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Abstract

Water buffalo mastitis represents a major issue in terms of animal health, cost of therapy, pre-

mature culling and decreased milk yeld. The emergence of antibiotic resistance has led to

investigate strategies to avoid or reduce antibiotics’ based therapies, in particular during sub-

clinical mastitis. The use of Generally Regarded As Safe bacteria (GRAS) such as Lactoba-

cillus rhamnosus to restore the unbalance in mammary gland microbiota could provide

potential corrective measures. The aim of this study was to investigate the changes in milk

microbiota after the intramammary treatment with inactivated cultures of Lactobacillus rham-

nosus of mammary gland quarters naturally affected by subclinical mastitis as compared to

antibiotic therapy.A number of 43 quarters affected by subclinical mastitis with no signs of

clinical inflammation and aerobic culture positive for pathogens were included in the study.

The experimental design was as follows: 11 quarters were treated with antibiotics, 15 with

inactivated cultures of Lactobacillus rhmnosus and 17 with PBS as negative control, by

means of intrammary injection. Samples were collected at eight time points, pre- (T-29, T-21,

T-15, T-7, T0 days) and post- treatment (T1, T2, and T6 days). Microbiological culture and

Somatic Cell Count (SCC) were perfomed on all the samples, and microbiota was deter-

mined on milk samples collected at T0 and T6 by amplifying the V4 region of 16S rRNA gene

by PCR and sequencing using next generation sequencing technique. Treatment with Lacto-

bacillus rhamnosus elicited a strong chemotactic response, as determined by a significant

increase of leukocytes in milk, but did not change the microbiological culture results of the

treated quarters. For what concerns the analysis of the microbiota, the treatment with Lacto-

bacillus rhamnosus induced the modification in relative abundance of some genera such as

Pseudomonas and 5-7N15. As expected, antibiotic treatment caused major changes in

microbiota structure with an increase of Methylobacterium relative abundance. No changes

were detected after PBS treatment. In conclusion, the present findings demonstrated that the
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in vivo intrammmary treatment with Lactobacillus rhamnosus has a transient pro-inflamma-

tory activity by increasing SCC and is capable to modify the microbiota of milk after six days

from inoculation, albeit slightly, even when the bacterial cultures were heat inactivated. Fur-

ther studies are necessary to assess the potential use of this GRAS as supportive therapy

against mastitis.

Introduction

The domestic water buffalo (Bubalus bubalis) contributes to a significant share of global milk

production and is the major milk producing animal in several countries, such as India and

Pakistan [1]. Water buffaloes are resistant to most of the disease affecting dairy cows, even in a

context of low feeding and environmental stress [2–4]. The background of this resistance lies

in mammary gland anatomical features, including a long narrow teat canal, a teat skin less sen-

sitive to chapping and sores, a streak canal with thicker epithelium and keratin layer, a tighter

sphincter of streak canal and the absence of milk cistern [5]. These distinct features of the buf-

falo mammary gland are believed to prevent the invasion of micro-organisms. The few studies

on water buffalo mastitis presented the evidence that somatic cell score in quarters with intra-

mammary infection is low, and a limited decrease in milk production was found among

infected animals as compared to healthy ones [6]. However, mastitis is still occurring in dairy

buffaloes in intensive dairy farming [7], with an impact that might be comparable to that of

dairy cows concerning production losses, culling and treatment costs [8], beside decreasing

animal health and welfare [9,10].

The conventional therapy against mastitis includes the treatment of the mammary gland

with antibiotics. Although necessary for both therapeutic and prophylactic purposes, treat-

ment with antibiotics is not fully efficient, and presents several drawbacks. The extended use

of antibiotics is at the background of the development of anti-microbial resistance that can

persist in the bacterial community [11, 12], as demonstrated for Streptococcus agalactiae [13]

and Staphylococcus aureus [14]. Furthermore, the massive use of antibiotics in dairy animals is

at the origin of antibiotic residues’ pollution in the environment and contamination of milk

and other animal-derived products, causing antibiotic resistance in humans as well [15].

Alternative strategies are investigated, aiming to reduce the use of antibiotics. New therapeu-

tic approaches, such as, among the others, Generally Recognized As Safe (GRAS) bacteria,

including Lactic Acid Bacteria (LAB), have been developed [16]. The in vitro and in vivo effects

of treatment with LAB produced different and opposite results in cows. In vitro studies on the

effects of Lactococcus lactis as potential anti-mastitis therapeutics have shown promising results

on bovine mammary epithelial cells by producing nisin A, a polycyclic antibacterial peptide

[17]. The different strains of lactobacilli that have been investigated so far included Lactobacillus
perolens, Lactobacllus rhamnosus, Lactobacillus brevis and Lactobacillus plantarum [18–21]. In
vitro results were encouraging, and an overall reduction of bacterial load together with an anti-

inflammatory activity were demonstrated. On the contrary, the in vivo use of GRAS produced

contradictory results and their activity remains inconclusive. Lactococcus lactis stimulates the

intramammary immune system of cattle, as determined by polymorphonuclear cells (PMN)

recruitment and increasing of haptoglobin and serum amyloid A concentrations in milk [22].

