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In general, it is well recognized that both acute physical exercises and regular physical
training influence brain plasticity and cognitive functions positively. However, growing
evidence shows that the same physical exercises induce very heterogeneous outcomes
across individuals. In an attempt to better understand this interindividual heterogeneity
in response to acute and regular physical exercising, most research, so far, has focused
on non-modifiable factors such as sex and different genotypes, while relatively little
attention has been paid to exercise prescription as a modifiable factor. With an adapted
exercise prescription, dosage can be made comparable across individuals, a procedure
that is necessary to better understand the dose–response relationship in exercise–
cognition research. This improved understanding of dose–response relationships could
help to design more efficient physical training approaches against, for instance,
cognitive decline.

Keywords: physical activity, cognition, personalized training, personalized medicine, neuroplasticity,
neuroprotection

INTRODUCTION

In the last decades, the average time that people are physically active has decreased dramatically
in Western countries (Owen et al., 2010; Church et al., 2011; Copeland et al., 2015), and physical
inactivity has been named as a big, if not even the biggest, health problem of the twenty-first century
(Blair, 2009). Remarkably, physical inactivity is associated with impaired cognitive functions
(Aichberger et al., 2010; Falck et al., 2016; Ku et al., 2017; Tan et al., 2017) and higher risk of risk of
neurodegenerative diseases (e.g., dementia) in the aging population (Laurin et al., 2001; Rovio et al.,
2005; Ravaglia et al., 2008; Hamer and Chida, 2009; Paillard-Borg et al., 2009; Abe, 2012; Bowen,
2012; de Bruijn et al., 2013; Grande et al., 2014; Paillard, 2015). In order to counteract such negative
effects of physical inactivity, an increase in the habitual physical activity level, which is typically
engendered through a regular engagement in physical exercises, is empathically recommended
(Hillman et al., 2008; Bherer et al., 2013; Erickson et al., 2013, 2014; Hötting and Röder, 2013;
Paillard, 2015; Müller et al., 2017; Liu-Ambrose et al., 2018; Herold et al., 2019). It has been
well demonstrated in the literature that a single bout of physical exercises (Chang et al., 2012a;
Basso and Suzuki, 2017; Herold et al., 2018b; McSween et al., 2018; Moreau and Chou, 2019) as
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well as repeated sessions of physical exercises in the form of
a training intervention (e.g., endurance training) (Colcombe
et al., 2006; Erickson et al., 2011; Voelcker-Rehage et al.,
2011; Herold et al., 2018b, 2019; Falck et al., 2019; Stern
et al., 2019) induce substantial neurocognitive changes. Based
on such positive effects of physical exercises and/or physical
training on brain plasticity and on cognition, it is not surprising
that many scientific disciplines (e.g., medicine, psychology,
neuroscience, and sport science) pay attention to this research
field. Although these different scientific disciplines use different
approaches to understand the relationship between physical
exercises and/or physical training and the central nervous
system, it is undoubted that all of them are based on an
appropriate exercise prescription that specifies exercise (e.g.,
exercise intensity, exercise duration) and/or training variables
(e.g., frequency of training sessions) (Lightfoot, 2008; Williams
et al., 2019). Furthermore, exercise prescription is the key for
dosing (Wasfy and Baggish, 2016; Pontifex et al., 2018) and
for individualization of acute physical exercises and physical
training (Lightfoot, 2008). Individualization (personalizing) is an
emerging approach aiming at maximizing the efficiency of an
intervention by accounting for the interindividual heterogeneity
in the response to acute physical exercises and/or physical
training (Lightfoot, 2008; Buford et al., 2013; Barha et al., 2017b;
Müller et al., 2017, 2018; Gallen and D’Esposito, 2019). Notably,
what parameters are optimal to prescribe the best exercise for an
individual is extensively discussed in the literature (Katch et al.,
1978; Weltman et al., 1989, 1990; Gass et al., 1991; Meyer et al.,
1999; Hofmann and Tschakert, 2010; Scharhag-Rosenberger
et al., 2010; Mann et al., 2013; Weatherwax et al., 2016), but not all
scientific disciplines investigating exercise–cognition are taking
this issue into account sufficiently (Gronwald et al., 2018b, 2019a;
Suwabe et al., 2018). Hence, the purpose of this article is to shed
light on differences in exercise prescription and their relation to
the dose and the interindividual heterogeneity in neurocognitive
outcome measures.

Physical Activity, Physical Exercises,
Physical Training – Where Are the
Differences?
Prior to going more deeply into the topic of physical
activity, physical exercise, and/or physical training, it is
necessary to clarify these terms because they represent different
concepts while it is, unfortunately, common behavior to
use them interchangeably (Caspersen et al., 1985; Budde
et al., 2016). “Physical activity” is defined as muscle-induced
bodily movement that increases energy expenditure above
∼1.0/1.5 MET (metabolic equivalent of task; 1 MET = 1 kcal
(4,184 kJ) × kg−1

