
1Scientific REpORTS |         (2018) 8:16828  | DOI:10.1038/s41598-018-34776-y

www.nature.com/scientificreports

Electron waiting times in hybrid 
junctions with topological 
superconductors
Shuo Mi  1,2, Pablo Burset1 & Christian Flindt1

We investigate the waiting time distributions (WTDs) of superconducting hybrid junctions, considering 
both conventional and topologically nontrivial superconductors hosting Majorana bound states at their 
edges. To this end, we employ a scattering matrix formalism that allows us to evaluate the waiting 
times between the transmissions and reflections of electrons or holes. Specifically, we analyze normal-
metal–superconductor (NIS) junctions and NISIN junctions, where Cooper pairs are spatially split into 
different leads. The distribution of waiting times is sensitive to the simultaneous reflection of electrons 
and holes, which is enhanced by the zero-energy state in topological superconductors. For the NISIN 
junctions, the WTDs of trivial superconductors feature a sharp dependence on the applied voltage, 
while for topological ones they are mostly independent of it. This particular voltage dependence is 
again connected to the presence of topological edge states, showing that WTDs are a promising tool for 
identifying topological superconductivity.

Topological superconductivity is an exotic state of quantum matter characterized by the emergence of 
symmetry-protected gapless edge states1. Such excitations are the condensed matter realization of Majorana fer-
mions2–4. Due to their topological protection against disorder and their non-Abelian statistics, Majorana modes 
are a prominent building block for topological quantum computers5,6. The search for topological superconduc-
tors has thus become the focus of an intense research activity. Topological superconductivity naturally arises in 
a few superconducting materials7, however, most commonly, it is a result of careful material engineering. In one 
approach, an effective p-wave pairing is induced by the proximity-effect from conventional s-wave superconduc-
tors on materials with strong spin-orbit coupling2–4. The p-wave pairing can then be controlled by an external field 
or magnetic impurities8–15. To detect Majorana modes, one can measure the tunnel conductance, which scans 
the surface density of states of the superconductor16,17. Zero-bias conductance peaks are related to the presence 
of surface states and thus provide signatures of topological and other types of unconventional superconductiv-
ity18,19; cf. Fig. 1(a). However, conductance and shot noise measurements are sensitive to impurity scattering and 
temperature broadening20–22 and require junctions in the tunneling regime to provide unambiguous signatures 
of topological superconductivity.

An alternative to conventional current measurements is provided by the recent progress in the real-time 
detection of single electrons in nano-scale systems. Electron counting techniques have by now reached a level 
of sophistication where single charges can be manipulated and detected with high precision23–26, opening a wide 
range of possibilities for exploring the statistics of electron transport27–29. One may for example investigate the 
waiting time between subsequent tunneling events30. The waiting time distributions (WTDs) provide informa-
tion about the internal dynamics of a mesoscopic system which is useful for systems with localized states31–34. 
Theories of WTDs for mesoscopic conductors have recently been developed35–37 and used to investigate the 
regularity of dynamic single-electron emitters38–44. Experimentally, it is possible to detect single Andreev pro-
cesses at normal-metal-superconductor interfaces45,46. For energies below the superconducting gap, electrons 
in the normal-metal are converted into Cooper pairs in the superconductor, leaving a hole behind, see Fig. 1(b). 
Thus, the Andreev-reflected hole in the normal-lead is directly connected to the transfer of a Cooper pair into 
the superconductor. In turn, the WTD of reflected holes is equivalent to that of the transferred Cooper pairs, 
and it may unravel the internal dynamics of a superconducting hybrid47 or reveal the presence of entangled 

1Department of Applied Physics, Aalto University, 00076, Aalto, Finland. 2Univ. Grenoble Alpes, CEA, INAC-Pheliqs, 
38000, Grenoble, France. Shuo Mi and Pablo Burset contributed equally. Correspondence and requests for materials 
should be addressed to S.M. (email: shuo.mi@univ-grenoble-alpes.fr)

Received: 18 May 2018

Accepted: 22 October 2018

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0001-7872-658X
mailto:shuo.mi@univ-grenoble-alpes.fr


www.nature.com/scientificreports/

2Scientific REpORTS |         (2018) 8:16828  | DOI:10.1038/s41598-018-34776-y

electron-hole pairs48,49. For topological superconductors, a spin-sensitive single-electron detector would observe 
a distinct signal from a Majorana mode at very low voltages50.

