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Abstract

Background: How does the cochlea analyse sound into its component frequencies? In the 1850s Helmholtz thought it
occurred by resonance, whereas a century later Békésy’s work indicated a travelling wave. The latter answer seemed to
settle the question, but with the discovery in 1978 that the cochlea emits sound, the mechanics of the cochlea was back on
the drawing board. Recent studies have raised questions about whether the travelling wave, as currently understood, is
adequate to explain observations.

Approach: Applying basic resonance principles, this paper revisits the question. A graded bank of harmonic oscillators with
cochlear-like frequencies and quality factors is simultaneously excited, and it is found that resonance gives rise to similar
frequency responses, group delays, and travelling wave velocities as observed by experiment. The overall effect of the
group delay gradient is to produce a decelerating wave of peak displacement moving from base to apex at characteristic
travelling wave speeds. The extensive literature on chains of coupled oscillators is considered, and the occurrence of
travelling waves, pseudowaves, phase plateaus, and forced resonance in such systems is noted.

Conclusion and significance: This alternative approach to cochlear mechanics shows that a travelling wave can simply arise
as an apparently moving amplitude peak which passes along a bank of resonators without carrying energy. This highlights
the possible role of the fast pressure wave and indicates how phase delays and group delays of a set of driven harmonic
oscillators can generate an apparent travelling wave. It is possible to view the cochlea as a chain of globally forced coupled
oscillators, and this model incorporates fundamental aspects of both the resonance and travelling wave theories.
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Introduction

Over the past 200 years the dominant paradigms in cochlear

mechanics have been first the resonance theory, as elaborated by

Helmholtz [1] and later the travelling wave theory, developed by

Békésy [2]. Both have particular merits, but in the middle of last

century the latter prevailed because of Békésy’s clear observations

of travelling waves in human temporal bones and the seeming

impossibility of sustaining the resonance of microscopic tuned

elements immersed in fluid. Later theoreticians found that, given

appropriate figures for elasticity and mass of the basilar

membrane, cochlear mechanics could be fairly well described by

a travelling wave of hydrodynamically coupled motion due to

pressure differences across it, an effect that propagates along the

sensing surface like a ripple on a pond [2–4]. This idea of serial

excitation in the cochlea has conceptual backing derived from

transmission line theory, and observations confirm a wave of

activity progressing from base to apex, typically at some metres per

second.

But the discovery of otoacoustic emissions by Kemp [5,6] has

changed our understanding of the cochlea immensely. The

cochlea is now seen as an active device, and a live cochlea

behaves very differently to a dead one. These new findings support

the work of Gold [7] who in 1948 conceived of the cochlea as a

regenerative receiver, an electronic device that uses positive

feedback to overcome damping and increase tuning sharpness.

Gold’s work opened up an avenue for overcoming the primary

obstacle to the Helmholtz resonance theory, a direction that he

actively pursued. ‘‘[O]nly the resonance theory of Helmholtz’’ he

said, ‘‘interpreted in accordance with the considerations [here,] is

consistent with observation’’ [8], p. 462.

However, with no suitable candidates for the resonant elements

apart from the basilar membrane itself, the general approach has

been to build active properties on top of the passive travelling wave

model [6,9–12], a technique that has been more or less successful.

There have been many experiments and discussions focusing on

the role that this travelling wave plays in cochlear mechanics [13–

17].

Nevertheless, a number of anomalies remain, and these have

been reviewed in ref. [18]. A troublesome feature has been the

failure to observe an unmistakable reverse travelling wave, an

entity required by current theory in order to recirculate acoustic

energy between the peak of the travelling wave and the stapes

[6,19]. According to the theory of coherent reflection filtering

[20,21], this feedback process is required in order to improve

tuning and to generate otoacoustic emissions in the ear canal [19].

Some more recent analyses attempt to explain this anomaly in

terms of the backward-travelling wave being masked by the

simultaneously present forward wave [22], but the special

conditions required for this to occur mean that the issue still

appears problematic. A related difficulty revolves around the

possible role of a fast pressure wave in cochlear mechanics (e.g. refs
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[23–25]). The question is whether energy could travel to and from

the hair cells via such a wave, which propagates at the speed of

sound in water (1500 metres per second, or nearly instantaneously)

through the cochlear fluids. The issue remains open. This paper

addresses the issue by considering what the result might be if all

the outer hair cells, here represented as a graded bank of

uncoupled resonators, were simultaneously excited. The excitation

might come directly from the fast pressure wave squeezing the cell

body (considered most likely), or by a trans-membrane pressure

difference instantaneously deflecting stereocilia (less likely, but

possible).

In this way, the paper short-circuits the difficulties inherent in

trying to build an active process on top of a passive travelling

wave. Instead, the approach is to take the active (resonance-based)

process as the prime mechanism and dispense altogether with the

travelling wave as a causal agent. This logic inverts the normal

causal chain and makes the travelling wave simply a secondary

event – an epiphenomenon – that forms in response to the primary

active process. Such a travelling wave thus carries no energy as it

propagates from base to apex; it is not an effective stimulus, merely

the envelope of activity generated by the active resonating

elements in direct response to the incoming sound pressure. The

active elements, resonantly excited by sound, are precisely those

called for by Helmholtz’s original resonance theory and later

supported by Gold.

Putting the possibility on firmer ground, a candidate for the

resonant elements has already been identified [26], and the merits

of the resonance approach have been systematically evaluated

[18]. Can these non-standard ideas be sustained, and how far is it

possible to go by dispensing with a causal travelling wave?

In this paper the approach is to start, for simplicity, with the

fundamental resonant unit, the harmonic oscillator, and examine

some of its key properties. Certain of these properties – the

amplitude and phase response at a point on the basilar membrane,

and apparent wave velocity along the membrane – are currently

taken as evidence favouring a travelling wave interpretation. This

paper will show how these phenomena can largely arise from

purely resonant behaviour. A model of the cochlea is assembled in

which independent resonant elements form a graded bank of

harmonic oscillators driven at their resonant frequencies, much

like the piano strings that Helmholtz envisaged, with experimen-

tally determined frequencies and tuning sharpness. They are all

simultaneously excited and the response of the system – its

amplitude, phase, group delay, and apparent propagation velocity

– is examined using basic resonance principles.

The first property examined is the amplitude response of a

single resonator and this is shown to be just that of the driven

harmonic oscillator, which takes Q/p cycles to reach a peak. The

amplitude profile will be shown to resemble that found in the

cochlea. More importantly, the group delay of such a harmonic

oscillator is calculated and is shown to amount to several cycles at

resonance, an amount typical of the cochlea. This value is far

greater than the 180u phase delay typically associated with

resonant systems, and normally this 180u figure is taken as

conclusive evidence against the validity of resonance theories of

hearing (p. 16 of [12]; p. 199 of [11]). Strictly, this is true for pure

resonance, but it ignores the possibilities offered by a bank of

forced and lightly coupled resonators whose group delays can

reach several cycles, and these options are explored further.

The question of cochlear phase delays is addressed here in two

ways, firstly by looking at some indicative measures in a

mechanical analog (the vibrating reed frequency meter) and

secondly by reviewing the literature on chains of phase-coupled

oscillators. The literature demonstrates that several cycles of delay

are possible, that phase plateaus occur, and that the individual

tuned elements in the chain retain an ability to respond resonantly

to external forcing.

Another aspect examined is the propagation velocity, a property

often taken as the signature of a travelling wave. On the standard

view, this sound-induced wave motion is seen as a primary

bending stimulus that is progressively delivered to the thousands of

hair cells and their projecting stereocilia. However, on the

resonance model, when each resonator takes Q/p cycles to reach

a peak, it produces an envelope of peak displacement which

appears to move along the cochlear partition. When the velocity of

such a wave is calculated, the values are in line with the travelling

wave velocities observed experimentally and with those normally

derived from more complex transmission line models.

It is shown that a bank of coupled resonators can readily give

the appearance of a travelling wave, but the core of the matter

appears to be whether the stimulus energy reaches the detecting

elements in series or in parallel. This distinction is vital for

deciding whether the cochlea is an essentially resonant system or

one driven by travelling waves, and these alternatives are closely

examined.

It is concluded that these results, based on fundamental

resonator properties and without involving the mass or compliance

of the basilar membrane, are more than just coincidence, but

rather reflect the basic resonant operation of the cochlea’s sensing

elements. In other words, the travelling wave velocities that

emerge are consistent with a fast pressure wave being the prime

stimulus. Travelling wave velocities, then, could simply arise as a

secondary manifestation of a fast-acting compression wave acting

on tuned elements of specific quality factor, not from a complex

interplay of membranes and hydrodynamics.

These outcomes give new life to Helmholtz’s theory. They show

that much care is needed in deciding whether an observed

travelling wave is the result of (i) a stimulus propagating serially

along a coupled basilar membrane, or (ii) simultaneous excitation

of a graded bank of independent resonators, such as might be

produced by a fast pressure wave. The latter situation involves

stimulation of all the sensing cells in parallel, not serially. These

issues are addressed in the discussion section of this paper and are

placed in the framework of the existing literature.

Analysis: The Driven Harmonic Oscillator

The harmonic oscillator is a fundamental element in both

acoustics and electronics and the equations governing it can be

found in many textbooks, where it is shown that it can be modeled

as either a mass on a spring or an LCR circuit. Here the

definitions and derivation found in Fletcher [27] are followed. The

electronic approach is taken by Shera [28].

As a starting point, the cochlea is taken to be a graded bank of

uncoupled, linear, harmonic oscillators arranged along the basilar

membrane and varying in frequency from 20,000 Hz at the base

to 20 Hz at the apex, a distance of some 35 mm in humans. This

system can be completely specified in terms of the resonant

frequency and Q of each resonator, and in the case of the cochlea

such measures are available.

A. Quality factor, Q
The harmonic oscillator has a damping coefficient a which

causes the amplitude of a passive oscillator to decrease. The

damping coefficient governs the sharpness of tuning, or quality

factor Q, of the oscillation. The quality factor is the ratio of the

natural frequency of the oscillator, v0, divided by the full-width,

Dv, of the response curve at 1/!2 of its height – the half-power

Resonance in the Cochlea
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criterion [27]. That is,

Q~v0=Dv, ð1Þ

and it follows that a = v0/2Q.

B. Cochlear Q
The effective Q of all the individual resonators is still the subject

of on-going research [10,13,14]. Different approaches can be

taken, but the two main methods are psychophysical (subjective)

ones, in which the effective Q of the cochlear elements is inferred

from masking experiments, and otoacoustic (objective) techniques

where the Q is derived from studies of the evoked otoacoustic

responses of the cochlea to sound impulses. Here we take the

results of Shera and colleagues [29] who combined both methods

and found empirically that the Q of the cochlea at any frequency f

(in Hz) is given by

Q~12:7 f =1000ð Þ0:3: ð2Þ

These Q values provide a reference point for the present thought

experiment. Some have questioned such high values [30],

although the criticism has been deemed invalid in a recent review

[31]. However, the numerical values used in Eq. (2) are taken as

reasonable, and this relation is plotted over the range 1 to 10 kHz

in Fig. 1.

C. Amplitude response of the driven oscillator
Fletcher [27] considers the case of the sinusoidally driven

oscillator and shows (p. 29 and his Fig. 2.7) that

x tð Þ~(v=v0) ½exp ({a t) sin vt�{sin vt: ð3Þ

For the case of the oscillator driven at its resonant frequency such

that v = v0, the form of the response depends only on v0 and a, or

equivalently, v0 and v0/2Q. Eq. 3 is plotted in Fig. 2A for

v0 = 1 kHz and Q = 12.7, the quantities matching those derived

experimentally by Shera and colleagues [29].

