%). Increased pain perception with

inversion would be related to the increased hydrostatic pressure around the head region (Pad-

dock and Behm 2009). BFR would induce a hypoxic muscle environment resulting in a greater

reliance on anaerobic metabolism, higher accumulation of metabolites and with the BFR, an

inability to dispose these metabolites [10,52]. A compressed limb can lead to ischaemia accu-

mulating metabolites and with increased local acidity would activate group III and IV pain

afferents promoting a sensation of increased discomfort and pain [17,20,60].

Inversion and BFR interactions. The data tended to indicate that BFR with inversion

induced small (~5–12.5%) multiplicative effects upon voluntary and evoked muscle force and

activation. A non-significant (p = 0.07) but large partial eta2 magnitude BFR x inversion inter-

action showed that evoked twitch forces had a BFR-induced greater increase (5.6%) than with-

out BFR in the inverted position. In contrast, MVC forces with BFR showed greater decreases

(-9.1%) than without BFR for the inverted seated position. The M-wave amplitude was more

impaired by BFR (-12.5%) than without BFR in the inverted position. Finally, pain perception

increased with BFR (11.1%) versus without BFR with the inverted position. Thus, the combi-

nation of inversion and BFR provided some amplification of the deficits compared to inver-

sion alone (i.e., decreased elbow flexor resting twitch and MVC forces). The BFR-induced

hypoxic environment attenuates blood substrates leading to a greater accumulation of meta-

bolic by-products that could negatively impact force production. On the other hand, BFR may

increase neuromuscular excitation (i.e., increased M-wave amplitudes). Neural compression

and blood flow impairment have elevated EMG with submaximal contractions [61,62].

Copithorne et al. [53] reported that blood flow occlusion led to a more rapid and greater

increase in motoneuron excitability but had no effect on motor cortical excitability suggesting

that group III/IV afferent feedback was the primary cause of the enhanced motoneuron excit-

ability. Thus, BFR can induce both peripheral impairments and central excitation. These con-

trasting effects in combination with inversion-induced (i.e., increased hydrostatic pressure)

alterations provided small but not major amplification of the deficits.

There were some minor limitations to the research. Due to the research procedure, data

could only be obtained from the right limb. While the partial BFR was set relative to the posi-

tion (upright/inverted), it could not exclusively indicate 50% BFR upright was exactly the same

as inverted. Furthermore, female participants were not screened for birth control or menstrual

cycle phase, which could have affected the performance of some of the women. As the present

study recruited active adults who resistance trained on a consistent basis, we would hypothe-

size that the observed impairments might be more substantial with an untrained population

with less experience coping with partial or full occlusion (e.g., moderate to high intensity con-

tractions while resistance training) and increases in hydrostatic pressures (e.g., Valsalva

maneuvers while resistance training).

Conclusions

Hydrostatic pressure-induced peripheral muscle impairments with the inverted position, may

have contributed to decreases in elbow flexor twitch, PTF, and MVC forces before the fatigue

task. BFR did decrease voluntary force and M-wave amplitudes with only a small additional
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increase to the inversion-induced impediments. A decrease in force or power output, with an

increased perceived difficulty in stressful and life-threatening conditions such as accidents

involving inversion or blood flow restriction (i.e., overturned vehicles, aerial maneuvers) can

be life threatening. The results provide insights into the separate and combined effects of

global (inversion) and local (BFR) increases in hydrostatic/perfusion pressure on voluntary

and evoked contractile properties.
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