Nonetheless, only in few studies the live cultures of Lactococcus lactis were effective in bovine

mastitis treatment [23]. In a model of mouse mastitis, the experimental infection with Staphylo-
coccus chromogenes and treatment with live cultures of Lactococcus lactis induced an increased
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level of IL-1β and TNFα, in addition to tissues damages, suggesting that these GRAS strains can-

not be used for mastitis treatment in rodents. Recent findings on ewes affected by subclinical

mastitis confirmed that the infusion of Lactococcus lactis into the mammary gland leads to a

transient clearance of the pathogens, but also increases the inflammatory status of the mammary

gland [24]. Similarly, treatment with different strains of Lactobacillus failed to decrease cow

mastitis and caused a local inflammatory response [25,26]. Among GRAS, Lactobacillus rham-
nosus was found to possess the strongest antibacterial activity against Salmonella enterica [27],

and also capable of preventing the Escherichia coli–induced changes in epithelial barrier func-

tions [28]. Similar results were demonstrated in cows as well, where the potential of Lactobacil-
lus rhamnosus against Escherichia coli-infection in vagina and endometrium [29,30], intestine

[31] and respiratory apparatus [32] was also reported. Information about the activity of Lactoba-
cillus rhamnosus on mammary gland is, one the contrary, very limited. In vitro studies provided

evidence that Lactobacilus rhamnosus pretreatment was able to attenuate the pro-inflammatory

effects of an E.coli challenge on primary bovine mammary epithelial cells by suppressing TLR

and inflammasome related gene expression [33,34]. To the best of the knowledge of the authors,

no study was carried out to investigate the in vivo effects of Lactobacillus rhamnosus in the

mammary gland, in particular for what concerns how Lactobacillus treatment can influence the

delicate equilibrium between bacterial communities.

Culture-independent techniques relying on high-throughput DNA sequencing of 16S pro-

vided an in-depth knowledge of bacterial communities, and are currently applied to unravel

the relationship between resident microbial population and the development of mastitis[35–

38]. The results of these studies demonstrated that bacterial species are present in culture-neg-

ative samples collected from animals with clinical mastitis [39] and that major pathogens, such

as Streptococcus uberis and Staphylococcus aureus, can be found in milk from clinically healthy

animals [35]. On this background, the insurgency of mastitis may be related to both the pres-

ence of specific pathogen and the modification of the microbial community of milk [40]. This

observation was confirmed in water buffalo, whose milk microbiota has been recently pub-

lished [41].

The aim of this study was to investigate the effect of an intramammary inoculation of Lacto-
bacillus rhamnosus on the milk SCC and microbiota of water buffaloes naturally affected by

sub-clinical mastitis. The effect of antibiotics, that were also used as positive control for anti-

bacterial activity on milk microbiota, were characterized as well. Lactobacillus rhamnosus was

selected on the background of its in vitro antibacterial activity in the epithelial mammary

gland cellular model.

Materials and methods

Bacterial strain, culture conditions and inactivation of Lactobacillus
rhamnosus inocula

The probiotic Lactobacillus rhamnosus strain GG (LMG 18243) from the BCCM/LMG Bacte-

ria Collection (Belgium) was prepared as follows: the bacterium was grown at 37˚C for 48h in

Trypticase Soy Broth (TSB, BD, Italy) in a Gaspak jar using the commercial gas-generating

AnaeroGen AN25 kit (Oxoid, England) for anaerobic growth. The probiotic culture was then

centrifuged at 3000 x g for 20 min, washed twice with sterile pyrogen-free saline solution

(NaCl 0.9%) and suspended in the solution used for the inoculum, namely sterile PBS (Sigma-

Aldrich, Milano). This bacterial suspension (approximately 109 CFU x mL-1) was inactivated

after boiling at 100˚C for 15 min. The absence of viable cells was verified by culturing on TBS

medium. Five mL of the heat-inactivated suspension were used for each intramammary

injection.
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Study design and intramammary challenge

The experimental protocol was approved by Italian Ministry of Health (Protocol No.982/

2015PR). The study was carried out on 20 multiparous water buffaloes (Bubalus bubalis)
homogeneous for parity (2nd to 4th lactation) and in mid lactation (from 60 to 160 DIM). The

animals were housed in a commercial farm and left 29 days to become familiar with the experi-

mental conditions. During that time, animal health status was diagnosed clinically and quarter

milk samples were collected for bacteriological analysis and Somatic Cell Count (SCC).