Inspection of Fig. 2A confirms that the driven oscillator takes Q

cycles to build up to 0.96 amplitude when a stimulus at its natural

frequency is applied (p. 26 of [27]; [32]), in the same way as the

damped oscillator takes Q cycles to exponentially die away to

e2p<0.04 when the sustaining energy is switched off. The number

of cycles obviously depends on the amplitude criterion, and for the

more usual half-power criterion (1/!2 or 23 dB), the build up

time is Q/p, the result shown by Shera and colleagues [28] and

indicated in Fig. 2A by the measure ‘b’. Reference [28] also shows

how the half-power criterion is related to Q10 (the 10 dB criterion)

and QERB (the equivalent rectangular bandwidth), which are

proportional to each other. Here, the half-power criterion is

chosen, in which case the important result is that the driven

oscillator takes Q/p cycles to respond to a stimulus at its natural

frequency. A related consideration is the final steady-state

amplitude reached by an oscillator when it is driven by frequencies

off resonance. Again, this essentially depends only on the resonant

frequency and Q. After normalising for the driving force and mass,

the amplitude, a, is (p. 16 of [27]):

a~ v0
2{v2

� �2
z v0v=Qð Þ2

h i{1=2

, ð4Þ

and this function is plotted in Fig. 2B. A notable feature of this

curve is the resemblance to actual measurements of the amplitude

of basilar membrane vibration in response to a tone, and examples

of this are shown in Fig. 2C and 2D for comparison. Figs. 2B–D

show the distinctive asymmetry which reflects the behaviour of the

harmonic oscillator when its displacement and driving frequency

are plotted logarithmically. These plots show it is mistaken to say

that the amplitude response of a simple resonator is symmetrical in

the frequency domain (p. 154 of [33]).

High Q values mean that such resonators will take some time to

reach maximum amplitude in response to a sound and they will

also take time to decay afterwards. Therefore a classic argument

against the resonance theory of hearing [34] is that such a cochlea

will be unable to distinguish rapid changes in speech and music (it

would be like a piano with the sustain pedal always on). It is not

denied that there is a compromise between tuning sharpness and

rate of stimulus discrimination, as Helmholtz himself was aware,

but in practical terms the Q of the cochlea, about 30 at 10 kHz and

12 at 1 kHz, still allows very fast discrimination: a decay time of

Q/p cycles translates to only about 1–3 ms.

D. Phase delay and group delay of the driven oscillator
As well as the amplitude response, it is also informative to look

at the phase response. Here it is important to distinguish two

quantities, the steady-state phase delay and the dynamically

relevant group delay. As shown by Fletcher (p. 16 of [27]), the

phase of the driven oscillator, h, relative to the driving force, is

given by

tanh~{v=Q v0
2{v2

� �
: ð5Þ

Again, it is worth noting that the shape of the curve depends

entirely on v0 and Q. The phase delay for an oscillator of natural

frequency 1 kHz and Q = 12.7 when subjected to a driving force of

1 kHz is shown in Fig. 3A. Note that below the resonant frequency

the displacement leads the force by up to 90u, whereas above the

Figure 1. Variation of the cochlea’s quality factor with
frequency. The line marks the empirical relation between quality
factor, Q, and frequency, f, in kilohertz: Q = 12.7 f0.3 as determined by
Shera et al. (2002) [29] from a combination of psychophysical and
otoacoustic measurements.
doi:10.1371/journal.pone.0047918.g001
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resonance frequency the response lags the force by up to 90u. The

total phase range is thus 180u, a well-known result.

Of particular interest for signal processing systems is the group

delay, which gives the delay with which information can be delivered

through a physical system [35]. The group delay, Tgr, is related to

the phase delay, Tp, by [35,36]:

Tgr~{dTp=dv; ð6Þ

that is, the group delay is the negative slope of the phase delay.

Computing the derivative of Fig. 3A produces the curve shown in

Fig. 3B. Here the group delay is shown in terms of the number of

cycles of the driving frequency, and it is clear that the maximum

group delay appears at the resonance frequency, where a delay of

just over 4 cycles occurs. Note that this number is equivalent to the

Q/p figure (time interval ‘b’) evident in Fig. 2A for the time taken

for a driven oscillator to respond to a tone-burst at its resonance

frequency; note also that this delay exceeds half a cycle, the limit

for steady-state phase delay in a purely resonant system. This

result will be returned to in Sections D and E-4 of the Discussion.

Figure 2. Amplitude response with time and frequency of the driven harmonic oscillator. (A) Amplitude response with time when the
natural frequency is 1 kHz and the Q is 12.7, values reflecting those of the cochlea according to [29]. From the instant of stimulation (at t = 3 ms), the
oscillator takes Q/p cycles (,4 cycles) to reach the half-power amplitude of 0.707 and Q cycles to reach the 0.96 criterion. The labelled bars indicate
three delays: a, signal-front or propagation delay; b, group delay or filter delay (also called resonance build-up time); and c, the total delay – their
relevance to cochlear mechanics is discussed in the text. (B) Amplitude–frequency response (logarithmic axes) of an oscillator with Q as before and
natural frequency of 7 kHz. (C) Typical amplitude response of the cochlea with a CF of 7 kHz, as shown in Fig. 9 of Lighthill (1981) [33]. Note how the
response resembles that of the driven oscillator in (B). (D) Response of the basilar membrane as recorded by Békésy as travelling waves in the time
domain and transformed into the frequency domain by Flanagan (1960) [135]. Last two panels reproduced with permission of Cambridge University
Press and Alcatel-Lucent USA respectively.
doi:10.1371/journal.pone.0047918.g002
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E. Calculation of apparent wave velocity
Having calculated the response of a single driven oscillator, the

next step is to see what the overall response of a graded oscillator

bank looks like. When excited simultaneously, such as by an

impulse composed of all frequencies, each element in the bank will

take a different time to reach maximum amplitude, a time that

depends on frequency and Q. The overall effect is to give rise to an

envelope of activity travelling from where responses reach a

maximum most quickly to where they are slowest. The analysis is

restricted to the range 1 to 10 kHz, where data are readily

available. The standard frequency–place map [37] gives the

frequency and location of each resonator, and the Q values have

already been specified (Eq. 2).

Based on Eq. (2), the delay at each point resulting from

simultaneous excitation of all the cochlear oscillators can be simply

calculated. Each oscillator will reach a maximum response after

Q/p cycles; since one cycle occupies 1/f seconds, the time delay, t,

at each characteristic frequency will be, in milliseconds,

t~(Q=p)| 1=fð Þ|1000: ð7Þ

This function is plotted in Fig. 4A, from which it is seen that the

shortest delay (about 1 ms) occurs at the 10 kHz point and

progressively increases towards the 1 kHz location, where a delay

of 4 ms is found. This can be directly interpreted as a wave of

activity appearing to move from base to apex, the same

phenomenon as travelling wave theory describes.

To determine the speed of this apparent wave, the distances

involved are needed, and this is a matter of referring to a map of

characteristic frequency against distance from the apex. The well-

studied frequency–place map [38] was first described by Green-

wood (1961) [37], and has become standard in the field. The map,

Fig. 4B, relates characteristic frequency in hertz, f, to distance in

millimetres, x, from the apex. It is expressed as:

x~16:7 log10 0:006046f z1ð Þ: ð8Þ

Together, these equations allow a plot of delay as a function of

distance to be created (Fig. 4C). This depicts a wave progressing

from base to apex, and the slope of the curve (dx/dt, which is

velocity) indicates it is slowing down, a characteristic feature of the

classical travelling wave [4]. Taking Equations 2, 7, and 8 together

and differentiating shows that dx/dt, the velocity, v, of the travelling

wave (in mm/sec) is given by (dx/df)?(df/dt), which as a function of f

is:

v~0:1228f 1:7= 0:006046f z1ð Þ ð9Þ

or as a function of x by

v~(165:4:100:06x{1)1:7=(8:16:100:06x): ð10Þ

Equation 10 is plotted in Fig. 5A. It shows that the wave velocity

begins at about 12 m/s at the 10 kHz point and slows down to

about 2 m/s at the 1 kHz point. The significance of this curve is

that it resembles actual travelling wave velocities determined

experimentally. For example, Donaldson and Ruth [39] measured

the latencies of auditory brainstem responses to different frequency

bands on some 24 subjects, and their calculated travelling wave

velocities are shown in Fig. 5B. The calculated velocities are

remarkably close to experimental ones, even though values near

the base are susceptible to wide variation. The derived velocities

have not, of course, been adjusted for neural delays, nor has

consideration been given to alternative threshold criteria in

specifying build-up time. Nevertheless, this noteworthy result

opens the way to re-interpreting cochlear mechanics purely as a

resonance phenomenon.

Figure 3. Phase delay and group delay of the driven harmonic
oscillator. (A) Phase–frequency response of the same oscillator as in
Fig. 2A, with phase given in terms of its velocity relative to the imposed
force. At the resonance frequency of 1 kHz, the velocity is in phase with
the force, whereas at the lowest frequencies, there is a phase lead of
90u; at the highest frequencies there is a phase lag of 90u. The total
phase excursion is therefore limited to 180u (half a cycle). (B) Group
delay of the same oscillator, which is defined as the slope of (A). Note
that the maximum group delay of some 4 cycles (Q/p) occurs at the
resonance frequency.
doi:10.1371/journal.pone.0047918.g003
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Discussion

The above calculations have shown that distinctive features of

the cochlea – its frequency response, group delay, and apparent

travelling wave velocity – which are usually explained in terms of a

travelling wave model can be derived from basic resonance

principles. Some major implications of these results will now be

discussed, including a proposal for a new model of cochlear

mechanics – a globally forced chain of phase-coupled oscillators –

in which characteristic features of the resonance and travelling

wave approaches are merged. The new model displays two

distinctive aspects: its amplitude response is close to that expected

from simple resonance, whereas its steady-state phase is generated

from a combination of resonance and coupling along the chain.

An important property of such a mechanical system, as

documented in the literature, is that the amplitude and phase

are largely independent. An appropriate electronic analog is

presented as a basis for future modelling.

A. Phase excursions of more than half a cycle
It has long been stated that, since the phase response of a simple

resonator can be no more than 690u, the resonance theory of

hearing cannot be valid ([11], p. 199; [2], p. 461; [4], p. 145; [12],

p. 16). While this is strictly true, it does not mean that a modified

resonance model of some kind cannot be sustained. Moreover, on

logical grounds, if it happens that a pure resonance model is

inadequate then it still cannot be claimed that the travelling wave

model (based on a transmission line) must necessarily be correct.

There are alternatives, as the following text will explain. In a chain

of phase-coupled oscillators, the phase delays in the system can be

many cycles, but the individual oscillators can still be forced by a

global stimulus that produces local resonance. It is suggested that

in the cochlea there is competition for oscillators to synchronise

with their neighbours and with the external forcing field, and it is

this compromise which leads to phase delays exceeding 180u.
In seeing how this can come about, it is useful to clearly

distinguish the dynamic group delay of a system and the steady-

state phase delay at a point. Whereas the phase delay of a single

resonator may have limits of half a cycle, its group delay can

extend to Q/p cycles (as shown in Section D of the Analysis), and

this has physical implications when a collection of individual

oscillators are coupled into a single system. Physically, phase delay

can be interpreted in terms of the delay of the carrier frequency,

whereas the group delay is associated with that of the signal

envelope and is the delay associated with the transport of energy

and information through a system ([36]; Sect. 10.4 of [35]). Briefly:

in signal transmission systems, the observable is the group delay

and group velocity. Thus, in the case of light, the phase velocity

can exceed 361010 cm/sec, whereas, of course, the actual signal

must always travel at less than this speed and is measured as the

group velocity. Similarly, in the cochlea, the response of the

resonators is shaped by the basilar membrane on which they sit,

forming an envelope whose relevant measure is the group delay.