× h−1) (Caspersen et al., 1985; Ainsworth
et al., 2000; Budde et al., 2016). Hence, the term physical
activity is a hypernym (i) that covers a wide range of physical
activities that are conducted on a regular or unregular basis
in a relatively unstructured and unplanned manner and (ii)
that includes specific, planned, and structured forms of physical
activities that are known as physical exercises (Caspersen et al.,
1985; Howley, 2001; Budde et al., 2016). Physical exercises should

be distinguished based on temporal characteristics into acute
physical exercise (single bout) and chronic physical exercises
(repeated bouts of acute exercises) (Scheuer and Tipton, 1977;
Budde et al., 2016). A single bout of physical exercise is
commonly referred to as an “acute (single) bout of physical
exercise” or as “acute physical exercises” (Budde et al., 2016;
Herold et al., 2018b). Furthermore, chronic physical exercises
can be denoted as “physical training” when they are conducted
regularly in a planned, structured, and purposive manner with
the objective to increase (or maintain) individual capabilities
in one or multiple fitness dimensions (Scheuer and Tipton,
1977; Caspersen et al., 1985; Howley, 2001; Budde et al., 2016;
Herold et al., 2018a). In essence, distinguishing and using these
terms carefully allows a better classification and interpretation
of observed effects and of the underlying (neuro)biological
mechanisms (Budde et al., 2016).

“Responder” or “Non-responder” – That
Is the Question
Since every human is unique, there is a considerable amount of
within-individual (intra-individual) (Katch et al., 1982; Coggan
and Costill, 1984; Bagger et al., 2003; Skurvydas et al., 2010;
Faude et al., 2017; Chrzanowski-Smith et al., 2019; Voisin et al.,
2019) and between-individual (interindividual) heterogeneity
(Karavirta et al., 2011; Chmelo et al., 2015; Bonafiglia et al.,
2016; Greenham et al., 2018) in acute psychophysiological
response(s) to the same acute physical exercises and/or long-
term adaptions to the same physical training. Especially, the
interindividual heterogeneity gained attention in the research
of the recent years (Buford and Pahor, 2012; Buford et al.,
2013; Mann et al., 2014; Sparks, 2017; Pickering and Kiely,
2018b; Ross et al., 2019) and is commonly observed in studies
dealing with endurance (cardiovascular) training (Chmelo et al.,
2015; Bonafiglia et al., 2016), resistance (strength) training
(Hubal et al., 2005; Chmelo et al., 2015; Ahtiainen et al., 2016),
or combined training (consisting of endurance and resistance
training) (Karavirta et al., 2011). In order to account for this
interindividual heterogeneity, the concept of (i) “responder” [also
referred as “individuals with high sensitivity” (Booth and Laye,
2010)] and (ii) “non-responder” [also referred as “individuals
with low-sensitivity” (Booth and Laye, 2010), limited responders
(Burley et al., 2018), or “individuals which did not respond”
(Pickering and Kiely, 2018b)] was introduced, however, with
varying definitions (Booth and Laye, 2010; Buford and Pahor,
2012; Scharhag-Rosenberger et al., 2012; Buford et al., 2013;
Mann et al., 2014). While the definition and methods to classify
responders and non-responders are currently discussed in the
literature (Atkinson and Batterham, 2015; Hecksteden et al.,
2015, 2018; Bonafiglia et al., 2018, 2019a,b; Swinton et al.,
2018; Atkinson et al., 2019; Dankel and Loenneke, 2019), it
is relatively accepted that (i) not all outcome variables are
affected equally by the responsiveness state (e.g., be a responder
or non-responder) (Sparks, 2017; Pickering and Kiely, 2018b,
2019b; Toigo, 2019), (ii) measurement errors are inevitable in
repeated measurements and are caused, for instance, by random
biological fluctuations that do not represent a meaningful
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change in the outcome variable (Atkinson and Nevill, 1998;
Scharhag-Rosenberger et al., 2012; Atkinson and Batterham,
2015; Williamson et al., 2017; Pickering and Kiely, 2019a),
and (iii) some responses are likely to be transient, causing
uncertainty regarding the time course of the responsiveness
state (Pickering and Kiely, 2018b). Hence, the following working
definitions can be proposed (see Table 1). Regarding the
response to acute physical exercises and/or physical training,
(i) responders are individuals who exhibit, at a certain time
point, changes in a variable of interest that are above (below)
a distinct threshold, and (ii) non-responders are individuals
who exhibit, at a certain time point, changes in a variable
of interest that are below (above) a distinct threshold. There
is ongoing vivid discussion on how to define these critical
thresholds (Atkinson and Batterham, 2015; Swinton et al., 2018;
Atkinson et al., 2019; Dankel and Loenneke, 2019) and whether
further subgroups should be established (Dankel and Loenneke,
2019). For instance, “adverse responders” (Bouchard et al.,
2012) or “negative responders” (Leifer et al., 2014), have be
defined as individuals who exhibit, at a certain time point,
in response to acute physical exercise or physical training,
unfavorable responses below (above) a distinct threshold. In
addition, “above” and “below” need to be referenced relative
to a specific outcome in the variable of interest. For instance,
in a cognitive test, performance could be operationalized by
“number of correct items” and “reaction time” (variables of
interest). Regarding number of correct items, it is favorable to
achieve a higher number of correct items (responder: above;
non-responder: below). Regarding reaction time, on the other
hand, it is favorable to react faster (responder: below; non-
responder: above). Regardless of the ongoing discussion about
how to classify the level of responsiveness, there is some
evidence that the interindividual heterogeneity in response to
acute physical exercise and/or physical training might contribute
to the interindividual heterogeneity observed in neurocognitive
outcomes. This evidence is outlined in the following section.