In this work, we identify the presence of edge states in topological superconductors using the distribution of 
electron waiting times. We describe the coherent microscopic processes that take place at normal-metal–super-
conductor (NIS) junctions with conventional or topological superconductors and include the effects of the trans-
mission amplitudes and the applied voltage. Specifically, we demonstrate that the WTDs of Andreev processes 
are sensitive to the presence of topological edge states even under conditions where conductance and noise meas-
urements would be ambiguous, i.e., in the presence of impurities or with high transmission amplitudes. While 
conductance spectroscopy requires tunnel junctions and fine-tunning of the bias voltage for subgap values, the 
distribution of electron waiting times can identify topological superconductors at junctions with arbitrary trans-
parency and for fixed voltages. In an NISIN setup with grounded superconductor, we show that the WTD is sen-
sitive to the number of resonances inside the transport window. For trivial superconductors, the WTDs change 
abruptly from a low-transmission profile for subgap voltages into an oscillatory one that reflects the transfer of 
electrons for voltages above the superconducting gap. The WTDs of topological superconductors, by contrast, are 
mainly determined by the zero-energy state and do not change over a wide range of voltages.

This rest of the paper is now organized as follows. In Sec. 2, we describe the microscopic scattering theory of 
normal-metal–superconductor junctions. In Sec. 3, we discuss the theory of WTDs for coherent scatterers. In 
Sec. 4, we analyze the WTDs of NIS junctions with one normal-state lead and one superconductor lead. In Sec. 
5, we turn to NISIN junctions, where the superconductor is sandwiched between two normal-state leads, so that 
Cooper pairs can be spatially split into different leads. Finally, Sec. 6 contains our concluding remarks and an 
outlook on prospects for future work.

Superconducting Junctions
We are interested in the electronic transport in hybrid junctions consisting of superconducting and normal-state 
regions. The low-energy excitations of a superconductor are well-described by the Hamiltonian51
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where μ is the chemical potential and σ̂0,1,2,3 are the Pauli matrices in spin space. Corresponding to our choice of 
basis, the quasi-particle state has the form

Ψ = ↑ ↓ ↑ ↓u u v vk k k k k( ) [ ( ), ( ), ( ), ( )] , (2)
T

where uσ(k) and vσ(k) are the electron- and hole-like components with spin σ = ↑, ↓ and wave vector k. We focus 
on one-dimensional systems extending along the x-direction and electronic excitations near the Fermi surface 
with the dispersion relation
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where m is the effective mass. For a singlet s-wave superconductor, the pairing potential has the simple form

Figure 1. Electron waiting times of superconducting hybrids. (a) One-dimensional topological superconductor 
with two edge states: the bulk density of states (DoS) shows a conventional gap (black line), while the edge 
states appear as zero-energy peaks (red lines). (b) Schematics of an NIS junction, where an applied dc voltage 
drives electrons from the normal-state electrode (N) into a trivial or topological superconductor (S). Electrons 
with excitation energy smaller than the superconducting gap Δ are Andreev reflected and a Cooper pair is 
transmitted into the superconductor. Incident electrons can also be normal-reflected at the interface. The time 
between the reflection of two successive holes and the injection of two Cooper pairs is the same.
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σΔ = Δ φˆ ˆik( ) e , (4)i
2

where the amplitude Δ ≥ 0 is independent of k and φ is the superconducting phase. A triplet p-wave supercon-
ductor, by contrast, has a pairing potential that is an odd function of the wave vector. Below, we choose the spin 
quantization axis to lie along the z-direction and to be parallel to the spin polarization of the triplet state18,52. The 
resulting pairing potential is then

σΔ = Δ | | φˆ ˆkk k( ) ( / )e , (5)x
i

1

which is an odd function of kx.
We now consider the Bogoliubov-de Gennes equations

Ψ = ΨH Ek k k( ) ( ) ( ), (6)

where E is the excitation energy measured from the Fermi level. To proceed, we note that for both singlet and 
triplet superconductors, we can decouple the two independent spin channels of the Hamiltonian in Eq. (1). For 
each spin channel, we then find solutions of the form
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Here, the two wave vectors are given by
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and the ratio of the hole and electron amplitudes reads

=
Δ

− − Δ
.