When a probe microphone measures the progressive phase delay

of OAEs as frequency increases, or when a laser vibrometer

measures the motion of the basilar membrane in response to a

tone, these instruments use a constant sine wave to detect the

phase delay, but it is the group delay – the negative slope of the

phase–frequency curve – which most aptly specifies how the ear

performs in terms of real-world sounds.

Figure 4. Delays in the cochlea in terms of frequency and
distance along the basilar membrane. (A) Delay of cochlear
resonators (ms) against characteristic frequency (kHz). (B) The
Greenwood frequency–place map which relates distance from the
apex to the characteristic frequency [37] over the range 1 to 10 kHz. (C)

Cochlear delay as a function of distance. The y-axis is inverted so as to
more easily appreciate that the wave is progressing (delay is increasing)
from base to apex.
doi:10.1371/journal.pone.0047918.g004
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The idea being developed here is that the introduction of

coupling to the individual resonators does not immediately destroy

their resonance behaviour. What it does is join them into a unified

system whose most relevant physical measure is their group delay.

In a sense, coupling converts the group delay of the individual

elements into the group delay of the whole. The individual

elements are still able to respond to outside influences and to

resonate, and the globally forced phase-coupled model put forward

in Section E of the Discussion shows how this can be achieved.

When delays of otoacoustic emissions are measured (e.g. [40]),

the most relevant measure is the group delay, and indeed the Q

values used here [28] were derived from group delay measure-

ments. This broad context has been confirmed by the experiments

of Wilson (1992) [41] on sets of vibrating reeds, and it is this system

which forms the basis for a model of the cochlea as a globally

forced set of coupled oscillators. This approach is discussed in

Sections D and E below. Wilson’s model shows resonance, but it

also exhibits extended cycles of delay. However, before describing

this system, it is first helpful to define what is meant by a travelling

wave system and show how this differs from a resonant one.

B. Travelling wave and resonance
Given the calculations in the Analysis section which show that

both travelling wave and resonance can in some major respects

lead to similar outcomes, how is it possible to distinguish systems

supporting travelling waves (such as ripples on a pond) from

systems operating on the basis of pure resonance (such as the

strings of a piano)? This section spells out the fundamental

differences and demonstrates that the issue is more than one of

semantics.

The core issue of travelling wave or resonance often becomes

confused because travelling wave models are in fact built up of

resonant elements [11,12]. Crucially, however, in this situation the

resonant elements are not isolated and driven in parallel, but

driven sequentially by a slow wave on the basilar membrane. The

analogy has been made to small masses floating on top of a water

surface (Fig. 4.7C of [11]). In such an arrangement, each

resonating element behaves like a small resonator sitting on top

of a larger one (Fletcher, p. 218), and the driving force is slow and

indirect, such as by a slowly propagating ripple on the surface of

the water. The result is that, according to standard travelling wave

theory, the serial wave progressively unloads its energy to the

buoyant masses before reaching a peak and dying out before the

resonant place is reached (p. 214 of [11]; footnote 10 of [42]; Fig.

3.7 of [12]). A clear difference between the travelling wave and

resonance theories is therefore that the peak amplitude is reached

before the resonance place in the former and at the resonance place

in the latter.

Békésy made an attempt to try and clarify the mechanism

powering the cochlear travelling wave, saying with his colleagues

that ‘‘nothing is implied about the underlying causes’’ (whether a

ripple along the membrane or a stimulus conveyed through the

cochlear fluids) [43]; p. 16 of [12]. But the agnosticism didn’t win

many adherents because the heuristic simplicity of a hydrody-

namically coupled travelling wave, in the face of no obvious

resonating elements, remained appealing [14]. The discrete

resonator idea of Gold [6,8,44] failed because at the time it was

impossible to see how an active cochlea based on positive feedback

to a local resonator – his regenerative receiver model – could

work. From reading the recent literature, the impression may be

gained that, semantically, the term ‘‘travelling wave’’ has been

taken to mean any progressive motion without any concern about

whether the primary stimulus is serial or parallel (e.g. in the debate

between Dancer [45] and Ruggero [46]). This move has had the

effect of losing precision in describing how the cochlea works

because the unquestioned assumption is that there is a serial

stimulus at work and that the appropriate model is the

transmission line (section 3.4 of [12]; [47]).

To clarify the semantics and open the way to a fresh approach,

it is helpful to look again at a nice distinction between travelling

wave and resonance made by Békésy. He drew the analogy of a set

of pendulums, of graded length, hanging on a rod [2](p. 519 ff).

To create a travelling wave, the pendulums are connected by

rubber bands, and the shortest pendulum is excited with a

displacement (Fig. 6, right). Because of the coupling, the shortest

pendulum excites each of its neighbours in turn, and a wave travels

along the set, carrying energy. To illustrate resonance, Békésy

pictured the same pendulums without coupling. To excite the

pendulums simultaneously, the rod is given a sharp twist. Again, a

wave propagates (Fig. 6, left), but in this case it carries no energy.

Figure 5. Calculated and measured travelling wave velocities. (A) Calculated apparent wave velocity along the cochlea in response to a
simultaneous excitation of a bank of graded resonant elements. The wave starts at a speed of about 12 m/s at the basal (high frequency) end and
slows to about 2 m/s at the apical (low frequency) end. These are typical travelling wave velocities. (B) Experimentally measured travelling wave
velocity in 24 human subjects using ABR methods (from Donaldson and Ruth, 1993 [39], reprinted with permission of the Acoustical Society of
America).
doi:10.1371/journal.pone.0047918.g005
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In terms of the cochlea, in the first case the stimulus could be a

membrane-borne ripple, and in the second a fast fluid-borne

compression wave stimulating all the cochlea’s sensing elements

nearly simultaneously. In one case the stimulus is in series with the

bank of tuned elements and in the other it operates in parallel.

The difference between travelling wave and resonance is

graphically illustrated by Duifhuis (p. 52 of [12]) where the crucial

distinction translates to whether or not there are coupling

inductors between transmission line elements. In the resonance

case (Fig. 7A), the input to the elements is in parallel; in the

travelling wave case (Fig. 7B), the input reaches the individual

elements in series through a chain of inductors, representing

coupling by the mass of the fluid. In terms of general principles,

the point has been made by Franck [48] that there are two distinct

classes of oscillatory systems, force-dependent and flux-dependent,

and the relationship between them is a matter of the direction of

causality. In flux-dependent systems, the stimulus acts in series and

the flux gives rise to forces; in force-dependent systems, the

stimulus acts in parallel and the force produces fluxes. In Franck’s

terminology, therefore, the question is one of whether the cochlea

is a force-dependent or flux-dependent system.

In the following section, the issue of parallel versus serial

excitation is examined in the context of electronic models, and the

two approaches are combined into a single circuit which displays

aspects of both. This model might perhaps satisfy both sides of a

long-standing debate.

C. Electronic filterbanks
For many years a common way of describing cochlear

mechanics has been in terms of electronic models, and the

transmission line model has almost become the standard approach

[9]. In these models, the cochlea’s resonant elements are

represented as a graded series of filters – a filter bank – and a

good review of the advantages and drawbacks of various electronic

models is given by Lopez-Poveda [49]. This author highlights a

crucial distinction (p. 32): in the classical travelling wave interpre-

tation of cochlear mechanics (e.g. [11]) the output of each filter

serves as the input to the next, making the stimulus travel through

the system in series. In contrast, some filter bank models (e.g. [50])

assume that all the filters share a common input signal, so that the

elements operate in parallel. The distinction was also made by

Duifhuis [51] who calls the first class ‘‘transmission line models’’

and the second ‘‘filter banks’’. He points out that in the first class

physical coupling is involved, whereas in the second the channels

are independent. The two configurations, illustrated in Fig. 7,

correspond to the two arrangements of pendulums in Fig. 6.

More recently, Lyon [52] has revisited the issue and speaks of

cascade filter banks in the first case and parallel filter banks in the

second. Unfortunately, the difference between the two – that they

Figure 6. Békésy’s pendulum analogy illustrating the difference between resonance and a travelling wave. In a resonant system (A),
the pendulums hang from a common rod and are simultaneously excited by a short twist to the rod. In a travelling wave (B), the excitation is applied
to the shortest pendulum and the energy moves progressively to neighbouring longer ones through rubber bands which supply coupling. In both
cases a wave-like motion of the pendulums is seen.
doi:10.1371/journal.pone.0047918.g006

Figure 7. Comparison of electronic circuits representing
resonance and travelling wave models. (A) A resonance model
of the cochlea and (B) a transmission line or travelling wave model.
Inductors are analogues of mass, resistors represent damping, and
capacitors stiffness. In (A), each resonant filter element receives
simultaneous input in parallel; in (B) each filter element receives a
progressively delayed input signal as it propagates in series along the
chain of coupling inductors. From p. 52 of Duifhuis [12] and used with
permission of Springer Science+Business Media B.V.
doi:10.1371/journal.pone.0047918.g007
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represent two very different underlying physical mechanisms – is

not often emphasised because the general aim has been to achieve

a phenomenologically satisfactory model, not a physiologically

exact one. That is, the aim has been to get the filter shapes right to

reproduce the psychophysical data without dwelling on the

mechanics – in other words, to produce ‘‘the right output for a

given input without paying much attention to the actual

biophysical processes underlying a given physiological result’’

(p. 22 of [49]).

This blurring of distinctions has not helped to advance cochlear

mechanics. The review of [49] includes a table in which all the

surveyed models, transmission line and filter bank, are conflated

by listing them as having a ‘‘filterbank (or equivalent)’’. As it

happens, parallel models now appear to be receding and the

strong preference is for the transmission line model. In his recent

paper, Lyon states that the parallel filterbank ‘‘would not have any

natural relationship to traveling waves’’ (p. 3894 of [52]), and that

the transmission line model is better, even if, in analogy with the

flicked rope model of the travelling wave, it is necessary ‘‘to

enforce conservation of energy’’ (that is, the stimulus energy must

flow progressively along the membrane). The intent of the Analysis

section was to show that such serial models are not always

necessary and that it is equally possible – and even desirable if the

physics so dictates – to describe cochlear mechanics using a

resonance (parallel) approach.

In Section E below a way by which the dual aspects, serial and

parallel, can be captured in a single model is set out, but as an

introduction it first helps to describe a simple physical model that

reflects such a duality of inputs and which seems to aptly represent

the workings of the cochlea. The favoured analogy is a set of

vibrating reeds driven by a magnetic field, and it was first

described by Békésy and later investigated in some detail by

Wilson [41]. In terms of the basic cochlear mechanics raised in this

paper, it is a model having many virtues. It is a resonant system

which also demonstrates travelling waves, and in major ways it

comes closer to how this paper views the cochlea as operating – as

a globally forced chain of coupled oscillators – than to the standard

travelling wave model that Wilson thought he was describing.

D. A system of vibrating reeds
An instructive demonstration of the similarities and differences

between resonance and travelling wave has been given by Wilson

[41] who studied the dynamics of a graded bank of tuned reeds – a

Frahm frequency meter with 21 reeds tuned from 45 to 55 Hz.

The Frahm reed system was also briefly investigated by Békésy [2].

A resonance situation was replicated by driving the free-standing

reeds with a common 50 Hz magnetic field, and the travelling

wave picture was modelled by using the same system supplement-

ed with an intertwined rubber band which lightly coupled the

reeds together. Although the experiment sought to highlight the

differences, what becomes clear is that the behaviour in the two

cases is actually closer than it first appears. Wilson’s results are

shown in Fig. 8. The top row of Fig. 8A illustrates the resonance

situation and shows the steady-state phase of the free-standing

reeds, once oscillatory transients have died down some time after switch on. It

takes the expected form, with a range from +90u (at the 55 Hz

reed) to 290u (at the 45 Hz one). The phase, revealed with a

stroboscope, resembles the familiar response curve of a single

driven oscillator, as shown in Fig. 3A (although note that the

profile here is actually that of oscillators of different frequency

driven by a fixed frequency).