Responsiveness State, Functional and
Structural Brain Changes, and Cognition
In the following, we will refer to acute endurance exercises
and endurance training because (i) from a neuroevolutionary
view, endurance capacities (e.g., running during foraging)
are important to ensure physical and/or neurocognitive well-
functioning (Mattson, 2012; Raichlen and Alexander, 2017),
(ii) acute endurance exercises and/or endurance training are
currently in the focus of exercise–cognition research (Hillman
et al., 2008; Stimpson et al., 2018), (iii) endurance training
induces substantial structural brain changes (Erickson et al.,
2011; Stern et al., 2019), and (iv) endurance training entails
greater benefits in cognitive performance than resistance training
(Barha et al., 2017a).

Acute Physical Exercises
With regard to acute physical exercises, it was observed that
individual baseline working memory function was linked
with changes in working memory performance following
acute very-light-to-moderate-intensity endurance exercises

TABLE 1 | Overview about the definitions of terms relevant to interindividual
heterogeneity and exercise–cognition research ∗ Please note that “above” and
“below” are relative to the favorable outcome in the variable of interest.

Definition of terms relevant to interindividual heterogeneity and
exercise–cognition research

Physical activity “Physical activity” is any muscle-induced bodily movement
that increases energy expenditure above ∼1.0/1.5 MET
(metabolic equivalent of task; 1 MET = 1 kcal
(4,184 kJ) × kg−1

× h−1) (Caspersen et al., 1985; Ainsworth
et al., 2000; Budde et al., 2016).

Physical exercise “Physical exercises” are specific, planned, and structured
forms of physical activities (Caspersen et al., 1985; Howley,
2001; Budde et al., 2016) and should be distinguished on
temporal characteristics into (i) acute physical exercise
(single bout) and chronic physical exercises (repeated bouts
of acute exercises) (Scheuer and Tipton, 1977; Budde et al.,
2016).

Physical training “Physical training” is chronic physical exercises when they
are conducted regularly in a planned, structured, and
purposive manner with the objective to increase (or maintain)
individual capabilities in one or multiple fitness dimensions
(Scheuer and Tipton, 1977; Caspersen et al., 1985; Howley,
2001; Budde et al., 2016; Herold et al., 2018a).

External load “External load” along with influencing factors (e.g., climatic
conditions, equipment, ground condition) is defined as the
work completed by the individual independent of internal
characteristics (Wallace et al., 2009; Halson, 2014; Bourdon
et al., 2017; Burgess, 2017; Vanrenterghem et al., 2017;
McLaren et al., 2018; Impellizzeri et al., 2019).

Internal load “Internal load” is defined as individual and acute
biomechanical, physiological, and/or psychological
response(s) to the influencing factors (e.g., climatic
conditions, equipment, ground condition) and the work
performed (external load) (Wallace et al., 2009; Halson,
2014; Bourdon et al., 2017; Burgess, 2017; Vanrenterghem
et al., 2017; McLaren et al., 2018; Impellizzeri et al., 2019).

Dose “Dose” is commonly defined as a product of exercise
variables (e.g., exercise intensity, exercise duration, type of
exercise), training variables (e.g., frequency of training
sessions), and the application of training principles (Wasfy
and Baggish, 2016; Northey et al., 2017; Solomon, 2018;
Cabral et al., 2019; Erickson et al., 2019; Etnier et al., 2019;
Falck et al., 2019; Ross et al., 2019; Williams et al., 2019)
and should be operationalized by using a specific marker(s)
of internal load. The specific marker(s) should be involved in
biological processes driving the desired changes (e.g.,
lactate→ brain-derived neurotrophic factor (BDNF)→
neurocognitive changes).

Responder “Responders” are individuals who exhibit, at a certain time
point, changes in a variable of interest that are above
(below∗) a distinct threshold.

Non-responder “Non-responders” (or “individuals which did not respond”)
are individuals who exhibit, at a certain time point, changes
in a variable of interest that are below (above∗) a distinct
threshold.

For instance, in a cognitive test performance, variables of interest could be
operationalized by “number of correct items” and “reaction time.” In “number of
correct items,” it is favorable to achieve a higher number of correct items. Hence,
“responders” are individuals who exhibit at a certain time point changes in a variable
of interest that are above a distinct threshold, and “non-responders” are individuals
who exhibit, at a certain time point, changes in a variable of interest that are below
a distinct threshold. In contrast, regarding reaction time, it is favorable to react
faster. Hence, “responders” in this context are individuals who exhibit, at a certain
time point, changes in a variable of interest that are below a distinct threshold, and
“non-responders” are individuals who exhibit at a certain time point changes in a
variable of interest that are above a distinct threshold.
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(Yamazaki et al., 2018). Furthermore, responders, who showed
improved cognitive performance after a single bout of very-light-
to-moderate-intensity endurance exercise, exhibited a higher
level of prefrontal activation during exercising (Yamazaki et al.,
2017). This finding suggests that not only peripheral systems
are affected by the individual responsiveness state but also the
central nervous system itself.