For the purpose of this study, quarters affected by sub-clinical mastitis were defined as

those with no evidence of clinical signs, but positive to microbiological culture for three times

before T0 (included). Following these criteria, a total number of 43 samples were included in

the study as affected by sub-clinical mastitis. Milk samples were collected weekly at T-29, T-21,

T-15, T-7 and T0 and then intramammary inoculated following this protocol: at T0, 15 quar-

ters were inoculated with 5 ml of inactivated cultures of Lactobacillus rhamnosus (LAB)

(LAB-T0), 11 quarters were inoculated with amoxicillin-clavulanic acid (Synulox Lactating

Cow Intramammary Suspension, Pfizer, Italy) (Ab-T0), and 17 quarters were inoculated with

5 ml of sterile PBS (Sigma-Aldrich, Milano) (PBS-T0). After challenging, samples of milk were

further collected at time T1, T2 and T6.

Milk samples were collected after disinfection of teat ends with a 2% povidone-iodine (Beta-

dine Solution) and discarding of the first three strains of milk. Gloves were changed each time

and 150 ml of milk were collected in sterile containers. After collection, milk samples were

immediately refrigerated and delivered to the laboratory for microbiological analysis and SCC.

Milk samples were finally aliquoted and stored at -80 C for microbiota identification, which

was carried out on milk samples at T0 and T6.

Clinical observation and animal care

Clinical signs were monitored throughout the experiment by a veterinary practitioner, every 8

hours during the first 24 hours from the challenge and then every time the water buffaloes

were milked. Rectal temperature was measured every 24 hours. General attitude, and appetite

were evaluated, and the udders were palpated to identify soreness, swelling hardness and heat,

to assess the development of clinical signs.

Microbiological culture (MC) and Somatic Cell Count (SCC)

Microbiological culture tests were performed for each milk sample using different media as

previously reported [41]. Briefly, samples were incubated at 37˚ for 24h in aerobic conditions

on Trypticase soy agar (with 5% sheep blood), MacConkey agar and Baird Parker agar; at 37˚

for 72h in aerobic conditions on Prototheca isolation medium (PIM); at 37˚ in microaerobic

conditions on Mycoplasma agar. Gram staining, coagulase and oxidase tests were performed

on cultures with mastitis pathogens; in particular, in Staphylococcus spp. positive culture were

tested for coagulase activity using rabbit plasma, and Streptococcus spp positive cultures were

evaluated with Streptokit-BioMérieux test for Lancefield grouping. Somatic cell count was

measured in milk samples at T-29, T-21, T-15, T-7, T0, T1, T2, and T6 (days) using Fossomatic

(Foss) apparatus by means of the UNI EN ISO 13366–2:2007 technique for electronic optical

fluorimetric counters.

DNA extraction

One ml of milk was centrifuged at room temperature at 16,100 rcf [36,41]. Fat and supernatant

were discarded and the remaining pellet was resuspended with 250ul of the Power Bead Tube
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of the DNEasy Power Soil Kit (QIAGEN) used to extract bacterial DNA, according to the man-

ufacturer’s instructions. After the DNA elution in 50 μl of DNAse and RNAse free water, DNA

concentration and purity were analysed using NanoDrop 2000 Spectrophotometer (Thermo

Fisher Scientific, Weltham, Massachusetts, U.S.A.) at wavelength 230, 260 and 280 nm and

DNA samples were stored at -80˚ until further processing. The reagents included in the kit,

without any bacterial DNA, were used as blank control for each DNA extraction batch.

Amplification of the hypervariable V4 region of bacterial 16S rRNA gene

by PCR and barcoding

V4 region of 16S rRNA gene was amplified for each sample [37]. The forward primer was

5’–CCATCTCATCCCTGCGTGTCTCCGACTCAGNNNNNNNNNNNNNNNNNGATGTGYCA
GCMGCCGCGGTAA– 3’, composed of the adapter linker, the key, the barcode, different for

each sample, and the forward primer 515F. The reverse primer was 5’–CCTCTCTATGGG
CAGTCGGTGATGGACTACNVGGGTWTCTAAT– 3’, composed of the adapter linker and the

R806 reverse primer. The Thermo Scientific Phusion Hot Start II High-Fidelity DNA poly-

merase kit was used to perform V4 PCR; each PCR reaction contained RNAse and DNAse

free water, 5x Phusion Buffer HF (5 μl), dNTPs 2mM (2.5 μl), Primer Fw 10μM (1.25 μl),

Primer Rv 10μM (1.75 μl), Phusion High Fidelity Taq Polymerase 2 U/μl (0.25 μl) and 5 ng

of DNA. When DNA samples quantification was too low (less than 5 ng/μl), 5 μl of the sam-

ples were used to perform PCR. The thermal profile consisted of an initial denaturation of

30 sec at 98˚C, followed by 32 cycles of 15 sec at ˚98 C, 15 sec at 50˚C, 20 sec at 72˚C, and a

final extension of 7 min at 72˚C. Each PCR plate included samples derived from each

group. After DNA purification using Agencourt AMPure XP kit with a ratio 1:1, quality and

quantity of PCR products were determined using Agilent Bioanalyser 2100 and Qubit

fluorometer.