To look at the effect of coupling, Wilson threaded a rubber

band through his reeds in a similar way to how Békésy linked his

set of pendulums. Light coupling is supplied by the stretch of the

rubber, and the remaining text of this section aims to demonstrate

that, in terms of a vibration sensor’s detection abilities, the

coupling makes only a minor difference.

After steady state is achieved in the coupled system, Wilson finds

that the phase lag of the reeds now exceeds 1 cycle (Fig. 8A,

middle row), and he draws attention to the fact that this is more

than the half cycle seen before with the isolated resonators. The

appearance of this extra shift is meant to illustrate the formation of

a travelling wave and how the system is now behaving quite

differently to before. Certainly, it proves that the system is now

more complex than second-order, but the thing to note is that in

major respects the system is little changed. There is now an

envelope formed by the rubber band, and a wave appears to be

continuously travelling along it from the high-frequency end to the

low-frequency end, but in terms of each of the individual

underlying resonators, their sympathetic resonance in response

to the driving magnetic field is much the same. One difference is

that after transients have died out the rubber band carries ‘a

travelling wave’, whereas without it the reeds’ vibration envelope is

static; however, in both cases the reeds within both envelopes are

still vibrating, especially those near the 50 Hz point.

A feature missing from this picture is the behaviour of the reeds

between the time that the electromagnet is switched on and the

time that quasi-static conditions are achieved. Importantly, in both

situations (coupled and uncoupled), each reed, driven by the

50 Hz magnetic field, goes through a pattern of increasing

amplitude, similar to the response of the driven oscillator shown in

Fig. 2A.

In this situation, the group delay is a useful descriptive measure.

The group delay has been defined in Eq. 6, and at the resonance

frequency this is little affected by light coupling, as computation of

the phase slope, 2DW/Df, from Wilson’s data (right column)

demonstrates. Wilson also looks specifically at 4 reeds (of natural

frequencies 47, 48, 49, and 50 Hz) and drives them with magnetic

fields of 38 to 62 Hz, measuring the amplitude and phase at each

frequency (Fig. 8B). As Section D of the Analysis showed, the slope

of all the phase curves is a direct measure of the group delay at

frequency f, so that at the resonance frequency, about 50 Hz, all

systems – coupled and uncoupled – show a group delay of 200–

400 ms or 10–20 cycles. In other words, after the electromagnet is

switched on, the resonators begin building up amplitude and it

takes about one-third of a second for them all to reach a quasi-

static condition. Since group delay in cycles equates to Q/p, this

means that the associated Q was about 30 to 60, values that

roughly match the width at half-power of the amplitude curve (f/

Df) in Fig. 8A.

Importantly, in the one-third of second before steady state is

achieved, apparent waves of excitation – travelling waves of a sort

– formed by envelopes of displacement will also progress along the

bank of resonators (see, for example, the remarkable pendulum

waves seen in a Harvard University Natural Sciences Lecture

Demonstration [53] at http://www.youtube.com/

watch?v = yVkdfJ9PkRQ). In fact, the time between switch-on

and steady state is the crucial period to examine, for this describes

the time course of how the reeds – proxies for the sensory function

of the hair cells – are excited. The question most relevant to the

cochlea is how the reeds build up amplitude in response to the

driving magnetic field, not their behaviour after steady state

conditions have been achieved, and this is where Wilson’s

experiment can be said to miss the point. Perhaps an apt analogy

is the pendulum video played backwards, so that all the pendulums

start at rest and then gradually build up amplitude, driven by an

invisible force. If this were done, we would see a slow build up and

many travelling wave envelopes moving along the set of
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Figure 8. Properties of a graded bank of tuned reeds as an analog of the cochlea. The bank is a resonant system which, when coupled, also
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pendulums, governed by the phase difference between them (see

also the discussion of pseudowaves in Section E below).

The rubber band has forced all the reeds to conform to a

travelling wave envelope, which is visible, whereas without it the

reeds follow the dictates of the electromagnet alone and there may

or may not be a definable ‘‘envelope’’. Near resonance, however,

where amplitudes are large, the underlying reeds behave very

similarly whether they are coupled or not. In both cases, they are

vibrating with large amplitudes near their natural frequencies, and

the peak amplitudes are reached after about Q/p cycles. Most

importantly, the reeds continue to be driven by the magnetic field;

it is not true that the reeds, considered as analogs of sensory hair

cells, are ‘‘deflected’’ or supplied with energy as a travelling wave

moves along. Said another way, the vibrating reeds create the

travelling wave; the travelling wave does not vibrate the reeds

(albeit that after steady state has been achieved the wave does

affect vibration of the off-resonance reeds, but these have small

amplitude). The dominant energy supply continues to come from

the oscillating field – it is the primary stimulus in the causal chain –

and the rubber band is secondary, simply defining the displace-

ment envelope. Moreover, the group delays and Q values at

resonance are not greatly changed by the rubber band, as

examination of Fig. 8 shows.

It is possible to be impressed with the large change in phase

between the reeds at either end of the array, which increases as the

coupling becomes stronger. After switching-on transients have dissipated,

the phase difference between the low frequency reeds (near 45 Hz)

and the high frequency reeds (near 55 Hz) grows from half a cycle

(the uncoupled condition) to 1J or 2J cycles. As frequently

pointed out, such a phase change exceeds what is possible with a

single resonator. However, it is less frequently noted that before

steady state is reached there can easily be more than 1 cycle of delay in

a resonant system comprised of a graded bank of multiple,

independent resonators. For example, as shown in Fig. 3, with a Q

of 13 at the apex, there is up to Q/p (,4) cycles of group delay,

whereas at the base, with a Q of 30, there is up ,10 cycles of delay,

giving potentially many cycles of ‘‘waves’’ travelling from one end

to the other (again, the video demonstration is helpful in

appreciating this). At the same time, it is again also worth noting

that the end-most reeds, which exhibit the largest phase changes,

carry small vibration amplitudes (they are off-resonance), so that

most of the system energy continues to reside near the middle,

strongly resonating reeds. In this reed model, it is simply not true

that the travelling wave has ‘‘died out’’ before reaching its

resonant place (the 50 Hz reed), as a classical low-Q transmission

line model would predict [11,33,54]. Although the rubber band

serves to define the moving envelope, by itself the energy it carries

is small.

In summary, the coupled and the uncoupled reeds behave quite

similarly. At the resonance frequency, the coupled and the

uncoupled reeds are still very much vibrating at high amplitude,

driven by the electromagnet, and the beguiling appearance of a

wave in the rubber band after steady state has been achieved

should not blind us to the essential similarity of the coupled and

uncoupled cases, especially before steady state is achieved. From the

results shown in Section E of the Analysis, it should be plain that

the apparent travelling wave velocity in a purely resonant system is

very much the same as that in a coupled system provided the

coupling is light – the Q remains high – and the resonant

frequencies of the underlying resonators are not appreciably

changed. Only the off-peak behaviour is noticeably different.

Interestingly, the phase curves (middle column of Fig. 8A) are

remarkably smooth below, at, and above the resonance frequency,

showing no sign that forcing by the 50 Hz oscillating magnetic

field has created any discontinuity in the reeds’ phase response at

this frequency, although the amplitude of course has been much

increased; this distinctive feature will be picked up again in the

next two sections.

The end-point of this discussion is that a set of Frahm reeds, or

any bank of graded resonators, can, at a basic level, be well

described in terms of its resonance properties, of which group

delay is more important than steady-state phase delay. A similar

conclusion was reached in a recent paper by Babbs [55] which

considered the resonance behaviour of the basilar membrane

represented as an uncoupled set of masses on springs. Quantitative

analysis of this (high Q) Helmholtz-like model showed an apparent

travelling wave moving from base to apex in response to a click, as

well as in the first 4 ms after the onset of a 1 kHz tone. However,

Babbs was unable to physically reconcile this travelling wave, and

its many cycles of delay, with the results obtained using continuous

tones, which showed only the expected steady-state solution of one

half-cycle of delay (his Fig. 9, which show the results of

homogenous solutions and particular solutions to the wave

equations). The difference between Babbs’s particular and

homogenous solutions is the counterpart of the difference between

the steady-state and transient solutions of the driven oscillator (see

section 2.8 of [27]). Once this difference is recognised it becomes

unnecessary to look, as Babbs did, for the lingering effects of small

repetitive impulses to explain observed large delays and travelling

waves in cochlear mechanics. It is now possible to understand

Békésy’s finding that the difference between the resonance and

travelling wave theories ‘‘disappears completely’’ for transients

(p. 542 of [2]). Appreciating the crucial role that group delay plays

in the excitation of a driven oscillator helps in understanding this

‘‘surprising’’ result and in seeing what this may mean for

individual outer hair cells and for otoacoustic emissions in general.

To understand the transient response of any system, the group

delay is the key parameter and the appearance of a travelling

wave, transitory or continuous, is not important. In the case of the

cochlea, the persistent travelling wave that appears in the steady

state is only of secondary interest. Some typical cochlear response

shows travelling waves. The reeds are driven in parallel by an oscillating magnetic field, and the plots in the left column are reproduced from Wilson
(1992) [41] with permission from Elsevier and P. Wilson. (A) Relative amplitude and phase of the reeds in response to a 50 Hz magnetic field. At top is
the purely resonant situation, without coupling; the relative width of the resonance peak (f/Df) provides a measure of Q (about 50). The phase delays
show values expected from a driven oscillator, and the slope of the curve at the resonance frequency (red lines) gives the group delay, shown in the
right column (about 0.4 sec, a value in keeping with Q/p cycles). In the two lower plots of (A), the reeds have been coupled together with a rubber
band, first lightly (middle) then strongly (bottom), creating a travelling wave in the band. The Q values are now lower, about 35 and 25, and the group
delays at resonance are also appropriately lower (0.3 and 0.2 sec), but resonance still occurs at 50 Hz where the amplitude is highest. Phase plateaus
occur at delays of 1.25 and 2.25 cycles (exceeding the 0.25 cycles of the uncoupled case, but at frequencies far away from resonance, where
amplitudes are low). (B) The lightly coupled situation again except that 4 individual reeds (natural frequencies 47–50 Hz) are driven at a range of
frequencies to give amplitude and phase response curves. Again, the plots show that the reeds resonate (reach maximum amplitude) near their
natural frequencies. Group delays are comparable to (A) and phase lags reach plateaus of 1.25 or 2.25 cycles. Although once more ‘‘travelling waves’’
occur in the rubber band, the primary event is resonance of the reeds.
doi:10.1371/journal.pone.0047918.g008
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curves are shown in Fig. 9, and the resemblance of certain key

features to Fig. 8 will be discussed in the next section.

This paper takes the view that the vibrating reed frequency

meter is an excellent analogue of how the cochlea works, closer in

fact than Wilson himself portrayed and better than has been

acknowledged. The set of vibrating reeds is a ‘flux-driven’ system

operated by the magnetic flux permeating the reeds. An important

insight is that it is not the case that the travelling wave in the coupled

rubber band causes vibration of the reeds. The travelling wave is

just an interesting side effect of a magnetic field driving a parallel

filter bank.

To conclude this section, the difference between the travelling

wave and resonance models was illustrated in Fig. 7 in terms of

equivalent electronic circuits [12]. In the resonance case, the input

to each tuned element appears in parallel (Fig. 7A); in the

travelling wave case, the input reaches the individual elements in

series through a chain of inductors (Fig. 7B). After having observed

the behaviour of the vibrating reed frequency meter, and seen that

it does not function like a transmission line but more like a bank of

resonators, it is suggested that an appropriate electronic model of

the cochlea is a hybrid of Figs. 7A and 7B, which is set out in

Fig. 10. Like the Frahm frequency meter, it combines parallel

inputs to the resonant elements, which makes the input to each

element continuous and instantaneous, while at the same time

providing coupling between adjacent elements. More explicitly, in

terms of Békésy’s pendulum models it means there is a third option

which the literature has not specifically addressed: the pendulums

are coupled but their excitation comes from motion of the suspension rod.