Physical Training
Changes in cardiorespiratory fitness (CRF) measures in response
to a 20 weeks endurance training program tended to vary
tremendously among individuals (Bouchard et al., 1999).
Exemplarily, Karavirta et al. (2011) observed, after a 21 weeks
long combined exercise intervention in older adults, changes in
CRF levels [assessed via maximal oxygen uptake (VO2 max.)]
ranging from -8 to 42%. Such interindividual differences in
response to endurance training also affect the expression of
neurotrophic factors [e.g., brain-derived neurotrophic factor
(BDNF)] (Heisz et al., 2017), which play an important role
in neuroplasticity (Erickson et al., 2010, 2011; Brigadski and
Leßmann, 2014) and cognition (Erickson et al., 2010; Brigadski
and Leßmann, 2014; Leckie et al., 2014). For instance, after
6 weeks of high-intensity endurance training, responders who
improved their CRF [assessed via peak oxygen uptake (VO2
peak)] to a greater extent than non-responders exhibited a
significantly higher increase in serum BDNF (Heisz et al.,
2017). This finding suggests that the state of responsiveness
influences important mechanisms involved in neuroplasticity
and cognition. Notably, a higher level of CRF level [mostly
operationalized by VO2 max. (highest value attainable by a
subject) or VO2 peak (highest, “system-limited” value attained
during the CRF test) (Day et al., 2003)] is associated with (i)
better cognitive performance in younger adults (Suwabe et al.,
2017; Wengaard et al., 2017; Fortune et al., 2019), older adults
(Erickson et al., 2011; Bugg et al., 2012; Verstynen et al., 2012;
Albinet et al., 2014; Freudenberger et al., 2016; Hayes et al.,
2016; Bherer et al., 2019; Castalanelli et al., 2019; Pentikäinen
et al., 2019), and older adults with mild cognitive impairments
(Sobol et al., 2018); (ii) favorable functional brain changes in
younger adults (Stillman et al., 2018) and older adults (Colcombe
et al., 2004; Albinet et al., 2014; Dupuy et al., 2015; Hyodo
et al., 2016); and (iii) favorable structural brain changes in
older adults (Colcombe et al., 2003; Erickson et al., 2009;
Szabo et al., 2011; Bugg et al., 2012) and individuals with
Alzheimer’s disease (Burns et al., 2008; Honea et al., 2009; Vidoni
et al., 2012). Furthermore, in response to endurance training,
increases in VO2 max. (iv) mediate the improvement in cognitive
functions in younger adults (Stern et al., 2019) and (v) are
associated with increases in hippocampal volumes in older adults
(Erickson et al., 2011).

In sum, based on these associations between measures of
CRF, measures of brain function and structure, and cognitive
performance measures (albeit these correlations are not strictly
causal in nature), it seems plausible to hypothesize that the
large interindividual heterogeneity in measures of CRF may
also contribute, among other factors, to the interindividual
heterogeneity in measures of neurocognition in response to

endurance training. However, to clarify the validity of these
assumptions, further research is required.

Master (of) the Fate? – How Genetics
and Lifestyle Contribute to
Interindividual Heterogeneity
The interindividual responsiveness to physical exercises and/or
physical training and, in turn, the interindividual heterogeneity
in outcomes are caused by several moderators, including both
non-modifiable factors (e.g., sex or genotypes) and modifiable
factors (e.g., nutrition, social or cognitive activities, exercise
prescription) (Spiering et al., 2008; Bamman et al., 2014; Mann
et al., 2014; Erickson et al., 2015; Sparks, 2017; Pickering and
Kiely, 2018b). Notably, these factors can also be classified as
endogenous factors (factors attributable to the individual such as
sex or genotypes) and exogenous factors (factors attributable to
external inputs, e.g., generated by exercise prescription) (Sparks,
2017). Currently, the roles of non-modifiable (endogenous)
factors such as sex (Barha et al., 2017a,b, 2019; Barha and
Liu-Ambrose, 2018; Cobbold, 2018; Loprinzi and Frith, 2018;
Dao et al., 2019) and genotypes (Booth and Laye, 2010;
Timmons et al., 2010; Timmons, 2011; Bouchard, 2012, 2019;
Mann et al., 2014; Bouchard et al., 2015; Jones et al., 2016;
Pickering and Kiely, 2017a,b,c, 2018a; Del Coso et al., 2018)
are investigated most. Among these factors, it has been shown
that a considerable amount (approximately up to half of
the variance) of the interindividual heterogeneity in physical
outcomes (Bouchard and Rankinen, 2001; Timmons et al.,
2010; Davidsen et al., 2011; Timmons, 2011; Bouchard, 2012;
Wilson et al., 2019), cognitive outcomes (McClearn, 1997;
Goldberg and Weinberger, 2004; Blokland et al., 2008; Erickson
et al., 2008; Friedman et al., 2008; Canivet et al., 2015,
2017), and brain structure outcomes (Thompson et al., 2001;
Toga and Thompson, 2005; Bueller et al., 2006) are explained
by genetics. However, considering current evidence, lifestyle
factors may equalize a “genetic handicap” since people with
a high CRF level but “unfavorable” genetic polymorphisms
do not need to perform significantly poorer than individuals
with low CRF level but “favorable” genetic equipment (Brown
et al., 2019). These findings suggest that a genetic handicap
can be counteracted by other factors (Flück, 2018) and that
“overemphasizing” genetics for the individualization of exercise
prescriptions is counter-productive (Carlsten and Burke, 2006;
Kohane, 2009; Horwitz et al., 2013; Joyner and Lundby,
2018; Peck, 2018; Joyner, 2019). However, analysis of the
genetics of participants is undoubtedly helpful in supporting
individualization of acute physical exercise and/or physical
training by aiding, for instance, the identification of potential
responders and non-responders (Lightfoot, 2008; Pescatello,
2008; Booth and Laye, 2010; Timmons et al., 2010; Timmons,
2011; Pickering and Kiely, 2019a,b). Remarkably, it has also
been highlighted that no “global non-responders” exist (Ross
et al., 2015; Bonafiglia et al., 2016; Montero and Lundby, 2017;
Pickering and Kiely, 2017c, 2018b; Toigo, 2019). Moreover, it
is assumed that non-responsiveness can best be counteracted
by modifying the dose of the physical exercise and/or physical
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training (Churchward-Venne et al., 2015; Ross et al., 2015;
Montero and Lundby, 2017; Toigo, 2019). The latter suggests
that the dose of physical interventions per se contributes
significantly to the observed interindividual heterogeneity in
(neurocognitive) outcomes.