For 17 samples showing DNA concentration lower than 1 ng/μl at Qubit quantification,

PCR was repeated using the same PCR condition and increasing the number of cycles up to 36.

The lack of amplification of extraction and PCR negative controls was confirmed for all PCR.

Next-generation sequencing, bioinformatics and statistical analysis

Sequencing was performed using Ion Torrent Personal Genome Machine (PGM) with the Ion

318 Chip Kit v2 (Thermo Fisher Scientific, Weltham, Massachusetts, U.S.A.), by the Centre for

Research in Agricultural Genomics (CRAG, Bellaterra, Barcelona), following manufacturer’s

instructions. The raw sequences have been submitted to NCBI under Bioproject accession

number SUB4205063—Bioproject number: PRJNA477950. After sequencing, reads were

demultiplexed in order to have sequence file for each barcode/sample and Primer Rv was

removed. Then, sequences were imported in the Quantitative Insight Into Microbial Ecology 2

(QIIME 2) software [42] (https://qiime2.org), which was used to analyze data. After obtaining

a unique file with all sequencing data, DADA2 was used as quality filtering method in order to

denoise, dereplicate single-end sequences and remove chimeras [43]. Afterward, the primer

Fw was removed and a truncation length of 245 bases was used, taking into account the quality

plot result and the mean V4 length of around 250 bases. After that, the units of observation,

composed of unique sequences namely Amplicon Sequence Varians (ASVs), were used to clas-

sify them and assign taxonomy, using Greengenes 13.8 [44] at 99% of Operational Taxonomic

Units (OTUs) identity and trimmed to V4 region, as reference database. Finally, chloroplasts

were removed from the sequences.

The filtered feature table was used to perform the downstream analysis. The taxonomic

analysis was performed for each sample or group of samples at phylum, family and genus level.
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Diversity analysis was assessed using 9500 sequences per sample. Alpha diversity that analyses

differences within samples was performed using qualitative and quantitative approaches (rich-

ness or Observed species and evenness or Shannon index, respectively); beta diversity that ana-

lyzes differences among samples estimating how many taxa are shared among samples, was

performed using qualitative and quantitative approaches as well (unweighted and weighted

UniFrac distances matrices, respectively).

As data presented in this study were not-normally distributed and composed of pre- and

post-treatment samples (T0 vs T6 within the same group), non-parametric paired test was

applied. To compare the effect of the treatment on the microbiota (PBS-T6 vs LAB-T6;

PBS-T6 vs Ab-T6; LAB-T6 vs Ab-T6), non-parametric unpaired test was applied. Taxonomic

statistical analysis was performed using Wilcoxon signed pairwise test (pairwise.wilcox.test in

coin package) and Kruskal Wallis test followed by Dunn pairwise test (dunn.test package) in R

version 3.4.3 (http://www.R-project.org), for paired and unpaired comparisons, respectively. A

specific QIIME 2 plugin for longitudinal studies was used for alpha diversity and beta diversity

principal coordinates analyses: as two time points were considered for this experiment, Wil-

coxon rank sum pairwise test was used for paired data, while Kruskal Wallis and Wilcoxon

Mann-Whitney U pairwise test were applied for unpaired data [45]. Workflow details are

available at dx.doi.org/10.17504/protocols.io.ucpesvn.

Results

Diagnosis of sub-clinical mastitis, intramammary inoculation of

inactivated Lactobacillus rhamnosus, collection of samples

The diagnosis of sub-clinical mastitis was carried out according to microbiological culture

results and SCC. None of the animals included in this study evidenced any clinical signs

related to the development of an acute mastitis. Results of microbiological culture are pre-

sented in Tables 1 and S1 showing that, at T6, bacteria associated with mastitis were found in

all the samples included in the study, except those collected from quarters treated with antibi-

otics, all of which became negative at microbiological culture at T6, with only one exception.

Somatic Cell Counts were measured at T-29, T-21, T-15, T-7 and T0, with the aim to moni-

tor the microbial status of each quarter and identify those that would be included in the study,

and T1, T2, and T6, to assess the effects of the treatment. All quarters challenged with inacti-

vated Lactobacillus rhamnosus showed an increase in SCC. In individual quarters, elevation of

SCC median reached its peak 24h post inoculation and then decreased afterward (Fig 1). PBS-

infused control quarters showed a significant increase in SCC as compared with prechallenge

levels starting from T1, and increased after T2. Antibiotic treated quarters showed an increase

in SCC starting from T1 and further increases at T2. At T6, the SCC were decreased at the T0

level in all the three groups of samples.

Ion Torrent output: Sequences results after filtering procedures

The sequencing of 43 samples produced a total of 9,468,300 sequences and 4,039 features were

obtained (with a mean of 112,717.85, a minimum of 9,778 and a maximum of 500,775

sequences) after filtering.