φv
u E E

e
(9)

i
0

0 2 2

Above, we have defined ησα = ±1 depending on the spin σ for singlet superconductors and on α for triplet 
superconductors. Thus, for a specific geometry, we need to find the coefficients v0, aσα and bσα, so that the bound-
ary conditions are fulfilled and the state is normalized. We note here that a superposition of the s- and p-wave 
pairings from Eq. (4) and Eq. (5) will also lead to a decoupling of the two spin channels of the Hamiltonian. 
Following ref.53, Eqs (7–9) can thus be easily extended to account for this type of pairing.

Throughout this work, we will be interested in transport processes taking place in hybrid systems involving 
normal-state regions (Δ = 0) and superconducting regions (Δ ≠ 0). As an example we first describe an NIS junc-
tion consisting of a normal-state (N) region connected via an insulating barrier (I) to a superconductor (S). The 
insulator is described by the potential barrier

δ=V x Z k
m

x( )
2

( ) (10)
F

2

positioned (at x = 0) between the normal-state region (x < 0) and the superconductor (x > 0). Here, μ=k m2 /F  
is the Fermi wave vector, and Z is the dimensionless strength of the barrier54. We assume that the amplitude of the 
pairing potential changes abruptly from Δ in S to zero in N. This assumption is valid if the Fermi wavelength in S 
is much smaller than the proximity-induced coherence length ξ = Δv /F . The corresponding boundary condi-
tions then read
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We consider electrons being injected from the normal-metal and correspondingly set aσ+ = 1, =σ
σ

−a ree, 
=σ

σ
+b reh, and bσ− = 0 in Eq. (7) for x < 0. Here, σree and σreh are the amplitudes for incoming electrons to be reflected 

by the superconductor, coming back as an electron (normal reflection) or a hole (Andreev reflection). Imposing 
the boundary conditions above and requiring the state to be normalized, the reflection amplitudes become
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For singlet superconductors, the amplitudes are the same for both spin directions, up to an irrelevant sign in 
the Andreev reflection amplitude σreh. For the triplet superconductors, the amplitudes for the two spin channels are 
identical. The difference between singlet and triplet superconductors comes from the product ησ + ησ− in the 
denominator of the amplitudes. For singlet superconductors, we have ησ + ησ− = 1, while for triplet superconduc-
tors, we get ησ + ησ− = −1, leading to the formation of a zero-energy Andreev bound state18,55–57.

The procedure above can be used to find the transmission and reflection amplitudes of more complicated 
systems, for instance with two normal leads coupled to a superconductor58–62. In the NISIN junction, a supercon-
ductor of width dS is coupled via insulating barriers to two normal-metal leads. For the left insulating barrier, we 
impose the boundary conditions in Eq. (11), substituting Z by ZL. For the right barrier (at x = dS), we similarly 
have
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Having formulated the boundary conditions, we can then evaluate the scattering properties of the NISIN 
structure.

Electron Waiting Times
We are interested in quantum transport through superconducting hybrid junctions, specifically in the waiting 
time between quasi-particles leaving the superconducting region48,50. For example, one may consider the waiting 
time between an electron with spin-up leaving the superconductor and the next hole with spin-down leaving the 
superconductor. The waiting time is a fluctuating quantity, which must be described by a probability distribution. 
The waiting time distribution (WTD) is the conditional probability density of detecting a particle of type β at time 
βt
e, given that the last detection of a particle of type α occurred at the earlier time αt

s . Here, the types α and β may 
refer to the out-going channel, the spin of the particle, and the particle being an electron or a hole. The WTD is 
denoted as α β α β→ t t( , )s e . For the systems considered here with no explicit time dependence, the WTD is a func-
tion only of the time difference, such that τ=α β α β α β→ →t t( , ) ( )s e   with τ = −β αt te s 35.