What Dose (It) Means?
The terminus dose is differently defined in the literature (Voils
et al., 2012), but in exercise(-cognition) research, “dose” is
commonly referred to as the product of exercise variables (e.g.,
exercise intensity, exercise duration, type of exercise; see Table 2)
when considering an acute bout of physical exercises (Wasfy and
Baggish, 2016; Pontifex et al., 2018). In training studies, dose
can be seen as the product of exercise variables (e.g., exercise
intensity, exercise duration, type of exercise), training variables
(e.g., frequency of training sessions), and the application of
training principles (Wasfy and Baggish, 2016; Northey et al.,
2017; Solomon, 2018; Cabral et al., 2019; Erickson et al., 2019;
Etnier et al., 2019; Falck et al., 2019; Ross et al., 2019; Williams
et al., 2019). In reverse, dose could be modified in acute physical
exercise studies by adjusting the exercise variables, while in
physical training studies, exercise variables, training variables,
and training principles must be taken into account (see Table 2).
Such a purposeful modification is referred to as the adjustment of
the exercise prescription.

In the context of exercise prescription, it is also imperative
to clarify the terms “external load” and “internal load.” While
external load along with influencing factors (e.g., climatic
conditions, equipment, ground condition) is defined as the
work completed by the individual independent of internal
characteristics (Wallace et al., 2009; Halson, 2014; Bourdon
et al., 2017; Burgess, 2017; Vanrenterghem et al., 2017; McLaren
et al., 2018; Impellizzeri et al., 2019), internal load is defined
as individual and acute biomechanical, physiological, and/or
psychological response(s) to the influencing factors and the work
performed (Wallace et al., 2009; Halson, 2014; Bourdon et al.,
2017; Burgess, 2017; Vanrenterghem et al., 2017; McLaren et al.,
2018; Impellizzeri et al., 2019). According to the definition of
internal load, which states that internal load is characterized
by the individual and acute psychophysiological response(s) to
the external load, it appears that internal load can be adjusted
by modifying the external load. However, given that exercise
variables such as exercise intensity can be operationalized using
parameters of either external load (e.g., running with a speed of
10 km/h) or internal load (e.g., running with 60 of maximal heart
rate), current definitions of dose are rather broad. Since dose is
an essential factor for triggering neurobiological processes (e.g.,
release of neurotrophins such as BDNF; Dinoff et al., 2017), which
in turn lead to neuroplastic and cognitive changes (Cotman et al.,
2007; Voss et al., 2011, 2013a; Lucas et al., 2015; Zimmer et al.,
2015; Basso and Suzuki, 2017; Stimpson et al., 2018), it is crucial
to agree on an appropriate concept of dose. Although markers
of internal load could be more difficult to measure (compared
to markers of external load), we suggest that dose should be
operationalized by using a specific marker or specific markers of
internal load as a proxy. The two reasons for this assumption are
outlined in the following.

TABLE 2 | Overview of general exercise variables, training variables, and
training principles.

General exercise variables relevant in a single session

Exercise intensity The exercise intensity describes how strenuous the
exercise is.

Exercise duration Time period that is spent for a specific exercise or the
entire exercise session.

Type of exercise Type(s) of exercise(s) that is (are) used in the exercise
session (e.g., cycling, dancing).

General training variables relevant in a training program

Frequency The number of training sessions across a distinct time
interval.

Density Distribution of training sessions across a distinct time
interval with regard to recovery time in-between training
sessions.

Duration Duration over which a training program is carried out.

General training principles relevant in a training program

Variation To prolong adaptations over a distinct training duration,
systematic manipulation (variation) of exercise variables
and training variables is necessary.

Specificity To elicit a desired adaptation, the stimuli provided by
the used physical exercises must be tailored to the
desired adaptations (s).

Overload To improve a distinct type of fitness, an appropriate
stimulus must be provided that exceeds the
already-existing individual capacities to a distinct extent.

Progression To ensure continuous improvements, the stimulus must
be appropriately modified over time (e.g., increase in
external load).

Reversibility Once the physical intervention induced stimulus is
removed (e.g., stop the training), de-adaptational
process will occur, and the changes in fitness level will
eventually return to the baseline level.

Periodization and
programming

In this context, periodization and programming are
crucial elements for an appropriate exercise
prescription. Periodization is the temporal coordination
of training periods with specific fitness characteristics
(e.g., strength or endurance) and application of training
principles, which is referred to as macromanagement.
Programming describes the organization of exercise
variables and training variables (micromanagement).
Periodization includes various forms such as linear
periodization (LP) or non-linear periodization (NLP). In
LP, typically, a gradual increase in intensity is
conducted, whereas in NLP, exercise prescription is
changed on weekly or daily basis.