Anticipating discussion in the next section, the hybrid model

embodies a key property – forcing – which is seen as essential in

making the cochlea behave resonantly, while including neighbour-

to-neighbour coupling that reflects the physical disposition of the

resonant elements on the cochlear partition. The following section

will show that the hybrid model can be analysed in terms of a

chain of coupled oscillators undergoing global forcing.

E. Chains of coupled oscillators
Wilson’s insights into cochlear mechanics were gained using a

physical model, a set of reeds vibrating within a magnetic field.

Describing this physical analogue in mathematical terms would be

invaluable because then the behaviour of the system could be

systematically explored. Babbs [55] has analysed the situation for a

graded bank of resonators without coupling, but the coupled case

is more complex. Coupling undoubtedly gives rise to ‘a travelling

wave’, but a difficulty is to define the governing factors and

identify the parameters involved in its propagation. As set out

below, there are different types of travelling wave, some relying on

point-by-point transmission of energy, such as a ripple on a pond,

but at the other extreme are ‘pseudowaves’ that carry no energy

whatsoever. Where does the cochlear travelling wave fit in?

The most common approach to modelling travelling waves has

been to look to the case of the electronic transmission line (Fig. 7B),

but this limits the full range of possibilities because it emphasises

serial transmission and downplays parallel phenomena, the very

factors this paper wishes to emphasise. For the set of vibrating

reeds, the key property to be included in the modelling is the forcing

action of the oscillating magnetic field, and in the case of the

cochlea it is the parallel forcing exerted by acoustic pressure on all

the OHC resonators, and this aspect is the focus of this section.

The standard transmission line model fails to accommodate

parallel forcing; moreover, it also enforces ‘conservation of charge’

[17] so that basilar membrane motion is compelled to conserve

fluid volumes as it deflects vertically. These conditions need not

apply in the cochlea, particularly if the sensing cells are pressure

sensitive and the resonating fluid parcels oscillate radially (across

the partition) [26], not vertically as the standard model presup-

poses (Ch. 3 of [12]).

The following examines the general case of a chain of coupled

oscillators with a linear gradient in natural frequency and with

external forcing. Travelling waves are produced, but the point to

be emphasised is that they can just as easily be associated with the

apparent waves we examined in the Analysis as with the waves

produced by the transmission line model.

Coupled oscillators are an important topic in physics, chemistry,

electronics, and biology, and they have been the subject of an

Figure 9. Representative phase–frequency plots for the cochlea
of the live cat. The plots show the response of a single point on the
cochlea as measured by Wilson and Evans [136] using a capacitive
probe. Each characteristic frequency (CF) is marked with a cross (+). The
right-hand arrowheads mark integer number of cycles of phase lag from
290u. Note the similiarity of these phase–frequency plots to that of the
Frahm reed (Fig. 8) in which there is forced resonance of the reeds. This
similarity supports the view that the CFs are places at which cochlear
resonance is occurring. A difference, however, is that in the cochlear
case the phase lags at CF (crosses) appear at values greater than 0u (but
still less than 1 cycle). It is suggested that this phase lag is due to the
dynamics of forced coupled oscillators: each point must compromise
between synchronising with the external force and with its different-
frequency neighbours (p. 126, p. 276 of [62]). Reproduced with
permission of the authors.
doi:10.1371/journal.pone.0047918.g009

Figure 10. A hybrid circuit representing the cochlea as a
globally forced set of coupled oscillators. It is a combination of
the two circuits in Fig. 7. Each element is simultaneously forced by the
signal rail, while stiffness coupling between sections is represented by
small capacitor linkages. The model can also be viewed mechanically as
a vibrating reed frequency meter or as a set of coupled pendulums
which are simultaneously excited via motion of the suspension rod,
merging key aspects of Fig. 6A and 6B.
doi:10.1371/journal.pone.0047918.g010
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immense amount of work [56–62]. The general mathematical

problem of oscillator-generated wave phenomena is set out by

Murray [61], where the sequence of N coupled oscillators is

described by his equation 12.19 (p. 428) as N equations of the

form:

dxj=dt~f j xj

� �
zgj x1, . . . ,xN ,cð Þ, j~1, . . . ,N, ð11Þ

where xj is the amplitude of the j-th oscillator, gj represents the

coupling effect of the other oscillators (in the case of global ‘all to

all’ coupling, there will be N21 oscillators; if only nearest-

neighbour coupling, there will be 2), and c is a vector of coupling

parameters. These equations are intractable without some

simplifying assumptions, and it turns out that, with weak coupling,

the amplitude of the oscillators is not important, only their phase (see

numbered subsection 1 below). In this situation and without

forcing, the equation above can be reduced to [56]:

dhi=dt~wizHz hiz1{hið ÞzH{ hi{1{hið Þ i~1, . . . ,N,ð12Þ

where hi is the phase of the i-th oscillator and vi is its natural

frequency. H+ and H2 are functions representing the combined

effects of oscillators i+1 and i21 on the i-th oscillator, and they can

be computed numerically.

With a forcing term added, such as to represent the action of an

oscillating magnetic field on a set of Frahm reeds, the equations

can be expressed [63,64] as

dhi=dt~viz
K

N

XN

i~1

sin (hj{hi)zb sin (W{hi), ð13Þ

where W is the phase of the forcing, dW/dt its frequency, and b its

strength.

Many efforts have been put into analysing chains of forced and

unforced oscillators, and they are complex systems, exhibiting rich

dynamics [56,60,61]. One aid to understanding is that, in general,

a given set of oscillators can be considered to behave like a single

oscillator interacting via its mean field (p. 98 of [65]). An inference

is that a group of oscillators mutually entrained at a given

frequency will have an effect on the other non-entrained oscillators

as if there were external forcing at that frequency.

Although interactions in chains of coupled oscillators can

involve either ‘all-to-all’ coupling or nearest-neighbour coupling,

in the cochlea there are mechanisms that might permit both types

to occur. However, for a chain graded in frequency, it is simpler

and seems more apt to focus on the second possibility, which Eq.

13 represents when N = 3. Such coupling supports the proposed

analogy with the vibrating reed frequency meter. Some of the

differences between the two arrangements are spelt out in ref. [64].

Various approaches have been made to solving Eq. 13; see for

example Fig. 1.14 in Section 1.2.5 of [66], where the frequency

response curves for varying degrees of forcing are shown, the thesis

of Rhoads [67], and similar work [68–71]. Despite the complexity

of the system (which can lead to chaos under sufficiently large

forcing), intuition suggests that in a graded bank of oscillators,

forcing will give rise to resonance in those oscillators whose natural

frequencies come close to that of the driving frequency (see the

‘natural’ approach of Harvey [69]).

A large amount of the literature on coupled oscillators has

focused on the analysis of phenomena seen within systems of

oscillating chemical reactions [60], and this literature can be given

immediate relevance to the cochlea by noting that, in the

governing equations, chemical diffusion is a direct counterpart to

elasticity in a physical system (p. 141 of [60]). This means that

diffusion in the well-studied Belousov–Zhabotinsky reaction is

analogous to the rubber band in the set of Frahm reeds, and the

results can be carried across, including travelling wave fronts.

From the results of an extensive search of the literature it would

seem that the dynamics of the coupled vibrating reed system has

not been specifically analysed. However, after consulting the

general literature on coupled and forced oscillators, four key

features of such systems stand out as particularly relevant to the

cochlea.

1. The dominant role of phase differences. In modelling

coupled oscillators an outstanding factor is that the system is

almost totally driven by phase differences between adjacent

oscillators. Winfree’s wide-ranging book [60] is a full examination

of what patterns can emerge as a result. The dominant effect of

phase is also the basis of Kuramoto’s description of coupled

oscillators (Ch. 3 of [59]). If the phase difference between an

oscillator and its two neighbours is paramount, then it is generally

the case that the faster oscillator always drives the slower one

(p. 381 of [57]). Taking the case of Wilson’s vibrating reeds, then it

can be seen that there is a progressive phase shift from the faster

reed to its slower neighbour, so there will be a cumulative phase

lag from one end to the other when the reeds are coupled, and this

is exactly what Wilson describes. Pikovsky and colleagues explain

(p. 126 of [62]) how each oscillating point has to compromise

between synchronising with the external force and with its

differing-frequency neighbours.

In Kopell’s analysis (Eq. 12), it is notable that the amplitude of

the oscillators does not enter into the equation. Phase differences

alone drive the system, and when phase accumulates sufficiently it

leads to phase plateaus at multiples of half a cycle. Wilson’s data

shows such a plateau for the Frahm reeds (Fig. 8) and, of particular

interest, he draws attention to the similar phase plateaus that occur

in the cochlea (Fig. 9). The plateaus occur at 1 or 2 complete cycles

below the equivalent purely resonant system, and this explanation

of the plateau in terms of the phase differences between coupled

oscillators requires closer investigation (see also the solutions found

by Manevich and Manevitch, e.g., p. 23, where stationary points

recur at intervals of 2p/262kp). At the same time, it should be

noted that a standard explanation for phase plateaus observed in

the cochlea has not been agreed upon [72,73].

Because the amplitude does not affect the phase, and vice versa,

both these quantities can be treated as independent quantities.

Another way of expressing this is that for a weakly coupled system,

amplitude is stable whereas phase is free (p. 32 of [62]). External

forcing can be applied to one end of the chain or the other, or the

middle, and it will not appreciably affect the behaviour of the rest

of the system because coupling between neighbouring elements is

the most important factor (p. 181 of [56]). Similarly, external

forcing of all the oscillators (such as by a magnetic field) should

only affect the amplitude near the resonance frequency of the field,

and this is apparent in Wilson’s results. In Fig. 8A, it is clear that

the phase of the travelling wave does not deviate as it passes

through the resonance frequency at 50 Hz (middle column), even

though the amplitude at resonance (left plot) is more than an order

of magnitude larger than off-resonance.

2. Appearance of travelling waves. The general result from

solving Eq. 13 is that if the oscillators are graded in frequency, then a

travelling wave of activity will always progress from the oscillator with the

highest frequency to that with the lowest ([59,66]; p. 179 of [56]), just as

Wilson observed in his system. See also p. 388 of [57], Sect. 13B of

[60], [61,74,75]; Fig. 9.14 of [71]. This occurs regardless of the

strength of the coupling parameter, although the governing

equations are easier to solve with weak coupling [58].
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There has been a range of work, beginning with [76], in which

the cochlea has been modelled as a chain of coupled oscillators.

There are related studies in which spontaneous otoacoustic

emissions (SOAEs) have been successfully modelled as the

dynamics of a forced chain of van der Pol oscillators [77–79].

However, most of these treatments have incorporated standard

transmission line (travelling wave) assumptions into a basic local

oscillator (resonance) model. However, indications from the

present work are that transmission line properties and similar

assumptions (like conservation of volume from basilar membrane

displacement) are not essential in order to generate what appear to

be travelling waves. A full analysis of the inherent possibilities and

limitations of both travelling wave (serial) and resonance (parallel)

stimulation is needed. In particular, the emergence of wave fronts

and other dynamic travelling-wave like phenomena from a simple

phase-coupled chain is one aspect that calls for attention.

3. Appearance of phase plateaus. The occurrence of

distinctive phase plateaus has already been touched upon, but it

is worth documenting the general finding that, depending on the

strength of coupling, phase (and frequency) plateaus are common

when chains of coupled oscillators are modelled (p. 205 of [58];

[78,80–82]). Wilson’s reeds exhibit just this phenomenon (Fig. 8),

as does the cochlea (Fig. 9 and [73]), and it appears to have a more

natural explanation in terms of general oscillator dynamics than in

terms of the more restricted transmission line model. Again, it is

worth noting that the phase plateaus have generated a degree of

controversy and there is no agreed explanation [73].