Core microbiota and taxonomic profile analysis before and after the

treatment

The core microbiota of milk from water buffaloes affected by subclinical mastitis is composed

of eight main phyla, namely Acidobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria,
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Firmicutes, Proteobacteria, Verrucomicrobia and [Thermi]. Results are presented in Fig 2 and

Table 2. The milk microbiota was dominated by Firmicutes (mean of 60.9% at T0) and Proteo-

bacteria (mean of 18.8% at T0). Treatment with Lactobacillus rhamnosus and PBS did not

induce any major change from T0 to T6, with the exception of [Thermi]. On the contrary,

treatment with Ab induced a decrease of Firmicutes (from 61.8% at T0 to 26.7% at T6), and an

increase of Proteobacteria (from 13.8% at T0 to 30.8% at T6) and Actinobacteria (from 13.8%

at T0 to 28.5% at T6). Comparing the relative abundance of bacterial phyla at T6 between dif-

ferent treatments, no differences were found between treatment with PBS and treatment with

Lactobacillus rhamnosus. On the contrary, several differences were found between milk micro-

biota from quarters treated with Lactobacillus rhamnosus and Ab in the relative abundance of

Acidobacteria, Cyanobacteria and Firmicutes. Differences were also found between milk quar-

ters treated with PBS and Ab, in the relative abundance of Actinobacteria and Firmicutes.
No core microbiota was present at family level. The main families found in milk microbiota

at T0 were Staphylococcaceae (mean of 40.3%), followed by Streptococcaceae (mean of 5.8%),

Moraxellaceae (mean of 5.2%), Ruminococcaceae (mean of 3.2%) and Corynebacteriaceae
(mean of 4.4%). Taxonomic and statistical results at family level are shown in S1 Table and S1

Fig (relative abundance of almost 1%). PBS treatment did not cause significant milk micro-

biota alterations except for Enterobacteriaceae and Rhodobacteriaceae. Similarly, Lactobacillus
rhamnosus treatment induced only an increase of Pseudomonadaceae (from 1.5% at T0 to

5.1% at T6). The main changes were present in antibiotic group at T6, where an increase of

Micrococcaceae (from 0.9% at T0 to 3% at T6), Bradyrhizobiaceae (from 0.2% at T0 to 1.4% at

Table 1. Microbiological culture results for each treatment group.

T0 T6

PBS treated 17 17

Staphylococcus aureus 9 7

Coagulase-negative Staphylococci 4 3

Streptococcus agalactiae 1 0

Staphylococcus aureus / Streptococcus agalactiae 2 3

Coagulase-negative Staphylococci / Streptococcus agalactiae 1 1

Negative 0 3

LAB treated 15 15

Staphylococcus aureus 9 9

Coagulase-negative Staphylococci 3 2

Streptococcus agalactiae 3 0

Staphylococcus aureus / Streptococcus agalactiae 0 2

Coagulase-negative Staphylococci / Streptococcus agalactiae 0 2

Negative 0 0

Ab treated 11 11

Staphylococcus aureus 8 1

Coagulase-negative Staphylococci 2 0

Streptococcus agalactiae 0 0

Staphylococcus aureus / Streptococcus agalactiae 0 0

Coagulase-negative Staphylococci / Streptococcus agalactiae 1 0

Negative 0 10

PBS: quarters treated with sterile PBS only, LAB: quarters treated with inactivated culture of Lactobacillus rhamnosus
only, Ab: quarters treated with antibiotics, as described in Material and Methods. T0: pre-treatment time; T6: time at

6 days post treatment.

https://doi.org/10.1371/journal.pone.0210204.t001
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T6), Methylobacteriaceae (from 1.1% at T0 to 6.7% at T6) and Rhodocyclaceae (from 0.1% at

T0 to 1.2% at T6) was observed. A decrease of Staphylococcaceae (from 42.5% at T0 to 7.5% at

T6) was also observed, even if the difference was not statistically significant. Comparing the

relative abundance of taxa at family level among groups at T6, no differences were found

between Ab and PBS groups except for Microbacteriaceae and Cytophagaceae and no major

changes between Lactobacillus rhamnosus and PBS groups, except for Peptostreptococcaceae
and Comamonadaceae. On the contrary, several changes were present between Lactobacillus
rhamnosus and Ab microbiota at T6 showing differences in relative abundance (RA) of Micro-
coccaceae, Propionibacteriaceae, Staphylococcaceae, Peptostreptococcaceae, and

Comamonadaceae.
It was not possible to identify any core microbiota at genus level. Taxonomic and statistical

results at genus level were shown in Table 3 and Fig 3 (relative abundance of almost 1%). Fam-

ily level was indicated where genus level could not be reached. Milk samples at T0 were domi-

nated by Staphylococcus (mean of 40%), followed by Streptococcus (mean of 9%), Acinetobacter
(mean of 4.6%), Corynebacterium (mean of 4%) and Propionibacterium (mean of 2.3%). No

changes were detected after PBS treatment. The main statistically significant changes after Lac-
tobacillus rhamnosus treatment were identified as an increase of the RA of Pseudomonas from