The definitions are based on Stone et al. (2002), Ratamess et al. (2009), Campbell
et al. (2012), Winters-Stone et al. (2014) and Törpel et al. (2018).

Why Internal Load Should Be Used as a Proxy for
Dose
Given (i) that internal load equals, per definition, the individual
and acute psychophysiological response(s) to a given external
load (Wallace et al., 2009; Halson, 2014; Bourdon et al., 2017;
Burgess, 2017; Vanrenterghem et al., 2017; McLaren et al., 2018;
Impellizzeri et al., 2019) and (ii) that neurocognitive changes
are triggered by such distinct psychophysiological responses
(Cotman et al., 2007; Zimmer et al., 2015; Basso and Suzuki, 2017;
Stimpson et al., 2018), it seems reasonable to assume that internal
load is a better proxy for dose than external load.
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Why a Specific Marker of Internal Load Is Needed as
a Proxy for Dose
There are several markers of internal load that can be used
to prescribe the exercise intensity in acute endurance exercises
and/or endurance training [e.g., oxygen uptake, heart rate, or
heart rate variability (HRV)]. For instance, HRV, i.e., the beat-to-
beat variation over a distinct time period, under rest conditions
or while exercising is an interesting marker of internal load
because the internal load quantification by HRV indices is
progressive and takes the individual fitness level as well as daily
readiness and actual health state into account (Thayer et al.,
2012; Plews et al., 2013; Vesterinen et al., 2013, 2016; Gronwald
et al., 2016, 2018a, 2019b,c). Furthermore, resting-state HRV
is associated with cognitive performance (Hansen et al., 2003;
Frewen et al., 2013; Gillie et al., 2014; Zeki Al Hazzouri et al., 2014;
Colzato et al., 2018).

However, currently, several hypotheses exist in literature
that explain the positive effects of acute physical exercises and
physical training on brain plasticity and cognition (Kramer
et al., 1999; Smiley-Oyen et al., 2008; Davenport et al., 2012;
McMorris and Hale, 2015; McMorris, 2016a,b,c,d; McMorris
et al., 2016; Voss, 2016; Raichlen and Alexander, 2017; Pontifex
et al., 2018; Stimpson et al., 2018; Audiffren and André, 2019).
Among them, one of the most popular hypotheses is the
“neurotrophic hypothesis,” which posits that in response to
physical exercises, the organism releases several neurochemicals
(e.g., neurotrophic factors such as BDNF), which in turn trigger
neuroplasticity and facilitate cognitive enhancement (Voss et al.,
2013b; Basso and Suzuki, 2017; Stimpson et al., 2018; Audiffren
and André, 2019). Hence, it seems more promising to use
a marker or markers of internal load that are related to
changes in neurotrophic molecules in order to individualize and
adjust exercise prescription (Pedersen, 2019). In this regard,
the peripheral level of blood lactate could be a promising
marker of internal load because peripheral blood lactate (e.g.,
from muscles) can cross the blood–brain barrier and provides
energy to the brain (Kemppainen et al., 2005; Quistorff et al.,
2008; van Hall et al., 2009; Dennis et al., 2015; Proia et al.,
2016; Taher et al., 2016; Riske et al., 2017; Brooks, 2018;
Sobral-Monteiro-Junior et al., 2019). Hence, it is not surprising
that relative changes in peripheral levels of blood lactate are
correlated significantly with cognitive performance levels after
high-intensity interval endurance exercises (Lee et al., 2014;
Tsukamoto et al., 2016; Hashimoto et al., 2017). The crucial
role of blood lactate for neuroplasticity is further emphasized
by findings of peripheral blood lactate levels being associated
with the peripheral serum BDNF levels (Ferris et al., 2007;
Schiffer et al., 2011). However, the exact molecular mechanisms
of increased BDNF production in response to physical exercising
are not fully understood (for review, see Jiménez-Maldonado
et al., 2018). BDNF in the brain is involved in neuroplasticity
(Brigadski and Leßmann, 2014), and serum levels of BDNF have
been shown to be directly linked to cognitive performance after
an acute bout of high-intensity endurance exercises (Hwang et al.,
2016). Moreover, (i) serum BDNF mediates improvements in
cognitive functions following a 1-year aerobic endurance training
(Leckie et al., 2014), (ii) greater serum BDNF concentration

changes in response to a 1-year-long aerobic endurance training
are linked to hippocampal volume changes (Erickson et al.,
2011), and (iii) reduced levels of serum BDNF are related
to a decline in hippocampal volume and poorer memory
performance (Erickson et al., 2010). In sum, a specific marker
or specific markers of internal load such as the peripheral blood
lactate level seems to constitute a promising proxy for dose.
However, the optimal marker(s) that is (are), with regard to
neuroplasticity and cognition, the most suitable proxy for the
dose of physical exercise and/or physical training has yet to
be discovered.