To evaluate the WTD, we proceed as in ref.37 and express the WTD as time-derivatives of the idle time proba-
bility. The idle time probability Π α αt t( , )s e  is the probability that no particles of type α are detected in the time 
interval α αt t[ , ]s e  by a detector at position xα. The idle time probability can be a function of several different particle 
types and associated time intervals. The WTD can be related to the idle time probability by realizing that 
time-derivatives correspond to detection events. Specifically, the distribution of waiting times between particles 
of type α and particles of type β can be expressed as37

τ = − ∂ ∂ Π |α α β α α β β
τ

→ →
→

β α α β β
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s e s e

t t t
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e


where Iα is the average particle current of type α particles, and the minus sign comes together with the deriv-
ative with respect to the starting time αt

s . In addition, after having performed the derivatives, we set the starting 
times to zero, i.e., = =α βt t 0s s , while for the end times we set =αt 0e  and τ=βt

e . The waiting time is then measured 
from the time when a particle of type α is detected until the later time when a particle of type β is detected. 
During this waiting time, additional particles of type α may be detected, but not of type β.

The idle time probability can be evaluated using scattering theory, leading to the determinant formula37

Π = −γ γ γ γ�t t t t({ , }) det[ ({ , })], (15)
s e s e

where the set γ γt t{ , }s e  corresponds to all relevant particles and associated time intervals. The hermitian operator 
γ γt t({ , })s e  is a matrix in the combined energy and particle type representation. It has the block form

Q S K S= − ′ ′′
† E E E E[ ] ( ) ( ) ( ), (16)EE

having omitted the time arguments. The scattering matrix E( )  and the kernel E( )  are matrices in the space of 
particle types. The kernel is the block diagonal matrix
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corresponding to each particle of type γ with a detector at position xγ. We work close to the Fermi level, where the 
dispersion relation E = ħvFk is approximately linear and all quasi-particles propagate with the Fermi velocity vF. 
To implement the matrix in Eq. (16), we discretize the transport window [EF, EF + eV] in intervals of width 
κ = eV/ , where   is the total number of intervals. The width κ enters in Eq. (18), and we always consider the 
limit  → ∞, for which the transport is stationary.

By combining Eqs (14) and (15), we now find
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having made repeatedly use of Jacobi's formula for derivatives of determinants, and we have defined

= − .−�( ) (20)1G Q

In addition, the first-passage time distributions read
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The first distribution, Eq. (21), is the conditional probability density that no particles of type β are detected in 
the time span [0, τ], given that a particle of type α was detected at the initial time t = 0. The second distribution, 
Eq. (22), concerns the time τ we have to wait until a particle of type α is detected, given that we start the clock at 
time t = 0. Finally, for evaluating Eq. (19) we note that the average particle current of type α particles can be 
expressed as =α αI (0) . In combination, Eqs (15–22) allow us to evaluate the distributions of waiting times for 
the superconducting systems that we consider in the following.

NIS Junctions
We first consider an NIS junction. The differential conductance at zero temperature is given by the well-known 
expression54

∑= − | | + | |
σ

σ σG G r r(1 ),
(23)NS N ee eh

2 2

where GN = (e2/h)/(1 + Z2) is the normal-state conductance. Without a barrier between the N and S regions, nor-
mal reflections are suppressed and Andreev reflection becomes the only available scattering mechanism. This 
situation corresponds to taking Z = 0 in Eq. (12), such that | | = | |σr v u/eh

2
0 0

2 and | | =σr 0ee
2 . Consequently, the sub-

gap conductance for transparent junctions, where |reh|2 = 1, takes the universal value GNS = 2GN independently of 
the pairing mechanism; see the green line in Fig. 2(a).

Figure 2. Electron waiting times of NIS junctions. (a) For transparent ( Z 0) NIS junctions, the differential 
conductance for s- and p-wave superconductors is the same (green line with Z = 0.05). For tunnel junctions, the 
conductance features a gapped profile for s-wave pairing (red line) and displays a zero-bias peak for p-wave 
(blue line). (b) WTD between reflected holes at fixed voltage eV = Δ/2 for the same parameters as in (a). Inset: 
short-time WTD for s-wave pairing. (c) Distribution of waiting times between electrons and holes for a highly 
transparent junction (Z = 0.05). The black dotted line shows the Wigner-Dyson distribution. (d) Distribution of 
waiting times between reflected electrons and holes at zero waiting time. Here, as a function of the applied 
voltage.
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To distinguish between singlet and triplet pairing through conductance measurements, one thus needs junc-
tions that are not fully transmitting and have a strong contribution from normal backscattering of quasi-particles. 
In Fig. 2(a), we show examples of the conductance for singlet (red) and triplet (blue) superconductors. The latter 
displays a characteristic zero-bias peak that reveals the presence of a surface Andreev state in the superconduc-
tor18,19,21,22,53,55,56. In the presence of normal reflections, tunnel spectroscopy of an NIS junction must be done with 
enough precision to fully resolve the zero-bias peak corresponding to the nontrivial state coming from the p-wave 
superconductor.