4. Forced entrainment vs mutual entrainment. A dis-

tinctive feature of chains of coupled oscillators subject to external

forcing is that there is competition between forced entrainment,

due to the driving field, and mutual entrainment due to coupling

between the oscillators [63,83–85]; p. 126 of [62]. As an outcome

of this competition there will be a phase difference between the

two sets of oscillators, with each set trying to pull the other into its

orbit [86,87]. In effect, the two sets of oscillators behave like two

oscillators of differing frequency which, when coupled together,

each try to entrain the other [88,89]. If the coupling is sufficiently

strong, the oscillators will become tightly synchronised, but if the

coupling is weak, there will be a compromise [85,90]. Because of

coupling, the compromise frequency will deviate from the

individual natural frequencies [63,91] and, importantly, there will

be a phase lag between the entrained oscillators and the external

driving force [82,85,86,89].

The major point is that in a coupled Frahm reed-like system, the

global magnetic field will only be more or less successful in

entraining a particular reed – because the reed has neighbouring

reeds also wanting to entrain it. The result is that there will be a

phase difference between the resonant reed and the external

magnetic field (which will, as evident in Eq. 13, depend on the

strength of the field). Indeed, there is a phase lag of about 45u in

the 50 Hz reed shown in Fig. 8. However, more generally, the

literature shows that phase lags occur between an entraining force

and a resonant oscillator in a chain because the frequency of the

oscillator has been modified through its coupling to neighbouring

oscillators [79,85]. Applied to the cochlea, the suggestion is made

that the extra steady-state phase delay observed in situations like

Fig. 9 is due to the coupling effects of nearby oscillators. Instead of

the resonant frequency (the CF) occurring near zero degrees to the

applied tone (as it would with pure resonance), it occurs in Fig. 9 at

a phase lag of roughly half a cycle, and, more generally, the

literature shows phase lags at CF of 0.5 to 2 cycles [73].

Another interesting feature of Fig. 9 is that the characteristic

frequencies (the crosses which mark peak response amplitude)

appear on sections of the phase curve that are relatively smooth.

At the same time, the plateaus tend to have phase lags that are

half-integer (or integer) number of cycles larger than those at CF.

In these respects, the system resembles the Frahm reed system of

Fig. 8 and also, more generally, chains of coupled oscillators driven

by external forces. The compromise discussed earlier could explain

certain deviations in phase from the strict integer values;

moreover, as expected from a model of forced oscillators, the

actual measured phase delays at CF do depend systematically on

sound intensity (Fig. 8 of [73]). The suggestion being made is that

in the cochlear case the non-zero phase lag at CF might be the

result of a coupling compromise, and that the measured responses

could in fact reflect resonant-like forcing of a graded and coupled

bank of oscillators. One constraint on the phase curves is worth

noting: following Section D of the Analysis, the negative slope

gives the group delay and so at a resonance frequency f this must

equate to Q/p cycles (or Q/f p seconds). The slope at CF thus

reflects the mechanical Q of the underlying resonance, and slopes

of the curves in Fig. 9 point to realistic cochlear Q values for the

live cat (e.g., the curve with CF of 13 kHz has a group delay at CF

of 0.3 ms which corresponds to 4.8 cycles and therefore a Q of

about 15).

The most apt treatment of synchronisation of oscillators by

external tones is by Vilfan and Duke [79] who show how the

frequency of an oscillator when subject to an external tone can be

altered by mutual coupling with its neighbours. Vilfan and Duke

modelled a set of coupled oscillators under a frequency gradient,

reflecting the arrangement in the lizard ear. They used numerical

techniques on a set of active Ginzburg–Landau oscillators to

investigate how the animal’s spontaneous otoacoustic emissions

might arise via coupled oscillators and to examine the effect of

external tones. Their modelling showed how an external tone

could either raise or lower the frequency of an oscillator

(compared to its natural frequency) depending on the nature of

the coupling with its neighbours: elastic coupling between the

oscillators raised the frequency, whereas dissipative (resistive)

coupling could either raise or lower the frequency (Figs. 2–4 of

[79]). When irregularities and noise were added to simulate more

realistic conditions, the external tone dragged the frequencies of

nearby oscillators either up or down compared to their natural

frequencies (Fig. 5 of [79]), but a general finding was that

maximum phase locking occurred at a frequency below that of the

external tone (Fig. 7 of [79]).

A factor to again keep in mind when trying to explain the extra

half cycle of delay in Fig. 9 (compared to the resonant situation) is

the possible disjunct between the motion of basilar membrane

displacement, which experimenters measure in the vertical

direction, and the motion of an oscillating fluid parcel which

might occur in the radial direction (as a result, perhaps, of active

outer hair cells [26]). As well, there could be appreciable phase

delays between the motion of outer and inner hair cells, and one

model of this process calculated that the delays here could amount

to several cycles (Fig. 12 of [92]).

Once more in the context of the lizard ear, a later paper by

Gelfand and colleagues [93] also provides insight into the way a

coupled set of oscillators can mimic cochlear function. The authors

modeled the gecko’s cochlea as a coupled chain of 110 van der Pol

oscillators and found that the response of the system, when the

elements were coupled, could be made to match observations of

frequency clustering in the animal’s spontaneous otoacoustic

emissions. Notably, the authors examined the phase of a viscously

coupled system against time (their Figs. 2A) and found that ‘‘the

most striking phenomenon’’ was ‘‘the presence of waves of

synchronization that advance in both directions along the array’’

(p. 5 of [93]). They were at pains to declare that the waves ‘‘in no
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way imply the presence of traveling waves on the basilar

membrane’’ (ibid.), which in one sense is true, but in another,

the waves are travelling entities which actually could be recorded

by appropriate equipment. They repeated the simulation with

elastic coupling, and ‘‘waves of synchronized oscillation’’ again

appeared (their Fig. 3A), but this time only flowing from the high

frequency end to the low frequency end. A distinctive (but

unremarked) feature is that the speed of the wave (as determined

by the slope of the arrow in their Fig. 3A) was some 1.3 m/s, a

value not unlike the ABR-derived travelling wave velocities seen

here in Fig. 5B, and underlines the importance of defining what is

meant by a travelling wave and its causal origins.

The unifying point is that the plots shown in Figures 2A and 3A

of [93] show just one aspect of the oscillators’ behaviour – phase –

and that if the corresponding amplitude was plotted as a function of

time, the build-up in response to a stimulus might indeed replicate

the cochlear travelling wave – that is, it could show an amplitude

peak occurring some Q/p cycles after stimulus onset and that the

envelope of this peak might appear to move from base to apex at

just the velocity calculated in Section E of the Analysis.

The paper by Gelfand and colleagues goes on to simulate the

effect of an external tone by using a forced van der Pol oscillator

model. The authors find that the oscillators under such global

forcing synchronise to the imposed tones (their Fig. 6), and this

frequency entrainment is the same behaviour as displayed by the

vibrating reed cochlear model described in Section D immediately

above. Despite structural differences, the remarkable operational

similarity of the lizard cochlea and the mammalian cochlea is

emphasised in [94], and the wide-range of literature outlined in

the present section demonstrates that the mechanics of the

mammalian ear can be well simulated without needing to take a

transmission line approach. Gelfand and colleagues also compared

their results to the earlier Vilfan and Duke paper [79] and were

somewhat surprised (p. 10 of [93]) to find that parameters such as

mass, viscosity, and elasticity did not appear to make major

differences to the calculated outcome. This might be understood

by appreciating the general result, summarised in the text above

and modelled in [79], that the dynamics of chains of coupled

oscillators are primarily driven by phase differences in the system,

so that the key controlling factor is the frequency gradient.

Despite the ‘‘compelling’’ resonant-like behaviour in the lizard

ear, Vilfan and Duke [79] were reluctant to draw parallels with the

mammalian cochlea, which they considered considerably more

complex ‘‘as a result of the propagating wave on the basilar

membrane’’. A recent modelling paper by Wit and van Dijk [78]

simulates the mammalian situation, and here the authors examine

whether human SOAEs could be produced by a chain of coupled

oscillators and what the effect of forcing with an external tone

would be. Their paper is generally congruent with the resonant

forcing mechanism put forward here, and their work does explain

some aspects of SOAEs, even though the authors again consider

their model to be too simple to explain cochlear function.

Nevertheless, their work does demonstrate that forcing at

frequencies of 1505 Hz and 1513 Hz (their Fig. 7a) acts in

competition with a mutual entrainment frequency of 1509 Hz. If

attention were directed to the phase shifts associated with this

forcing, there is the potential to explain major features of the

human cochlea’s phase response, which resemble those seen in

Fig. 9. Parallels with Wilson’s vibrating reed system (Fig. 8) could

be explored, and it might be possible to place the hearing of lizards

and mammals in a similar framework [94].

5. Pseudowaves, phase waves, kinetic waves. A most

interesting finding to come from the coupled oscillator literature is

the description of how a wavefront appears to move along a phase

gradient, a phenomenon related to what has been described in the

Analysis for the moving amplitude peak of cochlear resonances.

This has been called a ‘pseudowave’ by Winfree [60] and Murray

[61], a ‘phase wave’ by Kuramoto [58], and a ‘kinematic wave’ by

others [95]. In all cases it is an apparent wave produced by the

coordinated phase cycling of a bank of oscillators or ‘clocks’ –

Winfree makes an analogy to the ‘‘ball of fire’’ arising from a chain

of flashing strobe lights at the end of a runway (p. 237 of [60]) –

and unlike conventional travelling waves it carries no energy.

Winfree first documented the properties of pseudowaves in a

series of papers analysing the Belousov–Zhabotinsky reaction,

where the wave shows up as moving bands of blue and red that

propagate through a solution that is undergoing a cyclic chemical

reaction (see summary in [60]). Starting with a chain of

synchronised clocks, he showed that the speed of a pseudowave

is simply the inverse of the phase gradient, 21/(dQ/dz)t, where t is

the period, Q is the phase, and z is the distance. For example, if the

phase gradient is 0.01 s/mm, then the wave will appear to travel at

100 mm/s. Obviously, the speed of this ‘travelling wave’ has no

limit – it can even be faster than light if the phase gradient is

shallow enough – and it will pass straight through any physical

barrier erected in its path because nothing is actually being

transported. There will be no reflection, and if two pseudowaves

move in opposite directions and collide, they annihilate each

other. In a petrie dish of reactants, the wave becomes two-

dimensional and spirals emerge, but a similar analysis applies [96].

By considering the diffusion of reactants, a degree of coupling is

introduced, and as mentioned before, chemical coupling is

mathematically the same as elasticity in a physical system

(p. 252 of [60]). The combination of pseudowave and diffusion

gives rise to something called a trigger wave by Winfree [97], who

advocates that they be carefully distinguished (even though there is

a steady transition from one to the other [98]). Of relevance to

cochlear mechanics, the rate of reaction is governed by

temperature, so that a system which is hotter at one end than

the other is analogous to a bank of graded pendulums. The

temperature gradient will therefore produce a phase gradient, and

a pseudowave will result. Note also that, unlike a physical wave,

this pseudowave cannot undergo reflection.

Murray [61] also draws attention to the implications for biology

of chains of coupled oscillators, and one of his models is the row of

pendulums all hanging from the same horizontal rod but with a

gradient in their periods. If they are simultaneously stimulated,

once more it will look as if a wave is travelling along the

pendulums – a pseudowave – with a wavelength decreasing with

time. He draws together chemical reactions, central pattern

generators, and nerve impulse propagation with a similar set of

equations, emphasising the importance of phase differences in

each system.