1% at T0 to 4% at T6 and a minor increase of 5-7N15. As expected, major changes were found

after Ab treatment, which induced a decrease of Staphylococcus from 41% at T0 to 3% at T6. A

statistically significant increase of Methylobacterium was also found (from 1% at T0 to 6% at

Fig 1. Somatic cell count in response to challenge with LAB, Ab and PBS. Median (line into the box), upper and

lower quartiles (ends of the box) and highest and lowest values (extreme lines) are shown for challenged quarters. The

bigger black points indicate outliers. � indicates statistical significance at p< 0.05.

https://doi.org/10.1371/journal.pone.0210204.g001

Fig 2. Water buffalo milk taxonomic profile at phylum level. LAB: quarters treated with inactivated culture of Lactobacillus rhamnosus only, Ab: quarters treated with

antibiotics, PBS: quarters treated with sterile PBS only. T0: time zero; T6: time at 6 days post treatment.

https://doi.org/10.1371/journal.pone.0210204.g002
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T6). Comparing the relative abundance of taxa at genus level among groups at T6, negligible

changes were detected between PBS and Lactobacillus rhamnosus groups as well as between

PBS and Ab groups. More genera differed between Lactobacillus rhamnosus and Ab micro-

biota, namely Staphylococcus, Propionibacterium and 5-7N15.

Discriminant analysis following treatment

Considering the effect of the treatment on microbiota, alpha diversity showed differences

between Ab- and LAB-treated groups at richness level, where a decrease of 85.4 and an

increase of 80.3 observed species was observed, respectively (p = 0.03). No modification of

richness or evenness was observed comparing microbiota T0 vs T6 within the same group.

Beta diversity analysis showed differences on the basis of the weighted UniFrac distance

matrix. Modification in microbiota was observed only after Ab treatment, whose groups at T0

and T6 were discriminated by the axis 2 from PCoA plot (p = 0.04): samples moved across the

axis 2 in the same direction between T0 and T6, suggesting that these samples experienced the

same directional shift in terms of microbiota structure, even if the magnitude or the final com-

position could not be the same. The effect of the treatment, plotted in Fig 4, showed that the

Ab effect on the microbiota structure was greater than the Lactobacillus rhamnosus effect

(p = 0.001), which was in turn smaller than the PBS effect (p = 0.003).

Discussion

Probiotics have been used as a corrective measure to re-equilibrate the microbiota during mas-

titis, with contradictory results. Remarkably, the effects of GRAS on microbiota as determined

by culture independent methods has not been investigated so far. In this study, we reported

the effects of an in vivo treatment on mammary glands with inactivated cultures of Lactobacil-
lus rhamnosus of water buffaloes affected by subclinical mastitis in order to analyze the change

in microbiota structure and evaluate the use of this GRAS as alternative strategy to the use of

antibiotics. To the best of the knowledge of the authors, this was the first study using Lactoba-
cillus rhamnosus in an in vivo study on mammary gland. The scientific background behind the

experimental design was that Lactobacillus rhamnosus, in combination with other Lactic acid

bacteria, was able to modulate the pathogenic environment in the vaginal tract by regulating

Table 2. Relative abundance of microbiota taxa at phylum level.

Relative abundance frequencies
Quarter treated

with PBS

Quarters treated

with LAB

Quarters treated

with antibiotics

PBS LAB Ab T6

PBS-T0 PBS-T6 LAB-T0 LAB-T6 Ab-T0 Ab-T6 T0 vs T6 T0 vs T6 T0 vs T6 PBS vs LAB PBS vs Ab LAB vs Ab

Acidobacteria 0,3% 0,3% 1,2% 0,2% 0,0% 0,0% ns ns ns ns ns ns

Actinobacteria 11,7% 14,2% 9,5% 9,9% 13,8% 28,5% ns ns 0,01 ns 0,002 <0,001

Bacteroidetes 3,9% 6,3% 4,3% 4,7% 6,5% 11,4% ns ns ns ns ns ns

Cyanobacteria 1,8% 0,0% 0,1% 0,1% 0,7% 0,0% ns ns ns ns ns 0,01

Firmicutes 53,0% 48,9% 68,1% 66,7% 61,8% 26,7% ns ns 0,005 ns 0,01 0.01

Proteobacteria 27,9% 28,6% 14,7% 17,5% 13,8% 30,8% ns ns 0,04 ns ns ns

Verrucomicrobia 0,3% 0,2% 0,3% 0,2% 0,7% 0,5% ns ns ns ns ns ns

[Thermi] 0,0% 0,0% 0,5% 0,0% 0,6% 1,0% ns 0,03 ns ns ns ns

Other 1,1% 1.5% 1,3% 0,6% 2,1% 1,0% ns ns ns ns ns ns

LAB: quarters treated with inactivated culture of Lactobacillus rhamnosus only, Ab: quarters treated with antibiotics, PBS: quarters treated with sterile PBS only. T0: time