The distribution of waiting times between particles, either electrons or holes, at NIS junctions provides com-
plementary information about the pairing mechanism in the superconductor. Figure 2(b) shows the WTDs for 
reflected holes with the voltage eV = Δ/2. Transparent junctions with Z 0 feature a free flow of Andreev 
reflected holes, resulting in a WTD both for singlet and triplet superconductors (green line) which is 
well-approximated by the Wigner-Dyson distribution

 τ τ
π τ

=
〈 〉

.τ π τ− 〈 〉( ) 32 e
(24)

2

2 3
4 /( )2 2 2

The Wigner-Dyson distribution is characteristic for the free flow of non-interacting fermions35,36. It also 
reveals several properties of the coherent transport in the NIS junction. First, its maximum is located at the mean 
waiting time between reflected holes which corresponds to the average current for hole-like excitations, i.e., 
τ〈 〉 = I h eV1/ /( )h h . Second, the width of the distribution reveals the wave nature of the quantum excitations - 

completely regular transport would be characterized by a Dirac delta peak at τ = 〈τh〉. Finally, the simultaneous 
detection of two particles of the same type is forbidden due to the Pauli principle, i.e., τ = =→ ( 0) 0h h . All these 
considerations are valid at zero temperature. We do not expect a qualitative change up to finite electronic temper-
atures comparable to the applied voltage, cf. ref.36, with the temperature still being smaller than the superconduct-
ing gap.

Since normal backscattering is suppressed in transparent junctions, the WTD between reflected electrons 
approaches Poissonian statistics given by the exponential distribution, τ τ〈 〉τ τ

→
− 〈 〉

( ) e /e e
/ , as characteristic of 

low-transmitting contacts35,36. Similarly, for a tunnel barrier, Andreev reflections are suppressed for all energies 
below the gap for singlet superconductor. Therefore,  τ→ ( )h h  also approaches a Poisson distribution; see the red 
line in Fig. 2(b). On top of that, the WTD features small oscillations with period given by the average particle 
current [inset of Fig. 2(b)]. In the low transmission regime, the WTD can be expanded in powers of the reflection 
(or transmission) probability. The oscillations in the WTD are thus well interpreted in terms of the higher order 
scattering events taking place at the junction35,36.

The surface state in the triplet superconductor completely changes this picture. For any applied voltage, a per-
fect Andreev reflection occurs at zero energy, making the scattering probability strongly energy-dependent. The 
WTD between reflected holes captures this effect resulting in a crossover between Wigner-Dyson and Poisson 
statistics indicated by the blue line in Fig. 2(b).

In addition to the waiting times between particles of the same type, it is interesting to analyze the distribu-
tion of waiting times between different types of particles. These distributions do not necessarily vanish at zero 
waiting time, since the simultaneous reflection of an electron and a hole is possible. For p-wave superconductors, 
which always fulfill |reh(E = 0)|2 = 1, the distribution of waiting times between electrons and holes is similar to 
a Wigner-Dyson distribution, but with the important difference that it remains finite at zero waiting time. In 
Fig. 2(c), we show the distribution of waiting times between electrons and holes for a highly transparent junction, 
where the conductance cannot clearly resolve the zero-energy state. By contrast, the WTD remains finite at zero 
waiting time for p-wave superconductors (blue line), while it is suppressed to zero for s-wave superconductors 
(red line) and closely follows the Wigner-Dyson distribution (dotted line). Thus, the surface state of the p-wave 
superconductor enables the simultaneous reflection of electrons and holes.