Become Personal – How to Individualize
the Exercise Prescription?
Based on the large interindividual heterogeneity (i) in
psychophysiological responses to acute physical exercises
and (ii) in long-term adaptions to a physical training, it is
assumed that tailoring of these to the characteristics and needs
of a particular person is well suited to maximize their efficiency
(Buford and Pahor, 2012; Buford et al., 2013; Müller et al.,
2017, 2018; Cobbold, 2018; Pickering and Kiely, 2018b). Such
an individualization of acute physical exercises and/or physical
training could be achieved by adjusting the exercise prescription
(e.g., exercise intensity) (Lightfoot, 2008), which influences,
in turn, the dose (objectified by a specific marker or specific
markers of internal load; see previous section and Figure 1A).
In order to illustrate our thoughts in practical terms, we focus
on exercise intensity because a full discussion of all exercise
variables, training variables, and training principles is beyond
the scope of this article. As outlined in the previous section,
using markers of internal load to prescribe exercise intensity
is preferable instead of using parameters of external load such
as speed in running specific exercises. Therefore, traditional
markers of internal load such as the fixed percentage of the
maximally achievable value of oxygen uptake or heart rate are
often used (Garber et al., 2011; Suwabe et al., 2018). Using a fixed
percentage of a maximally achievable value of oxygen uptake
or heart rate involves a considerable amount of interindividual
heterogeneity in other markers of internal load (e.g., metabolic
responses objectified by, for instance, peripheral blood lactate)
(Weltman et al., 1989, 1990; Meyer et al., 1999; Vollaard et al.,
2009; Scharhag-Rosenberger et al., 2010). Metabolic responses
(e.g., peripheral blood lactate level) constitute specific markers
of internal load that are likely to be proxies for the dose that
triggers neuroplastic processes and cognitive changes (see
“Why a specific marker of internal load is needed as a proxy
for dose”). Hence, traditional exercise prescriptions lead to
largely varying individual doses as revealed by the marker(s)
of internal load. This may lead, among other factors, to the
observed interindividual heterogeneity in neurocognitive
outcomes (see Figure 1B). Consequently, approaches that
ensure that a comparable dose is provided to each individual
(e.g., adapted exercise prescriptions that ensure a comparable
level of peripheral blood lactate) may lower the interindividual
heterogeneity regarding neurocognitive outcomes. Hence,
such approaches are favorable in exercise–cognition research
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FIGURE 1 | (A) Schematic illustration of the possible influence of exercise prescription on dose, and individual responsiveness (responder and non-responder) with
the assumed extent of improvements (high improvements in neurocognitive outcomes and low improvements in neurocognitive outcomes). The dotted red lines
show that by using an appropriate exercise prescription, non-responders could be turned into responders. In part (B) of the figure, the difference between “traditional
exercise prescription” and “adapted exercise prescription” regarding the load, the dose, the individual response(s), and the corresponding heterogeneity in outcomes
is illustrated. “∗” with regard to subsequent neurobiological processes. In part (C) of the figure, the multiple levels on which physical activity (including physical
exercise and physical training) could affect cognitive performance are shown (Stillman et al., 2016). “#” indicates that the brain could be seen as outcome, mediator,
or predictor (Stillman and Erickson, 2018). “a” indicates that there are several possibilities in which way structural and functional brain changes, socioemotional
changes and cognitive changes are intertwined (Stillman et al., 2016).

(see Figure 1). In this context, individual threshold concepts
(aerobic and anaerobic threshold) that are based on individual
metabolic (or respiratory) responses could be used to determine
an individual’s initial exercise intensity (Meyer et al., 1999;
Hofmann and Tschakert, 2010; Scharhag-Rosenberger et al.,
2010; Weatherwax et al., 2016). However, while there is a strong
theoretical basis for the application of a threshold-based exercise
prescription for endurance exercises and endurance training,
the challenges and pitfalls of determining such individual
thresholds may explain why many researchers continue
to favor exercise intensity prescriptions based on relative
percentages of maximum values (Hofmann and Tschakert,
2010; Mann et al., 2013). Although our assumptions are

well grounded on possible neurobiological mechanisms, they
are mostly theoretical in nature, and thus, further research
comparing, for instance, traditional versus adapted exercise
prescriptions with regard to neuroplasticity and cognition is
urgently needed.

Progress Is Not Without Limitations
Since the level and detail of description required to extensively
describe and discuss the influence of all exercise variables,
training variables, training principles, and factors influencing
exercise–cognition interaction go far beyond the scope and
intent of this article, our assumptions still remain imperfect
because other exercise-related factors such as movement
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frequency (e.g., cycling cadence) (Ludyga et al., 2015, 2016) or
psychological factors such as affective response (e.g., enjoyment
or expectations) (Davidson et al., 2000; Davidson and McEwen,
2012; Burnet et al., 2018; Lindheimer et al., 2019) have not
been considered. Nevertheless, given (i) that our knowledge
of the dose–response relationship between acute physical
exercises and/or physical training, neurobiological processes
(e.g., neuroplasticity), and cognitive changes is still limited
(Etnier et al., 2006, 2019; Hillman et al., 2008; Chang et al.,
2012a,b; Barha et al., 2017b; Ströhlein et al., 2017; Tait
et al., 2017; Pontifex et al., 2018; Stimpson et al., 2018;
Erickson et al., 2019; Falck et al., 2019; Sanders et al.,
2019), (ii) that peripheral blood lactate levels constitute an
established marker of internal load (Hofmann and Tschakert,
2010; Beneke et al., 2011; Soligard et al., 2016; Impellizzeri
et al., 2019), and (iii) that peripheral blood lactate levels are
easily quantifiable by portable devices, the use of peripheral
blood lactate as a proxy for dose seems a reasonable
starting point. Nevertheless, lactate monitoring suffers from
the drawbacks that (i) it necessitates blood sampling, which
could be impractical in daily practice, and (ii) it requires a
graded exercise test to calculate an individual threshold to
prescribe the exercise intensity. Regarding the first objection,
new methods to non-invasively determine critical physiological
thresholds (e.g., lactate threshold) by means of muscle near-
infrared spectroscopy (Wang et al., 2006; Xu et al., 2011;
Bellotti et al., 2013; Borges and Driller, 2016; Driller et al.,
2016) may constitute a more appropriate approach in daily
practice, but this has yet to be investigated. With regard
to the second objection, it is worth mentioning that graded
exercise tests are relatively complex and time consuming and
that exercise intensity could be more easily determined by
using specific formulas (e.g., Karvonen formula to determine
a target heart rate) (Karvonen and Vuorimaa, 1988; Tanaka
et al., 2001; Gellish et al., 2007; Zhu et al., 2010; Nes
et al., 2013; Shargal et al., 2015). However, a graded exercise
test should be an integral part of the process of a proper
exercise prescription because, currently, exercise intensity
cannot be accurately predicted by specific formulas (Strzelczyk
et al., 2001; Robergs and Landwehr, 2002; Silva et al.,
2007; Sarzynski et al., 2013; Correa Mesa et al., 2015; Esco
et al., 2015; Arena et al., 2016), and a fixed percentage
of a maximally achievable value of heart rate leads to
a considerable amount of interindividual heterogeneity in
metabolic responses (e.g., blood lactate) (Meyer et al., 1999),
which is deemed to contribute, at least partly, to the
interindividual heterogeneity in neurocognitive outcomes (see
previous sections).