Taken together, this discussion of coupled oscillator chains

underlines that there is more than one way of generating a

travelling wave, and when one is observed in the cochlea, it does

not necessarily mean that the transmission line model is the only

possible explanation. Such a wave may indicate the presence of an

energy-carrying ripple analogous to a pulse in a transmission line,

but it could also be a moving phase front driven by phase

differences in a resonantly forced system, just like the set of

vibrating reeds in a Frahm frequency meter. The conclusion is that

the forced vibrating-reed system presents a much closer analogue

to the cochlea than has generally been appreciated, and it calls for

further investigation.
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F. Coupling in the cochlea
All travelling wave models invoke coupling, through either the

fluid or the membrane, and such coupling cannot be entirely

avoided. Nevertheless, the demonstration by Wilson (Section D of

the Discussion) shows that the practical difference between

coupled and uncoupled cases can be slight, especially at the

resonant place (the characteristic frequency) and before steady

state is reached. Yet the difference has been used to dismiss the

insights that the resonance picture offers and to argue that

adherence to a travelling wave formalism is necessary

[6,11,12,33,99].

Békésy examined what happened to thin membranes when they

were subjected to vibrating needles (pp. 540–541 of [2]), and this

illustrates the functional effects that coupling can have. The

response of a thin membrane depends on whether the longitudinal

coupling is weak, giving Q values over 10, or strong, with Q values

nearer to 1. The first represents Q values in an active cochlea and

the latter a passive or dead one. Further insight into the effect of

coupling is provided by a paper [100] that uses a novel approach

to cochlear modelling in which hydrodynamic coupling can be

explicitly represented by a single parameter, c. When c = 0, there is

no coupling and no travelling wave, only resonance. As coupling

increases, a travelling wave emerges. Notably, the travelling wave

velocity is shown to depend directly on the coupling, and the wave

slows down as coupling increases. Another approach is to treat the

fluid coupling and the basilar membrane dynamics separately

[101], and then bring them together algebraically. This approach

can give conventional travelling wave behaviour, but of particular

interest this passive model can also produce pure resonance (Fig.

12c of [101]) when the basal half of the basilar membrane is

prevented from moving. This result can be understood in terms of

the travelling wave being the envelope of the responses of individual

resonant elements and that neighbouring envelopes tend to blur

what is going on underneath – the activity of the individual

resonators – unless the neighbouring responses are somehow

suppressed.

Coupling does lead to a travelling wave envelope that will carry

some energy, but the claim being made is that this energy, as in the

Frahm reed case, will be relatively small; in the case of the cochlea

the amount carried by the envelope – the basilar membrane – is

likely to be insufficient (in the normal high-Q situation) to be a

major cause of hair cell stimulation. The causal chain is in fact the

other way round: first comes the hair cell stimulation that leads to

resonance, and then this secondarily creates an apparent travelling

wave.

Observations of large delays do not exclude some sort of

resonance behaviour; it could be that the phase of the individual

resonators (possibly a triplet of outer hair cells) has escaped

detection and that only the peak of the basilar membrane motion

has been sensed after several cycles of resonator build up. This

idea is not new, and was put forward, for example, by a collection

of papers in 1989 in which the ITER (International Team for Ear

Research) presented results endeavouring to show that the

response of the basilar membrane was considerably less than that

of the outer hair cells themselves [102]; see also [103]. They

concluded (p. 12) that ‘‘vibrations of the basilar membrane [and

the bony shelf] may both be produced as a consequence of hair

cell vibration.’’ Indeed, as long ago as 1937, the suggestion was

made that the outer hair cells were stimulated directly by sound,

not by movement of the basilar membrane [104], although Békésy

was later of the opinion that ‘‘direct stimulation of the sensory cells

by compressional waves is unlikely’’ (p. 128 of [2]).

Although an uncoupled set of resonators can give rise to what

appears to be a ‘travelling wave’, it is worth reiterating that the

underlying physics in the two situations differs, and therefore the

underlying stimulus chain and associated mathematics will also be

different. The discussions between Nobili et al. [13] and Shera et

al. [14] are illuminating in showing how one physical model can

have multiple mathematical formulations. From that discussion it

seems that the mathematics describing a resonant system driven by

a fast pressure wave more closely approaches what is set out in ref.

[13] than in ref. [14]. Consider that any pressure sensor in the

cochlea – say one based on compressibility of the outer hair cells –

will invariably act bidirectionally and therefore induce pressure

changes as well as detect them (in this context it is worth noting

that some have interpreted OAEs as the instantaneous sum of

outer hair cell activity [105]). Thus, at some level, it may be

necessary to consider, as Nobili and colleagues do, all the ‘‘myriad

individual oscillators, each interacting with the others instanta-

neously through the fluids’’ [14](p. 354), and that there is ‘‘no

wave propagation delay between the BM oscillation at any given

place and its contribution to the force detected by the stapes’’

[105](p. 348). Looked at another way, the motion of Békésy’s

uncoupled pendulums will indeed act back on the supporting rod

and thereby affect all the other pendulums. Further investigation

of such all-to-all coupling appears warranted.

Another dimension to the discussion is the question of what is

the exact causal mechanism by which the fast pressure wave

interacts with the hair cells at their characteristic frequency and

causes resonance. It could be that OHCs intercept pressure waves

through possessing some compressible intracellular material (see

[94,106]). Alternatively, it may still be possible to retain the

conventional picture of stereocilia deflection as the initial stimulus,

and keep a picture of a locally resonant basilar membrane, by

supposing that the pressure difference across the membrane, set up

by the fast wave, somehow bends stereocilia directly (without

requiring the usual travelling wave envelope). A problem with this

alternative is that to retain a locally resonant basilar membrane,

the coupling would need to be spatially very small, and this may be

difficult to achieve. Which process is the effective stimulus remains

for experiment to determine, although this paper inclines to the

compressibility mechanism.

At this point, a historical discussion of resonance theories of

hearing, and detailed arguments for and against them, could be

undertaken, but instead the reader is referred to Chapter 2 of ref.

[18], where a comprehensive account is given. Standing out from

that survey is the work of Dancer [45], who appears to have come

close to the ideas set out here. He concludes (p. 310) that ‘‘the

cochlear partition appears to behave in the same way as a bank of

resonators of which all the elements are excited simultaneously by

the acoustic pressure’’. Dancer’s ideas were challenged by

Ruggero [46], but only by blurring the distinction between

travelling wave and resonance and largely returning the argument

to a semantic one. The question will not be resolved until the

underlying terms are clearly distinguished, and a major aim of the

present paper is to move discussion in this direction.

G. Zero signal-front delay in cochlear mechanics
A good way of distinguishing whether travelling wave or

resonance operates in the cochlea is to examine three different

types of delay: signal-front delay, group delay, and total delay. The

properties of group delays have already been noted (see Analysis

Section D and Discussion Section D). However, signal-front delay

is unique to travelling wave models and deserves close attention.

Signal-front delay corresponds to the travel time of a signal [36],

and in the case of the cochlea this is the time for the stimulus to

propagate from the stapes to the individual hair cell [40,107,108].

For a resonant cochlea driven by a fast pressure wave, the travel
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time is effectively zero, so the only significant delay in cochlear

mechanics is the resonance build-up time or filter delay (which

produces all the group delay). This issue has been systematically

addressed by various workers [40,107–112] and the relationships

between the delays are labelled by the letters a, b, and c in Fig. 2A.

In a travelling wave system, the total delay c is the sum of the

signal-front or propagation delay a and the group delay b. The

measure b is also called the filter delay, envelope delay, or

resonance build-up time [111]. In a resonant system, however, the

fast pressure wave sweeps through the 30-mm-long cochlea at a

speed of 1500 m/s, making the signal-front delay, a, only

microseconds and for practical purposes zero. Of course,

allowance for transduction delay needs to be made when cochlear

nerve recordings are done, and this is usually reckoned to be only

about 1 ms [113].

An important finding from Siegel and colleagues [111] is that,

after considering the wider literature and allowing for neural

delay, the signal-front delay as measured by SFOAEs was less than

0.1 ms for frequencies higher than 2 kHz and somewhat more for

lower frequencies (their Fig. 2). The signal-front delay was 0.5 ms

(0.5 of a cycle) at 1 kHz, but rose to more than 1.5 ms at 330 Hz

(still less than 0.5 cycle). The intent of Siegel and colleagues was to

challenge the theory of coherent reflection filtering (by comparing

measured delays with twice the basilar membrane delays), but

given the potential errors in estimating synaptic delays, a stronger

statement can be made: that the results are very close to what is

expected from a pure resonance model.

The conclusion that signal-front delay is practically zero is

strengthened by other findings in the literature, and these will now

be addressed.

An important study is that of Whitehead and colleagues [114]

who measured the onset latencies (to the 23dB peak) of distortion

product OAEs in the time domain and compared them to phase-

gradient latencies (group delays). A crucial finding was that, in

general, both measures were about the same, meaning that the

signal-front delay must have been almost zero. As the authors

express it, ‘‘a substantial portion of the rise time attributable to the

ear reflects the effects of filtering within the cochlea’’ (p. 1675).

Indeed, with an observed delay of 4–5 cycles attributable to the

cochlear filters, this translates to an equivalent Q of 12–15, a

reasonable number.

Whitehead and colleagues also note that the DPOAE delays

they observed were quite similar to those for TEOAEs and

SFOAEs and that these can be generally matched to cochlear

travel times based on electrophysiology, again implying that

practically all cochlear delays are filter delays.

A complementary study is that of Konrad-Martin and Keefe

[115], who again used time–frequency methods to look at the

build up and decay of SFOAEs in response to tone-bursts. They

defined the onset latency as the time for an OAE to build up to its

23 dB point, typically 6 ms, but their time–level plots reveal how

arbitrary this definition is. The levels are plotted logarithmically,

and on this scale the level rises almost linearly from the noise floor.

Of particular interest, when the levels are extrapolated backwards

(their Figs. 4f, 5f, 6f, 7f), they intercept the noise floor at about 0 ms.

This is just what we expect to see from the driven harmonic

oscillator: a ring-up of the amplitude over Q/p cycles. Indeed, the

authors were puzzled by this rising trend, as it was contrary to ‘‘the

assumption that the onsets of the direct generated OAE source

[and the secondary reflection] … would each be abrupt’’ (p. 2039).

On the other hand, the work gives direct support to a resonance

interpretation and weighs against travelling wave models. All OAE

delays appear to be explainable in terms of group delays of

resonators having specific Q.

Temchin and colleagues [113] found that signal-front delay,

measured on the basilar membrane, was only 0.2 cycle at 100 Hz

(the apex), rising to 0.5 cycle at 1 kHz, and dwindling again at

higher frequencies. At 10 kHz the delay was just 18 ms (0.2 cycle).

Similarly, Narayan and coworkers [116] considered that DPOAE

group delays reflect only the filter delay at the basilar membrane,

with signal front delays of only 25 ms. Ren and colleagues

measured group delays of DPOAEs [112] and found that values

were nearly equal to those measured at the stapes. de Boer and

Nuttall [117] concluded that travel time in a real cochlea is small

compared to resonance build-up time.

A later paper by de Boer [118] reinforces the point, noting that

responses from the base of the guinea pig cochlea can be well

represented by a minimum phase filter and that travelling wave

delays are unnecessary. In earlier work by this author [119,120],

revcor functions were fitted to cochlear nerve data and it was

found that the delays, after accounting for synaptic delays, were

measurable in microseconds. As an elaboration, the 1989 paper

also measured the order of the equivalent filters and found that the

order required was at least 2 (that of a simple mass–spring system)

but sometimes higher (4 or even 10 at high frequencies), meaning

that at the level of the nerve a simple resonator is an

oversimplification and a higher-order filter may be necessary.