In Fig. 2(d), we analyze in more detail the voltage dependence of the WTDs at short waiting times. For s-wave 
pairing, transport in highly transparent junctions is dominated by Andreev reflections, while normal backscat-
tering is the main microscopic process for tunnel junctions. In both cases, the transport is controlled by only one 
scattering mechanism, so the WTDs vanish at short waiting times for subgap voltages; cf. red and magenta lines in 
Fig. 2(d). When the applied voltage is higher than the superconducting gap, both normal and Andreev reflections 
contribute to the transport through the junction. For transparent junctions, Andreev reflections dominate at sub-
gap energies, but they are suppressed for energies above the gap, where quasi-particle transmission takes place. 
For tunnel junctions, normal scattering provides the main contribution to transport, except for energies close to 
the gap, where Andreev processes are enhanced. As a result, we observe a finite WTD at short times for voltages 
in the range Δ ≲ eV ≲ 2Δ. Junctions with p-wave superconductors always feature a finite WTD at short waitings 
times; see blue and cyan lines in Fig. 2(d). Thus, WTDs can identify topological superconductors with a voltage 
that is smaller or comparable to the superconducting gap.

NISIN Junctions
Next, we turn to NISIN junctions. We thus consider a superconductor of finite width and we add a second normal 
electrode. The resulting structure, with barriers of strength ZL,R on each side of the superconductor, can function 
as a Cooper pair splitter63–70: by biasing the normal leads, Cooper pairs from the superconducting region can be 
forced to leak into the normal regions. In the ideal case, the two electrons from a split Cooper pair tunnel into 
different normal leads, while preserving the entanglement of their spins. The time-reversed process, where the 
incident electrons originate from different electrodes, is known as a crossed Andreev reflection61,71–82. If the cen-
tral region is a topological superconductor, the Majorana edge modes drastically change the transport properties 
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of the system83–86. Even for junctions where the superconductor is much larger than the superconducting coher-
ence length, the edge modes allow for a finite conversion of incident electrons from one electrode into transmit-
ted holes in the other. Trivial superconductors, on the other hand, only feature crossed Andreev reflections for 
energies above the gap.

To explore the different transmission profiles for trivial and topological superconductors, we evaluate the 
WTDs for the NISIN junction. To be specific, we consider low-transmitting barriers and a superconducting 
region that is wider than the coherence length. As a result, electron and hole transmission through s-wave super-
conductors is very weak and only takes place for energies above the gap. On the other hand, p-wave superconduc-
tors feature a finite transmission for both electrons and holes at zero energy. However, these scattering processes 
are of similar magnitude and have opposite contributions to the nonlocal conductance that tend to cancel. Thus, 
similarly to transparent NIS junctions, the nonlocal conductance cannot clearly identify the presence of topolog-
ical edge states.

The presence of the edge states can be captured by the WTDs. First, we consider the NISIN junction with a 
voltage bias applied to the left electrode only, i.e, VL = V and VR = 0. The WTDs between transmitted hole-like 
quasi-particles for s-wave superconductors strongly depend on the applied voltage, see Fig. 3(b). For subgap volt-
ages (red line), quasi-particle transmission is strongly suppressed and  τ→ ( )h h  approaches an exponential distri-
bution corresponding to Poisson statistics. The two barriers ZL,R create resonance conditions for the transmission 
of quasi-particles with energies above the gap. If only one of these transmission resonances are located inside the 
voltage window, the WTD approaches the crossover-regime between Poisson and Wigner-Dyson statistics (blue 
line). If two or more resonances are located inside the voltage window (green line), the WTD features oscillations 
due to interference between the different transmission channels36. The WTDs for p-wave superconductors, by 
contrast, are very different. Due to the presence of the edge states,  τ→ ( )h h  is dominated by the enhanced trans-
mission at zero energy and follows the crossover-regime between Poisson and Wigner-Dyson statistics, cf. 
Fig. 3(c). This is the case even for voltages larger than the gap, which include extra quasi-particle transport 
channels.