Still, even if peripheral blood lactate concentrations are
associated with serum BDNF concentrations (Ferris et al.,
2007; Schiffer et al., 2011), further studies will be required
to investigate the dose–response relationship between exercise
prescription and (serum) BDNF levels (Knaepen et al., 2010;
Coelho et al., 2013; Huang et al., 2014). Since BDNF release is also
influenced by several other non-modifiable (e.g., sex Trajkovska
et al., 2007; Komulainen et al., 2010; Bus et al., 2011) or
non-exercise-related modifiable factors (e.g., sleep or nutrition;

Giese et al., 2013, 2014; Walsh et al., 2015; Schmitt et al., 2016)
that are known to influence neuroplasticity in general (e.g.,
sleep, Meerlo et al., 2009; Raven et al., 2018; or nutrition,
Greenwood and Parasuraman, 2010; Phillips, 2017; Poulose
et al., 2017), these factors should be carefully monitored in
further studies.

In addition, with regard to the optimal dose, it could be
useful to gather markers of internal load that are directly
related to the state of the central nervous system itself
(e.g., brain activity during exercise) because differences in
brain activity (e.g., measured by functional near-infrared
spectroscopy) (i) allow distinguishing between responders
and non-responders (Yamazaki et al., 2017), (ii) are sensitive
to changes of exercise variables (e.g., exercise intensity)
(Rooks et al., 2010; Giles et al., 2014; Tempest et al., 2014;
Santos-Concejero et al., 2015, 2017; Takehara et al., 2017),
(iii) are sensitive to demands posed by the cognitive task
(Herff et al., 2013; Fishburn et al., 2014; Causse et al., 2017;
Khaksari et al., 2019) or the motor task (Carius et al., 2016),
(iv) and are associated with performance improvements
in motor(–cognitive) tasks (Ono et al., 2014, 2015; Herold
et al., 2017; Seidel et al., 2017). Hence, markers of internal
load assessing activation of the central nervous system may
serve to quantify “complexity” (defined as neurocognitive
demands posed by the exercise), which is an important variable
with regard to neurocognitive changes in response to acute
physical exercises and physical training, too (Netz, 2019).
However, while measuring brain activation during exercise
offers great potential to understand exercise–cognition
interaction in general and interindividual variability in
particular, future research in this area is strongly needed
before measures of brain activity can be used to guide
exercise prescription.

Furthermore, we wish to stress that a traditional
individualization of exercise prescription is perhaps necessary
to answer basic research questions (e.g., Are the peripheral
blood lactate release and changes in neurocognition a function
of exercise intensity?) but that the individualization using an
adapted exercise prescription may lead to further insights
into exercise–cognition research (e.g., How to adapt exercise
intensity to achieve a comparable change in the release of
peripheral blood lactate across individuals and how this
affects neurocognition?).

CONCLUSION AND FURTHER REMARKS

In essence, this article aimed at providing a suggestion for a
clearer definition of the dose in exercise–cognition research
and presenting evidence in how interindividual variability in
the dose might contribute to the interindividual heterogeneity
in neurocognitive outcomes. We propose that the dose of
an acute bout of physical exercises and/or physical training
should be operationalized by a specific marker (or specific
markers) of internal load. Modifying the exercise prescription
by carefully adjusting the external load, a comparable dose can
be achieved across individuals (see Figures 1A,B). Research is
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strongly encouraged to investigate in the future whether an
exercise prescription inducing a comparable dose may lower
the interindividual heterogeneity considering outcome variables
on different levels of analysis (Stillman et al., 2016) and on
different aspects of the brain (Stillman and Erickson, 2018;
see Figure 1C). Finally, understanding how a comparable
dose affects neurocognitive outcomes is an important step
toward identifying what dose is optimal for achieving the

greatest benefits with regard to neurocognitive outcomes
in an individual.
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