zero; T6: time at 6 days post treatment

https://doi.org/10.1371/journal.pone.0210204.t002
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Escherichia coli infection and inflammation of the bovine endometrium [29]. At least so far,

live cultures of probiotic were not found to improve mouse [46], cow [18,22,47] or ewe [24]

mastitis. On the contrary, most of the Lactobacilli and Lactococci strains used so far for in vivo
studies have been demonstrated to exert a pro-inflammatory activity: Lactococcus lactis, for

example, is regarded as a pathogen causing mastitis [48,49]. The cultures used for in vivo chal-

lenging were previously inactivated with heat. This procedure was carried out to prevent any

potential proinflammatory activity related to in vivo treatment with GRAS, as previously

reported [50] which would have probably induced an acute inflammation, eventually switch-

ing the clinical status from sub-clinical to clinical mastitis. Moreover, a potential interference

on the microbiota analysis of an uncontrolled overgrowth of living lactobacilli culture after

Table 3. Relative abundance of microbiota taxa at family/genus level.

Relative abundance frequencies p-value (where p < 0.05)
Quarter treated

with PBS

Quarters treated

with LAB

Quarters treated

with antibiotics

PBS LAB Ab T6

PBS-T0 PBS-T6 LAB-T0 LAB-T6 Ab-T0 Ab-T6 T0 vs T6 T0 vs T6 T0 vs T6 PBS vs LAB PBS vs Ab LAB vs Ab

Deinococcus 0% 0% 0% 0% 1% 0% ns ns ns ns ns ns

Corynebacterium 3% 5% 3% 4% 6% 7% ns ns ns ns ns 0,04

Dietzia 0% 1% 1% 0% 1% 1% ns ns ns ns ns ns

Nesterenkonia 1% 1% 0% 0% 0% 1% ns ns ns ns ns ns

Rhodococcus 0% 0% 0% 0% 0% 1% ns ns ns ns ns ns

Propionibacterium 3% 2% 2% 2% 3% 10% ns ns ns ns ns 0,002

CF231 0% 0% 0% 0% 1% 0% ns ns 0.03 ns ns ns

5-7N15 0% 1% 0% 1% 0% 0% ns 0.01 ns ns ns ns

Hymenobacter 0% 0% 0% 0% 0% 6% ns ns ns ns ns ns

Chryseobacterium 0% 0% 0% 0% 0% 1% ns ns ns ns 0,04 ns

Natronobacillus 0% 1% 0% 1% 1% 1% ns ns ns ns ns ns

Lysinibacillus 0% 1% 0% 0% 0% 0% ns ns ns ns ns ns

Solibacillus 0% 2% 1% 1% 0% 1% ns ns ns ns ns ns

Jeotgalicoccus 0% 1% 1% 1% 1% 2% ns ns ns ns ns ns

Salinicoccus 0% 1% 0% 0% 1% 2% ns ns ns ns ns ns

Staphylococcus 33% 25% 43% 45% 41% 3% ns ns 0.03 ns ns 0,01

Alkalibacterium 0% 1% 0% 0% 1% 1% ns ns ns ns ns ns

Facklamia 0% 0% 1% 0% 0% 0% ns ns ns ns ns ns

Granulicatella 0% 0% 0% 0% 0% 1% ns ns ns ns ns ns

Streptococcus 6% 6% 11% 8% 1% 2% ns ns ns ns ns ns

Bradyrhizobium 1% 0% 1% 0% 0% 1% ns ns ns ns ns ns

Methylobacterium 1% 5% 1% 1% 1% 6% ns ns 0,02 ns ns ns

Sphingomonas 0% 0% 0% 1% 1% 3% ns ns ns ns ns ns

Delftia 0% 1% 1% 0% 0% 1% ns ns ns ns ns ns

Hydrogenophilus 1% 1% 0% 1% 0% 1% ns ns ns ns ns ns

Escherichia 4% 0% 2% 0% 2% 1% ns ns ns ns ns ns

Halomonas 1% 1% 0% 2% 1% 2% ns ns ns ns ns ns

Acinetobacter 10% 6% 3% 2% 1% 2% ns ns ns ns ns ns

Psychrobacter 1% 0% 0% 0% 0% 0% ns ns ns ns ns ns

Pseudomonas 2% 3% 1% 4% 1% 2% ns 0,007 ns ns ns ns

LAB: quarters treated with inactivated culture of Lactobacillus rhamnosus only, Ab: quarters treated with antibiotics, PBS: quarters treated with sterile PBS only, as

described in Material and Methods. T0: time zero; T6: time at 6 days post treatment

https://doi.org/10.1371/journal.pone.0210204.t003
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inoculation in the mammary gland was envisaged, which would probably prevail over the

other bacterial species, interfering with the detection of other microbial species.