In summary, the indications are that, in terms of basilar

membrane mechanics, a basic resonance model can go a long way

in explaining the cochlea’s workings. Travel time can generally be

neglected or accommodated within the error associated with

measuring group delay.

H. The active cochlea
The finding of cochlear echoes [5,6] created a revolution in our

understanding of the inner ear, providing unmistakeable proof that

the organ is an active device, not a passive one, and forcing

auditory science to reconsider all previous cochlear theory [6].

Kemp and later researchers have endeavoured to construct an

active cochlea model on top of a passive travelling wave model,

and have assumed that the observed otoacoustic delays embody

the time for a travelling wave to travel to its characteristic place, a

filter build-up time, and the time for a ‘‘reverse travelling wave’’ to

return to the stapes [121]. The standard theory of the active

cochlea, that of coherent reflection filtering (due to Zweig and

Shera [19,20]), assumes that the delay between stapes and

characteristic place can be recycled multiple times, although filter

build-up time remains a factor. Most models find that the

amplification provided by outer hair cells needs to be restricted to

a small region near the peak [122], which is puzzling in the

travelling wave picture but a natural outcome of a resonance

model.

Emphasising the importance of filter build-up time, and of

particular relevance to the results raised here, it is significant that

Shera and colleagues [28] find that the Q of the cochlea can be

expressed in at least 4 species as

Q~rNSFOAE, ð14Þ

where NSFOAE is the response delay in stimulus frequency emission

cycles and the factor r is a so-called ‘tuning ratio’. The ratio is

approximately 1 for humans above 1 kHz (and in other species

above 3 or 4 kHz). Even in a lizard, a similar relationship was

found [123], although in this case the tuning ratio was around 1.6

over most of the range tested. The reason for divergences at low

frequencies is outside the scope of this paper. The main point is

that a direct connection between Q and the number of cycles of

build up and decay, as set out in Eq. 7, is just what one expects to
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see in a graded bank of uncoupled harmonic oscillators. The work

here highlights this connection and shows how far a simple

resonance model can go in accounting for basic aspects of cochlear

mechanics: frequency response, time delay, and travelling wave

velocity. The elusiveness of reverse travelling waves also becomes

easier to appreciate [94].

I. Anatomical origin of Q
A feature of the calculations of travelling wave velocities is that

they are all based on using specific Q values. Once the Q values

have been set, the rest of cochlear mechanics naturally follows.

This suggests there is something special about the way that

cochlear Q originates. A detailed focus on this point will not be

made here, but it is worth noting that a resonance model of the

cochlea has been presented [124] in which the Q values derive

from the geometry of the organ of Corti. In this surface acoustic

wave (SAW) model, wave fronts reverberate between the rows of

active outer hair cells and the Q derives anatomically from the tilt

of the OHC lattice in the plane of the reticular lamina. The tilt

means that, geometrically, each cell will sustain two resonating

cavities of different lengths – and hence different frequencies. In

turn, the difference in frequencies naturally specifies the Q, and so

each hair cell will carry its own fixed sharpness of tuning.

J. Hearing without the travelling wave
The work here has been directed towards constructing a

resonance model of the cochlea in which the travelling wave is

seen as more of an appearance, an epiphenomenon, than as a

causal agent. It might therefore be useful to compare mammalian

ears and their travelling wave with the ears of reptiles, which are

generally acknowledged to lack such a mechanism [123,125,126].

Reptiles have their sensing cells sitting upon a stiff support and so a

travelling wave – in the sense of a propagating motion that bends

stereocilia – is thought not to operate in these creatures. On the

other hand, the characteristics of reptile ears are ‘‘strikingly

reminiscent’’ of those in mammals [123], and so it is possible that

both classes of animal use the same mechanism – resonant

detection of a fast pressure wave stimulus – in order to hear.

Rather than extend the text here to investigate this possibility, the

reader is referred to a recent paper [94] where this aspect is

specifically addressed; this reference also sets out a model of how

the detection mechanism may operate similarly in both classes of

animal. If reptiles and mammals indeed use the same basic

mechanism to hear, this would support a resonance approach to

mammalian hearing.

Conclusion

A graded bank of uncoupled resonating elements, with

appropriate Q values, has been found to have properties similar

to those that were previously seen to be signatures of travelling

waves. The frequency response and the group delay near the

characteristic frequency are similar to observations, as is the

apparent travelling wave speed. Together with literature reports

that the front delay is practically zero, these properties suggest

that, in an active cochlea, it is not necessary to have a serially

coupled travelling wave as the causal stimulus, and that a fast,

parallel-acting stimulus could be equally effective.

The hypothesis put forward here is that the active cochlea might

operate as a graded bank of resonant elements driven by a fast

pressure wave in which case a travelling wave could arise simply as

a secondary effect (an epiphenomenon akin to the pseudowave of

Winfree [60]). In such a model there is no serial excitation, no

coupling between the elements, and no energy carried by the

wave. On this view the vibrating reed frequency meter, in which

all the reeds are driven in parallel by an oscillating magnetic field,

forms a very good analogy to the way the cochlea functions,

perhaps more apt than has so far been appreciated. The vibrating

reed model was first raised by Békésy, but only Wilson seems to

have studied it since in any detail. Although relatively simple

physically, its behaviour reflects that of a graded set of phase-

coupled oscillators under global forcing, which can be represented

as an electronic circuit (Fig. 10).

A notable property of such a system is that the oscillators’ phase

and amplitude are largely independent. This means that the

individual oscillators are still able to be resonantly excited by

external forcing, giving rise to appreciable group delays. The

resonance occurs close to the forcing frequency, but there is some

extra phase delay at resonance due to a degree of coupling and a

compromise between an oscillator’s pull towards mutual entrain-

ment and forcing entrainment.

Although a broad sketch of the mathematics involved in

analysing a set of globally forced phase-coupled oscillators has

been given, a thorough analysis in the context of electronic circuits

and vibrating reed frequency meters – and their translation to the

mammalian cochlea – still needs to be done. Winfree has explored

the astonishing complexity of coupled oscillators in his book [60],

and this work in particular opens the door to a full alternative

treatment of cochlear mechanics. The extensive prior work on

wave propagation in excitable media becomes accessible once it is

recognised that elasticity in a mechanical system plays a role

analogous to diffusion in a chemical one ([60], p. 141).

If a resonance-based approach to the cochlea is adopted, and

the traditional forward travelling wave is actually closer to

Winfree’s pseudowave – whose motion relies largely on a negative

phase gradient – it follows that a backward travelling wave in the

cochlea is not possible [94]. Instead, otoacoustic emissions can be

considered as being carried by fast pressure waves from the

cochlea’s bank of graded resonators (which have a positive

gradient of group delay from base to apex).

This wide-ranging investigation has highlighted the ambiguity

behind the term ‘travelling wave’. In the past, the term has been

used to describe any arrangement where there is a moving wave

front. This confounds two situations. The first is where the wave-

front carries energy and operates as a serial stimulus; this is the

familiar usage in physics and is the one emphasised in cochlear

mechanics to date. The second meaning is to describe a wavefront

(specified by either its phase or its peak amplitude) that carries no

energy and has no causal power in itself – it arises from a parallel

stimulus to a resonant system and can be likened to a pseudowave

(or its coupled counterpart, the trigger wave).

In the context of the cochlea, this paper favours the second

interpretation. The evidence assembled shows that resonance need

not be a wildly incorrect description of cochlear mechanics,

although it has often been portrayed that way. Just because a

phase delay of more than 180u is observed does not automatically

mean that a resonance mechanism (and its parallel stimulus) must

be totally discarded, and it by no means implies that a serially

activated, energy-carrying model – along the lines of a transmis-

sion line – is necessarily correct. The present work favours the

interpretation that a tone produces global, near-simultaneous

forcing in a graded bank of coupled resonators and this causes an

apparent travelling wave. However, such a wave carries virtually

no energy and is not the main causal stimulus for hair cells.

A major shortcoming of the standard travelling wave theory is

that it fails to take forcing into account – that an oscillating force

could act in parallel on all the cochlea’s resonant elements.

Instead, travelling wave theory promotes the idea that the stimulus
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energy is progressively dissipated as it propagates sequentially

along the basilar membrane. The standard model tends to

generate the possibly mistaken belief that there is a serial causal

chain, leading to ideas like there being a power flux from base to

apex (e.g., [127,128]; Section 3.6.1 of [12]) or that electronic

analogues based on serial filter banks are appropriate (e.g. [47]).

Possibly, then, Gold and similar travelling wave skeptics were on

the right track, and outer hair cells can be simultaneously

stimulated by the fast pressure wave – they do not have to wait

for a travelling wave to reach them. The picture could be that

resonance happens at the hair cell level and that this activity is

then coupled to the basilar membrane underneath. Otoacoustic

emissions can then be interpreted as fast pressure waves that give

an instantaneous signature of the aggregate activity of all the

resonators.

The motivating force of this synthesis has been the power and

elegance of Helmholtz’s resonance model (p. 404 of [2]) and to

highlight some of the conceptual difficulties associated with the

conventional travelling wave picture. Of course, both models have

value in reflecting certain aspects of cochlear function, and

ultimately there needs to be a ‘‘reconciliation of the theories of the

two giants of auditory physiology, H. von Helmholtz and G. von

Békésy’’ [129]. Such a synthesis might be done along the lines of

Fig. 10 where there is a ‘‘signal rail’’ that allows for parallel forcing

of all the resonant elements by the fast pressure wave. It is possible

that the hair cells might detect the fast wave by some deformation

that in turn leads to bending of stereocilia, but another possibility,

favoured here, is that the body of the outer hair cell is pressure

sensitive, allowing stimulation to occur directly [94,106,130,131].

The clear advantage of the resonance picture is that it is simple,

and a reverse travelling wave is not needed to describe what is

going on. Simple second-order resonators – harmonic oscillators –

do have limitations [119,120] and at some stage it will be

necessary to consider higher order systems with dispersion and

nonlinearities, particularly for DPOAEs [12,40]. However, it is

possible to show that every nonlinear model can be given a linear

equivalent [132], and it is in many ways remarkable that parallel-

based models can give results fairly similar to serial-based

equivalents. Nevertheless, in terms of choosing one model or

another, it will be experiment that decides between them.

In comparing travelling wave and resonance, it is useful to take

note of an argument Gold put to Békésy: any attempt to use a

‘‘peak detecting’’ mechanism to refine a broadly tuned system

always faces a serious problem in discriminating signal from noise

[133]. Gold used this principle to argue against the broadly tuned

travelling wave which underpinned Békésy’s model. Békésy

contended that the sharp tuning observed in the cochlear nerve

was the result of some neural peak-detection mechanism [34]. The

same logic can be used with some force to argue that any active

transmission line model of the cochlea using cascaded amplifica-

tion stages will strike the same problem and will become swamped

by noise. Indeed, models of the cochlea using cascaded arrays of

electronic circuits (e.g. the 120-section electronic analogue of [47])

have encountered just this difficulty: very high gain factors and

problems with noise.

In summary, the question, once thought settled, has now

become one of determining exactly what is the effective stimulus to

the outer hair cells – is it a slow propagating ripple set up by trans-

membrane pressure, or is it a fast fluid-borne pressure wave? The

question left unanswered by Wever, Lawrence, and Békésy –

whether the travelling wave is an entity arising from stimulus

energy passing rapidly through the cochlear fluids or slowly along

the basilar membrane – has again resurfaced.

The distinction between resonance and travelling wave has

often been blurred, and over the years it has given rise to

unwarranted conclusions. On the other hand, a way forward may

be found in viewing the cochlea as a graded set of globally forced

coupled oscillators. This model provides common ground between

the two schools of thought, and gives a clear place for resonance as

well as for basilar membrane coupling. Reconciling these two

historically disparate approaches could bring us to a better

understanding of how the cochlea works.
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