We now allow for the voltage to drop symmetrically across the junction by setting VL = V and VR = −V. 
In addition to the incoming electrons from the left electrode, we must now include holes being injected from 
the right lead. These holes experience normal and Andreev reflections at the right interface, which contribute 
to the outgoing stream of electrons and holes in the right lead. Since we consider low-transmitting interfaces, 
normal reflections are dominant except for resonant energies. In Fig. 3(d), we show the distribution of wait-
ing times between electrons and holes being transmitted into the right lead from an s-wave superconductor. 
Again, the WTD is very different for voltages above and below the gap. Below the gap, the WTD is well-captured 
by a Wigner-Dyson distribution and it vanishes at short waiting times. This result is directly connected to the 
dominant contribution from normal reflection of holes at the right interface. The suppression is lifted for volt-
ages above the gap, since normal transmission of electrons from left to right also has a high probability. The 
cross-channel WTD for energies over the gap thus has two contributions and follows the WTD for two independ-
ent channels described in ref.36. These results should be contrasted with those of a p-wave superconductor shown 
in Fig. 3(e). Here, the WTD is nearly independent of the applied voltage, giving a distinct difference from s-wave 

Figure 3. Electron waiting times of NISIN junctions. (a) Schematics of the setup with two different voltage 
configurations. In the top panel, a voltage is applied to the left lead, while the right one is kept grounded. In the 
bottom panel, the leads are biased with opposite voltages. (b,c) For VR = 0, the distribution of waiting times 
between transmitted holes is shown for s-wave (b) and p-wave (c) superconductors, respectively. (d,e) For 
VR = −VL, the distribution of waiting times between transmitted electrons and holes is shown for s-wave (d) and 
p-wave (e) superconductors, respectively. The barrier strengths are ZL = 3 and ZR = 2.5, and dS/ξ = 5 is the width 
of the superconducting region over the coherence length.
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superconductors. As long as the applied voltage is comparable to the superconducting gap, transport in the right 
lead is dominated by zero-energy scattering processes.

Conclusions and Outlook
We have shown that waiting time distributions are a useful tool to determine the presence of edge states in 
topological superconductors. At normal-superconductor junctions, the waiting time distribution of hole-like 
quasi-particles is equivalent to the distribution of waiting times between Cooper pairs being injected into the 
superconductor. Moreover, the distribution of waiting times between holes reveals the presence of topological 
edge states in junctions with p-wave superconductors. In addition, the distribution of waiting times between 
electrons and holes is very sensitive to the edge states, even in transparent junctions, where conductance meas-
urements would not provide a clear signal. In trivial superconductors, the waiting time distribution is suppressed 
to zero at short waiting times for subgap voltages. By contrast, for topological superconductors, the waiting time 
distribution remains finite for any applied voltage, providing a clear difference from s-wave superconductors. In 
systems where topological superconductivity is artificially engineered2–4, the proximity-induced pairing can be 
a superposition of s- and p-wave amplitudes. As described in ref.53, if the p-wave amplitude is dominant, a zero 
energy state emerges. The previous results thus apply to this case.

For NISIN junctions, we have analyzed the waiting time between the transmissions of electrons and holes 
through the superconducting region. Also in this case, the p-wave superconductors feature distinctive behaviors 
in the nonlocal transport as revealed by the waiting time distributions. For s-wave superconductors, the waiting 
time distribution changes abruptly as the voltage bias is increased above the superconducting gap. By contrast, for 
p-wave superconductors, the transport is dominated by the presence of zero-energy edge modes, and the waiting 
time distributions are almost independent of the voltage.

As an outlook on future work, we finally point out possible avenues for further developments. In quantum 
dot systems, the tunneling of individual electrons can now be experimentally observed using single-electron 
detectors, and measurements of an electron waiting time distribution have recently been reported30. In coherent 
conductors, a measurement of the waiting time distribution seems more challenging, and only recently a quan-
tum theory of an electron waiting time clock has been developed for normal-state conductors41 with an extension 
to a spin-sensitive detector being outlined in subsequent work87. Recent measurements of the time-of-flight of 
single-electron excitations through a mesoscopic conductor provide a promising way for directly investigating 
real-time dynamics of emitted pulses88,89. Adapting these ideas to superconducting systems is clearly desirable. 
Moreover, while we have focused on superconducting junctions with constant voltage biases, it would be inter-
esting to investigate these systems when excited by periodic voltage pulses. The transmission of a charge pulse 
through a superconducting region may yield additional information about the topological properties of the 
superconductor, including the presence of edge modes, with clear signatures in the waiting time distribution.
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