We found that, although inactivated, the intramammary inoculation of LAB had a signifi-

cant chemotactic effect toward leukocytes, as shown by the increase of milk somatic cells after

1 day from the inoculation of LAB. Intramammary gland treatment with PBS induces an

increase of SCC as well, but two days after inoculation: interestingly, this result is consistent

with what has been previously reported in a similar study using sterile PBS as negative control

[51]. Treatment with antibiotics also elicited a chemotactic effect as well, although the increase

of SCC is more limited as compared with LAB. The present results confirmed that intramam-

mary inoculation of either bacteria, PBS or antibiotics triggers an inflammatory response, as

demonstrated by the increase of SCC.

The microbiota of milk from affected animals largely corresponds to what has been previ-

ously reported [41] with some exceptions; among the others, the relative abundance of Psycro-
bacter and Pseudomonas, which were at 8.79% and 14.45% in the previous study, ranged in the

present study from 2% to 4% and from 1% to 2%, respectively. SB53 was not found as well,

whereas its RA was at 3.7% in previous reports. These differences may be explained by the fact

that sub-clinical mastitis can be caused by intramammary infection by a heterogeneous group

Fig 3. Water buffalo milk taxonomic profile at family/genus level (relative abundance of almost 1%). LAB: quarters treated with inactivated culture of Lactobacillus
rhamnosus only, Ab: quarters treated with antibiotics, PBS: quarters treated with sterile PBS only, as described in Material and Methods. T0: time zero; T6: time at 6 days

post treatment.

https://doi.org/10.1371/journal.pone.0210204.g003
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of microorganisms, and the relative abundance of each microbial population may therefore be

heterogeneous as well. No families nor genera were shared among subclinical mastitis samples,

confirming that microbiota varies more in sub-clinical mastitis than healthy individuals as pre-

viously reported [41,52].

No major changes in microbiological cultures were found in milk quarters treated with

LAB and PBS. As expected, the milk from quarters treated with antibiotic became negative at

microbiological count, with one exception.

After treatment with inactivated Lactobacillus rhamnosus, we found an increase of up to 4% in

the relative abundance of Pseudomonas. This finding is interesting, because the relative

Fig 4. Boxplots show quartile distribution of weighted UniFrac distances between each group diversity after LAB, Ab and

PBS treatment. Statistical significant differences were found between Ab and LAB (p = 0.001) and LAB and PBS (p = 0.003).

LAB: quarters treated with inactivated culture of Lactobacillus rhamnosus only, Ab: quarters treated with antibiotics, PBS:

quarters treated with sterile PBS only, as described in Material and Methods.

https://doi.org/10.1371/journal.pone.0210204.g004
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abundance of Pseudomonas genus was found to be associated to mastitis in water buffalo in our

previous report [41], and is already known as mastitis pathogen in cow [53], sheep [54] and goats

[55]. We may therefore hypothesize that the inoculation of LAB, though inactivated, may unbal-

ance the microbiota of water buffalo by increasing the relative abundance of genus involved in

the development of mastitis. It must also be said that the effects on microbiota of sterile PBS was

more evident than the effects of inactivated cultures of LAB. This results may provide suggestions

about the use of PBS as negative control for in vivo studies on mammary gland.

Other major finding was that the treatment with antibiotics increased at T6 the relative

abundance ofMethylobacterium, which was not found in milk treated with Lactobacillus rham-
nosus and PBS. Methylobacterium forms biofilms and can develop resistance to high tempera-

tures, drying, and disinfecting agents [56], which features may partially explain the growth

capability of this genus after antibiotic treatment. These results supported in water buffalo the

hypothesis that has been recently advanced in dairy cow that the mammary gland hosts a resil-

ient microbiome that can reestablish after treatment with antibiotics [57].

Given the background that Lactobacillus rhamnosus culture was inactivated, and it induced

an extravasation of leukocytes from blood toward the milk, we may speculate that the few

modification of microbiota are determined by the intervening WBC, that are activated by the

PAMP exposed on the surface of killed bacteria.

Interestingly, we found that no paracrine effect was present within the mammary glands: in

all animals with subclincal mastitis quarters treated with antibiotic and other subclinical masti-

tis quarters treated with Lactobacillus rhamnosus or PBS, only the antibiotic-treated quarter

became MC negative. About the others within the same mammary gland, they did not change

or became MC positive at T6, suggesting the independence of every single quarter.

Conclusions

This is the first experiment on water buffaloes, and in ruminants in general, that aimed to

investigate the effect of Lactobacillus rhamnosus on subclinical mastitis. We demonstrated that

the in vivo intramammary treatment with Lactobacillus rhamnosus has a transient pro-inflam-

matory activity as assessed by the SCC and is capable to modify the microbiota of milk after six

days from inoculation, albeit slightly, even when the bacterial cultures were heat inactivated.

This study confirmed the potential pro-inflammatory activity of GRAS bacteria, and suggests

that careful approaches are needed for its in vivo use.
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