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Editorial on the Research Topic

Unsupervised Learning Models for Unlabeled Genomic, Transcriptomic & Proteomic Data

UNSUPERVISED LEARNING MODELS FOR UNLABELED
GENOMIC, TRANSCRIPTOMIC AND PROTEOMIC DATA

For unveiling the underlying biological mechanisms, the data of genomics, transcriptomics,
proteomics, and other types of omics can offer informative cues for the understanding
of underlying biological mechanisms (Muers, 2011). Since manual analysis of the huge amounts
of these biological data is impractical, computational efforts of bioinformatics has been introduced as
the key of unveiling the biological knowledge in omics data (Manzoni et al., 2018). A promising
opportunity for omics data analysis is the recent developments in Artificial Intelligence (AI), which
empowers bioinformatics research. Inspired by the advanced AI technology (Huang and Xi, 2020), a
considerable number of effective and powerful intelligence approaches have been erupting in the
bioinformatics research of omics data (Lightbody et al., 2019).

Nevertheless, it should be noted that, the paradigm of supervised learning framework are widely
utilized in most of the recent emerging bioinformatics approaches (Min et al., 2017). Despite the
achievements yielded by the existing omics data analysis, one of the main shortcomings is that these
previously published approaches restrict annotated labels in the omic data as training set (Yu et al.,
2019). In consideration of the massive amount of omic data involved in bioinformatics researches,
there are extensively manual efforts required from experts, when such amounts of data are annotated
with labels (Xi et al., 2021). Consequently, in omics data, a crucial bottleneck in bioinformatics
research of omic data is the insufficiency of annotated labels (Yu et al., 2020).

For circumventing the shortage of manual annotations in omics data, a promising solution is to
analyze the unlabeled omic data rather than labeled data, which can save considerable costs of
annotation (Xi et al., 2020b). Instead of the widely used paradigm of supervised learning, introducing
the paradigm of unsupervised learning can open a new window of omic research, demonstrating
great potential for unlabeled omic data analysis Xi et al. (2020b). In comparison to the paradigm of
supervised learning, unsupervised learning methods may throw light on the unlabeled omic data
analysis, which can overcome the issue of high cost of annotated labels in omic data, and promote the
research of omic data free from manual labels (Xi et al., 2020a).

This Research Topic focuses on the recent advanced approaches in the methodology of
unsupervised learning and their applications on unlabeled omics data. A total of 9 articles

Edited and reviewed by:
Richard D. Emes,

University of Nottingham,
United Kingdom

*Correspondence:
Jianing Xi

xjn@nwpu.edu.cn
Zhenhua Yu

zhyu@nxu.edu.cn

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal
Frontiers in Genetics

Received: 23 September 2021
Accepted: 25 October 2021

Published: 11 November 2021

Citation:
Xi J and Yu Z (2021) Editorial:

Unsupervised Learning Models for
Unlabeled Genomic, Transcriptomic &

Proteomic Data.
Front. Genet. 12:781698.

doi: 10.3389/fgene.2021.781698

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7816981

EDITORIAL
published: 11 November 2021

doi: 10.3389/fgene.2021.781698

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.781698&domain=pdf&date_stamp=2021-11-11
https://www.frontiersin.org/articles/10.3389/fgene.2021.781698/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.781698/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.781698/full
https://www.frontiersin.org/researchtopic/16935
http://creativecommons.org/licenses/by/4.0/
mailto:xjn@nwpu.edu.cn
mailto:zhyu@nxu.edu.cn
https://doi.org/10.3389/fgene.2021.781698
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.781698


related to unsupervised learning developments on the analysis of
genomic data, transcriptomic data, proteomic data, and multi-
omic data are included.

For genomic data analysis, three unsupervised learning
approaches were published in the Research Topic, unveiling
the aspects disease gene selection and copy number variation
detection. Specifically, Xie et al. proposes a standard deviation
and cosine similarity based unsupervised feature selection
algorithms, which is capable of conducting gene selection for
stable biomarkers of disease such as cancer through genomic data
(Xie J. et al.). At the same time, Fan et al. proposes a hierarchical
clustering based framework to predict the disease genes from
stage-specific gene regulatory networks (Fan et al.). Furthermore,
Xie et al. proposes a local density and minimum distance based
density peak clustering method called dpCNV, for detecting
relative large range copy number variation from DNA
sequencing data (Xie K. et al.). These advanced approaches
mainly cover the methodology of feature selection, hierarchical
clustering, and density peak estimation, expanding the frontiers
of genomic researches.

For transcriptomic data analysis, there are two papers
contributing to RNA data research as the roles of
bioinformatics tools. One research in this Research Topic is
focusing on in single-cell RNA sequencing (Yu et al., 2021),
which aims to overcome the zero-inflated data caused by dropout
events (Zhao et al.), where Zhao et al. proposes a dimensionality
reduction approach on single-cell RNA sequencing data, which is
based on a hierarchical autoencoder consisting of a deep count
autoencoder for denoising and a graph autoencoder for
dimensional reducing. Meanwhile, for long intergenic non-
coding RNA (lincRNA) analysis, Lin and Ma proposes a non-
negative matrix factorization approach with co-regularization to
predict disease-lincRNA associations (Lin and Ma), which
integrates four types of information associated to lincRNA.
Generally, the two researches are concentrating on the
advanced frontiers of either AI technology research or
transcriptomic research.

For proteomic data analysis, there are two articles offering
the unsupervised learning methods on two aspects. One aspect
is to detect overlapping structures in protein functional modules
from proteomic data of protein-protein interactions, where
Wang et al. proposes a neighboring local clustering
coefficient based overlapping community detection algorithm
to mine functional modules in these interactions (Wang Y. et al.
). Another aspect is to measure the similarity of proteins, where
Zhang et al. further incorporates structural information of Gene
Ontology (GO) graph to compensate the consideration of only

information content of GO terms, and calculates the similarity
of proteins through graph embedding methods (Zhang et al.).
These protein interaction graph based approaches in the
Research Topic also illustrate the frontiers of proteomic
research.

For multi-omic data analysis, this Research Topic also
collected two studies which include more than one type of
omic data. Detailly, Wang et al. proposes a joint matrix tri-
factorization framework for discovering complex biological
processes (CBPs) of multi-omics molecules regulation, which
reflect the activities of various molecules in living organisms
(Wang B. et al.). Moreover, in the prediction of cancer subtypes,
to effectively utilize rich heterogeneous information in the
multiple view fusion graph of multiple omics data, Liu et al.
proposes a multi-smooth representation fusion based multi-view
spectral clustering method, which consists of graph construction,
graph fusion, and spectral clustering for clustering of cancer
subtypes frommulti-omic data (Liu et al.). These works also show
the frontiers of multi-omic research.

In brief, This collection of contributions in the Research Topic
provide a window into the frontiers of unsupervised learning
models for unlabeled genomic, transcriptomic and proteomic
data. Given the remarkable success of unsupervised learning
application in bioinformatics problems, we hope that these
approaches can throw light on the problem of data annotation
cost, extending the frontiers of bioinformatics research of
omic data.
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